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“Mathematics, rightly viewed, possesses not only truth, but supreme beauty
—a beauty cold and austere, like that of sculpture.”

—Bertrand Russell, Mysticism and Logic, 1918

“Mathematics is a wonderful, mad subject, full of imagination, fantasy, and
creativity that is not limited by the petty details of the physical world, but
only by the strength of our inner light.”

—Gregory Chaitin, “Less Proof, More Truth,”
New Scientist, July 28, 2007

“Perhaps an angel of the Lord surveyed an endless sea of chaos, then
troubled it gently with his finger. In this tiny and temporary swirl of
equations, our cosmos took shape.”

—Martin Gardner, Order and Surprise, 1950

“The great equations of modern physics are a permanent part of scientific
knowledge, which may outlast even the beautiful cathedrals of earlier
ages.”

—Steven Weinberg, in Graham Farmelo’s
It Must Be Beautiful, 2002



HOW TO USE THIS BOOK
The 250 chronological milestones are easily viewed in the selectable table
of contents that follows. Each milestone consists of a synopsis, followed by
at least one image that helps to illustrate an aspect of the seminal event,
publication, or concept. Occasional text in bold type points the reader to
related entries. Additionally, a small “See also” section at the bottom of
each entry helps weave entries together in a web of interconnectedness and
may help the reader traverse the book in a playful quest for discovery.
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Introduction

The Beauty and Utility of Mathematics

“An intelligent observer seeing mathematicians at work might conclude
that they are devotees of exotic sects, pursuers of esoteric keys to the
universe.”

—Philip Davis and Reuben Hersh, The Mathematical Experience

Mathematics has permeated every field of scientific endeavor and plays an
invaluable role in biology, physics, chemistry, economics, sociology, and
engineering. Mathematics can be used to help explain the colors of a sunset
or the architecture of our brains. Mathematics helps us build supersonic
aircraft and roller coasters, simulate the flow of Earth’s natural resources,
explore subatomic quantum realities, and image faraway galaxies.
Mathematics has changed the way we look at the cosmos.

In this book, I hope to give readers a taste for mathematics using few
formulas, while stretching and exercising the imagination. However, the
topics in this book are not mere curiosities with little value to the average
reader. In fact, reports from the U.S. Department of Education suggest that
successfully completing a mathematics class in high school results in better
performance at college whatever major the student chooses to pursue.

The usefulness of mathematics allows us to build spaceships and
investigate the geometry of our universe. Numbers may be our first means
of communication with intelligent alien races. Some physicists have even
speculated that an understanding of higher dimensions and of topology—the
study of shapes and their interrelationships—may someday allow us to
escape our universe, when it ends in either great heat or cold, and then we
could call all of space-time our home.

Simultaneous discovery has often occurred in the history of mathematics.
As I mention in my book The Möbius Strip, in 1858 the German
mathematician August Möbius (1790–1868) simultaneously and
independently discovered the Möbius strip (a wonderful twisted object with
just one side) along with a contemporary scholar, the German
mathematician Johann Benedict Listing (1808–1882). This simultaneous
discovery of the Möbius band by Möbius and Listing, just like that of



calculus by English polymath Isaac Newton (1643–1727) and German
mathematician Gottfried Wilhelm Leibniz (1646–1716), makes me wonder
why so many discoveries in science were made at the same time by people
working independently. For another example, British naturalists Charles
Darwin (1809–1882) and Alfred Wallace (1823–1913) both developed the
theory of evolution independently and simultaneously. Similarly, Hungarian
mathematician János Bolyai (1802–1860) and Russian mathematician
Nikolai Lobachevsky (1793–1856) seemed to have developed hyperbolic
geometry independently, and at the same time.

Most likely, such simultaneous discoveries have occurred because the
time was ripe for such discoveries, given humanity’s accumulated
knowledge at the time the discoveries were made. Sometimes, two
scientists are stimulated by reading the same preliminary research of one of
their contemporaries. On the other hand, mystics have suggested that a
deeper meaning exists to such coincidences. Austrian biologist Paul
Kammerer (1880–1926) wrote, “We thus arrive at the image of a world-
mosaic or cosmic kaleidoscope, which, in spite of constant shuffling and
rearrangements, also takes care of bringing like and like together.” He
compared events in our world to the tops of ocean waves that seem isolated
and unrelated. According to his controversial theory, we notice the tops of
the waves, but beneath the surface some kind of synchronistic mechanism
may exist that mysteriously connects events in our world and causes them
to cluster.

Georges Ifrah in The Universal History of Numbers discusses
simultaneity when writing about Mayan mathematics:

We therefore see yet again how people who have been widely separated
in time or space have…been led to very similar if not identical results….
In some cases, the explanation for this may be found in contacts and
influences between different groups of people….The true explanation lies
in what we have previously referred to as the profound unity of culture:
the intelligence of Homo sapiens is universal and its potential is
remarkably uniform in all parts of the world.

Ancient people, like the Greeks, had a deep fascination with numbers.
Could it be that in difficult times numbers were the only constant thing in
an ever-shifting world? To the Pythagoreans, an ancient Greek sect,



numbers were tangible, immutable, comfortable, eternal—more reliable
than friends, less threatening than Apollo and Zeus.

Many entries in this book deal with whole numbers, or integers. The
brilliant mathematician Paul Erdös (1913–1996) was fascinated by number
theory—the study of integers—and he had no trouble posing problems,
using integers, that were often simple to state but notoriously difficult to
solve. Erdös believed that if one can state a problem in mathematics that is
unsolved for more than a century, then it is a problem in number theory.

Many aspects of the universe can be expressed by whole numbers.
Numerical patterns describe the arrangement of florets in a daisy, the
reproduction of rabbits, the orbit of the planets, the harmonies of music, and
the relationships between elements in the periodic table. Leopold Kronecker
(1823–1891), a German algebraist and number theorist, once said, “The
integers came from God and all else was man-made.” His implication was
that the primary source of all mathematics is the integers.

Since the time of Pythagoras, the role of integer ratios in musical scales
has been widely appreciated. More important, integers have been crucial in
the evolution of humanity’s scientific understanding. For example, French
chemist Antoine Lavoisier (1743–1794) discovered that chemical
compounds are composed of fixed proportions of elements corresponding to
the ratios of small integers. This was very strong evidence for the existence
of atoms. In 1925, certain integer relations between the wavelengths of
spectral lines emitted by excited atoms gave early clues to the structure of
atoms. The near-integer ratios of atomic weights were evidence that the
atomic nucleus is made up of an integer number of similar nucleons
(protons and neutrons). The deviations from integer ratios led to the
discovery of elemental isotopes (variants with nearly identical chemical
behavior but with different numbers of neutrons).

Small divergences in the atomic masses of pure isotopes from exact
integers confirmed Einstein’s famous equation E = mc2 and also the
possibility of atomic bombs. Integers are everywhere in atomic physics.
Integer relations are fundamental strands in the mathematical weave—or as
German mathematician Carl Friedrich Gauss (1777–1855) said,
“Mathematics is the queen of sciences—and number theory is the queen of
mathematics.”

Our mathematical description of the universe grows forever, but our
brains and language skills remain entrenched. New kinds of mathematics



are being discovered or created all the time, but we need fresh ways to think
and to understand. For example, in the last few years, mathematical proofs
have been offered for famous problems in the history of mathematics, but
the arguments have been far too long and complicated for experts to be
certain they are correct. Mathematician Thomas Hales had to wait five years
before expert reviewers of his geometry paper—submitted to the journal
Annals of Mathematics—finally decided that they could find no errors and
that the journal should publish Hales’s proof, but only with the disclaimer
saying they were not certain it was right! Moreover, mathematicians like
Keith Devlin have admitted in the New York Times that “the story of
mathematics has reached a stage of such abstraction that many of its
frontier problems cannot even be understood by the experts.” If experts
have such trouble, one can easily see the challenge of conveying this kind
of information to a general audience. We do the best we can.
Mathematicians can construct theories and perform computations, but they
may not be sufficiently able to fully comprehend, explain, or communicate
these ideas.

A physics analogy is relevant here. When Werner Heisenberg worried
that human beings might never truly understand atoms, Niels Bohr was a bit
more optimistic. He replied in the early 1920s, “I think we may yet be able
to do so, but in the process we may have to learn what the word
understanding really means.” Today, we use computers to help us reason
beyond the limitations of our own intuition. In fact, experiments with
computers are leading mathematicians to discoveries and insights never
dreamed of before the ubiquity of these devices. Computers and computer
graphics allow mathematicians to discover results long before they can
prove them formally and open entirely new fields of mathematics. Even
simple computer tools like spreadsheets give modern mathematicians power
that Gauss, Leonhard Euler, and Newton would have lusted after. As just
one example, in the late 1990s, computer programs designed by David
Bailey and Helaman Ferguson helped produce new formulas that related pi
to log 5 and two other constants. As Erica Klarreich reports in Science
News, once the computer had produced the formula, proving that it was
correct was extremely easy. Often, simply knowing the answer is the largest
hurdle to overcome when formulating a proof.

Mathematical theories have sometimes been used to predict phenomena
that were not confirmed until years later. For example, Maxwell’s



equations, named after physicist James Clerk Maxwell, predicted radio
waves. Einstein’s field equations suggested that gravity would bend light
and that the universe is expanding. Physicist Paul Dirac once noted that the
abstract mathematics we study now gives us a glimpse of physics in the
future. In fact, his equations predicted the existence of antimatter, which
was subsequently discovered. Similarly, mathematician Nikolai
Lobachevsky said that “there is no branch of mathematics, however
abstract, which may not someday be applied to the phenomena of the real
world.”

In this book, you will encounter various interesting geometries that have
been thought to hold the keys to the universe. Galileo Galilei (1564–1642)
suggested that “Nature’s great book is written in mathematical symbols.”
Johannes Kepler (1571–1630) modeled the solar system with Platonic
solids such as the dodecahedron. In the 1960s, physicist Eugene Wigner
(1902–1995) was impressed with the “unreasonable effectiveness of
mathematics in the natural sciences.” Large Lie groups, like E8—which is
discussed in the entry “The Quest for Lie Group E8 (2007)”—may someday
help us create a unified theory of physics. In 2007, Swedish American
cosmologist Max Tegmark published both scientific and popular articles on
the mathematical universe hypothesis, which states that our physical reality
is a mathematical structure—in other words, our universe is not just
described by mathematics—it is mathematics.

Book Organization and Purpose

“At every major step, physics has required, and frequently stimulated,
the introduction of new mathematical tools and concepts. Our present
understanding of the laws of physics, with their extreme precision and
universality, is only possible in mathematical terms.”

—Sir Michael Atiyah, “Pulling the Strings,” Nature

One common characteristic of mathematicians is a passion for completeness
—an urge to return to first principles to explain their works. As a result,
readers of mathematical texts must often wade through pages of
background before getting to the essential findings. To avoid this problem,
each entry in this book is short, at most only a few paragraphs in length.
This format allows readers to jump right in to ponder a subject, without



having to sort through a lot of verbiage. Want to know about infinity? Turn
to the entries “Cantor’s Transfinite Numbers” (1874) or “Hilbert’s Grand
Hotel” (1925), and you’ll have a quick mental workout. Interested in the
first commercially successful portable mechanical calculator, developed by
a prisoner in a Nazi concentration camp? Turn to “Curta Calculator” (1948)
for a brief introduction.

Wonder how an amusing-sounding theorem may one day help scientists
form nanowires for electronics devices? Then browse through the book and
read the “Hairy Ball Theorem” (1912) entry. Why did the Nazis compel the
president of the Polish Mathematical Society to feed his own blood to lice?
Why was the first female mathematician murdered? Is it really possible to
turn a sphere inside out? Who was the “Number Pope”? When did humans
tie their first knots? Why don’t we use Roman numerals anymore? Who
was the earliest named individual in the history of mathematics? Can a
surface have only one side? We’ll tackle these and other thought-provoking
questions in the pages that follow.

Of course, my approach has some disadvantages. In just a few
paragraphs, I can’t go into any depth on a subject. However, I provide
suggestions for further reading in the “Notes and Further Reading” section.
While I sometimes list primary sources, I have often explicitly listed
excellent secondary references that readers can frequently obtain more
easily than older primary sources. Readers interested in pursuing any
subject can use the references as a useful starting point.

My goal in writing The Math Book is to provide a wide audience with a
brief guide to important mathematical ideas and thinkers, with entries short
enough to digest in a few minutes. Most entries are ones that interested me
personally. Alas, not all of the great mathematical milestones are included
in this book in order to prevent the book from growing too large. Thus, in
celebrating the wonders of mathematics in this short volume, I have been
forced to omit many important mathematical marvels. Nevertheless, I
believe that I have included a majority of those with historical significance
and that have had a strong influence on mathematics, society, or human
thought. Some entries are eminently practical, involving topics that range
from slide rules and other calculating devices to geodesic domes and the
invention of zero. Occasionally, I include several lighter moments, which
were nonetheless significant, such as the rise of the Rubik’s Cube puzzle or
the solving of the Bed Sheet Problem. Sometimes, snippets of information



are repeated so that each entry can be read on its own. Occasional text in
boldface type points the reader to related entries. Additionally, a small “See
also” section at the bottom of each entry helps weave entries together in a
web of interconnectedness and may help the reader traverse the book in a
playful quest for discovery.

The Math Book reflects my own intellectual shortcomings, and while I
try to study as many areas of science and mathematics as I can, it is difficult
to become fluent in all aspects, and this book clearly indicates my own
personal interests, strengths, and weaknesses. I am responsible for the
choice of pivotal entries included in this book and, of course, for any errors
and infelicities. This is not a comprehensive or scholarly dissertation, but
rather it is intended as recreational reading for students of science and
mathematics and interested laypeople. I welcome feedback and suggestions
for improvement from readers, as I consider this an ongoing project and a
labor of love.

This book is organized chronologically, according to the year of a
mathematical milestone or finding. In some cases, the literature may report
slightly different dates for the milestone because some sources give the
publication date as the discovery date of a finding, while other sources give
the actual date that a mathematical principle was discovered, regardless of
the fact that the publication date is sometimes a year or more later. If I was
uncertain of a precise earlier date of discovery, I often used the publication
date.

Dating of entries can also be a question of judgment when more than one
individual made a contribution. Often, I have used the earliest date where
appropriate, but sometimes I have surveyed colleagues and decided to use
the date when a concept gained particular prominence. For example,
consider the Gray code, which is used to facilitate error correction in digital
communications, such as in TV signal transmission, and to make
transmission systems less susceptible to noise. This code was named after
Frank Gray, a physicist at Bell Telephone Laboratories in the 1950s and
1960s. During this time, these kinds of codes gained particular prominence,
partly due to his patent filed in 1947 and the rise of modern
communications. The Gray code entry is thus dated as 1947, although it
might also have been dated much earlier, because the roots of the idea go
back to Émile Baudot (1845–1903), the French pioneer of the telegraph. In



any case, I have attempted to give readers a feel for the span of possible
dates in each entry or in the “Notes and Further Reading” section.

Scholars sometimes have disputes with respect to the person to whom a
discovery is traditionally attributed. For example, author Heinrich Dörrie
cites four scholars who do not believe that a particular version of
Archimedes’ cattle problem is due to Archimedes, but he also cites four
authors who believe that the problem should be attributed to Archimedes.
Scholars also dispute the authorship of Aristotle’s wheel paradox. Where
possible, I mention such disputes either in the main text or the “Notes and
Further Reading” section.

You will notice that a significant number of milestones have been
achieved in just the last few decades. As just one example, in 2007,
researchers finally “solved” the game of checkers, proving that if an
opponent plays perfectly, the game ends in draw. As already mentioned,
part of the rapid recent progress in mathematics is due to the use of the
computer as a tool for mathematical experiments. For the checkers solution,
the analysis actually began in 1989 and required dozens of computers for
the complete solution. The game has roughly 500 billion billion possible
positions.

Sometimes, science reporters or famous researchers are quoted in the
main entries, but purely for brevity I don’t list the source of the quote or the
author’s full credentials in the entry. I apologize in advance for this
occasional compact approach; however, references in the back of the book
should help to make the author’s identity clearer.

Even the naming of a theorem can be a tricky business. For example,
mathematician Keith Devlin writes in his 2005 column for the
Mathematical Association of America:

Most mathematicians prove many theorems in their lives, and the process
whereby their name gets attached to one of them is very haphazard. For
instance, Euler, Gauss, and Fermat each proved hundreds of theorems,
many of them important ones, and yet their names are attached to just a
few of them. Sometimes theorems acquire names that are incorrect. Most
famously, perhaps, Fermat almost certainly did not prove “Fermat’s Last
Theorem”; rather, that name was attached by someone else, after his
death, to a conjecture the French mathematician had scribbled in the



margin of a textbook. And Pythagoras’s theorem was known long before
Pythagoras came onto the scene.

In closing, let us note that mathematical discoveries provide a framework
in which to explore the nature of reality, and mathematical tools allow
scientists to make predictions about the universe; thus, the discoveries in
this book are among humanity’s greatest achievements.

At first glance, this book may seem like a long catalogue of isolated
concepts and people with little connection between them. But as you read, I
think you’ll begin to see many linkages. Obviously, the final goal of
scientists and mathematicians is not simply the accumulation of facts and
lists of formulas, but rather they seek to understand the patterns, organizing
principles, and relationships between these facts to form theorems and
entirely new branches of human thought. For me, mathematics cultivates a
perpetual state of wonder about the nature of mind, the limits of thoughts,
and our place in this vast cosmos.

Our brains, which evolved to make us run from lions on the African
savanna, may not be constructed to penetrate the infinite veil of reality. We
may need mathematics, science, computers, brain augmentation, and even
literature, art, and poetry to help us tear away the veils. For those of you
who are about to embark on reading the The Math Book from cover to
cover, look for the connections, gaze in awe at the evolution of ideas, and
sail on the shoreless sea of imagination.

Acknowledgments
I thank Teja Krašek, Dennis Gordon, Nick Hobson, Pete Barnes, and Mark
Nandor for their comments and suggestions. I would also like to especially
acknowledge Meredith Hale, my editor for this book, as well as Jos Leys,
Teja Krašek, and Paul Nylander for allowing me to include their
mathematically inspired artworks.

While researching the milestones and pivotal moments presented in this
book, I studied a wide array of wonderful reference works and Web sites,
many of which are listed in the “Notes and Further Reading” section toward
the end of the book. These references include “The MacTutor History of
Mathematics Archive” (www-history.mcs.st-and.ac.uk), “Wikipedia: The

http://www-history.mcs.st-and.ac.uk/


Free Encyclopedia” (en.wikipedia.org), “MathWorld”
(mathworld.wolfram.com), Jan Gullberg’s Mathematics: From the Birth of
Numbers, David Darling’s The Universal Book of Mathematics, Ivars
Peterson’s “Math Trek Archives” (www.maa.org/mathland/
mathland_archives.html), Martin Gardner’s Mathematical Games (a
CDROM made available from The Mathematical Association of America),
and some of my own books such as A Passion for Mathematics.

http://en.wikipedia.org/
http://mathworld.wolfram.com/
http://www.maa.org/mathland/mathland_archives.html


Ant Odometer
c. 150 Million B.C.

Ants are social insects that evolved from vespoid wasps in the mid-
Cretaceous period, about 150 million years ago. After the rise of flowering
plants, about 100 million years ago, ants diversified into numerous species.

The Saharan desert ant, Cataglyphis fortis, travels immense distances
over sandy terrain, often completely devoid of landmarks, as it searches for
food. These creatures are able to return to their nest using a direct route
rather than by retracing their outbound path. Not only do they judge
directions, using light from the sky for orientation, but they also appear to
have a built-in “computer” that functions like a pedometer that counts their
steps and allows them to measure exact distances. An ant may travel as far
as 160 feet (about 50 meters) until it encounters a dead insect, whereupon it
tears a piece to carry directly back to its nest, accessed via a hole often less
than a millimeter in diameter.

By manipulating the leg lengths of ants to give them longer and shorter
strides, a research team of German and Swiss scientists discovered that the
ants “count” steps to judge distance. For example, after ants had reached
their destination, the legs were lengthened by adding stilts or shortened by
partial amputation. The researchers then returned the ants so that the ants
could start on their journey back to the nest. Ants with the stilts traveled too
far and passed the nest entrance, while those with the amputated legs did
not reach it. However, if the ants started their journey from their nest with
the modified legs, they were able to compute the appropriate distances. This
suggests that stride length is the crucial factor. Moreover, the highly
sophisticated computer in the ant’s brain enables the ant to compute a
quantity related to the horizontal projection of its path so that it does not
become lost even if the sandy landscape develops hills and valleys during
its journey.

SEE ALSO Primates Count (c. 30 Million B.C.) and Cicada-Generated Prime Numbers (c. 1 Million
B.C.).



Saharan desert ants may have built-in “pedometers” that count steps and allow
the ants to measure exact distances. Ants with stilts glued to their legs (shown in
red) travel too far and pass their nest entrance, suggesting that stride length is
important for distance determination.



Primates Count
c. 30 Million B.C.

Around 60 million years ago, small, lemur-like primates had evolved in
many areas of the world, and 30 million years ago, primates with
monkeylike characteristics existed. Could such creatures count? The
meaning of counting by animals is a highly contentious issue among animal
behavior experts. However, many scholars suggest that animals have some
sense of number. H. Kalmus writes in his Nature article “Animals as
Mathematicians”:

There is now little doubt that some animals such as squirrels or parrots
can be trained to count…. Counting faculties have been reported in
squirrels, rats, and for pollinating insects. Some of these animals and
others can distinguish numbers in otherwise similar visual patterns, while
others can be trained to recognize and even to reproduce sequences of
acoustic signals. A few can even be trained to tap out the numbers of
elements (dots) in a visual pattern….The lack of the spoken numeral and
the written symbol makes many people reluctant to accept animals as
mathematicians.

Rats have been shown to “count” by performing an activity the correct
number of times in exchange for a reward. Chimpanzees can press numbers
on a computer that match numbers of bananas in a box. Testsuro
Matsuzawa of the Primate Research Institute at Kyoto University in Japan
taught a chimpanzee to identify numbers from 1 to 6 by pressing the
appropriate computer key when she was shown a certain number of objects
on the computer screen.

Michael Beran, a research scientist at Georgia State University in
Atlanta, Georgia, trained chimps to use a computer screen and joystick. The
screen flashed a numeral and then a series of dots, and the chimps had to
match the two. One chimp learned numerals 1 to 7, while another managed
to count to 6. When the chimps were tested again after a gap of three years,
both chimps were able to match numbers, but with double the error rate.

SEE ALSO Ant Odometer (c. 150 Million B.C.) and Ishango Bone (c. 18,000 B.C.).



Primates appear to have some sense of number, and the higher primates can be
taught to identify numbers from 1 to 6 by pressing the appropriate computer key
when shown a certain number of objects.



Cicada-Generated Prime Numbers
c. 1 Million B.C.

Cicadas are winged insects that evolved around 1.8 million years ago
during the Pleistocene epoch, when glaciers advanced and retreated across
North America. Cicadas of the genus Magicicada spend most of their lives
below the ground, feeding on the juices of plant roots, and then emerge,
mate, and die quickly. These creatures display a startling behavior: Their
emergence is synchronized with periods of years that are usually the prime
numbers 13 and 17. (A prime number is an integer such as 11, 13, and 17
that has only two integer divisors: 1 and itself.) During the spring of their
13th or 17th year, these periodical cicadas construct an exit tunnel.
Sometimes more than 1.5 million individuals emerge in a single acre; this
abundance of bodies may have survival value as they overwhelm predators
such as birds that cannot possibly eat them all at once.

Some researchers have speculated that the evolution of prime-number life
cycles occurred so that the creatures increased their chances of evading
shorter-lived predators and parasites. For example, if these cicadas had 12-
year life cycles, all predators with life cycles of 2, 3, 4, or 6 years might
more easily find the insects. Mario Markus of the Max Planck Institute for
Molecular Physiology in Dortmund, Germany, and his coworkers
discovered that these kinds of prime-number cycles arise naturally from
evolutionary mathematical models of interactions between predator and
prey. In order to experiment, they first assigned random life-cycle durations
to their computer-simulated populations. After some time, a sequence of
mutations always locked the synthetic cicadas into a stable prime-number
cycle.

Of course, this research is still in its infancy and many questions remain.
What is special about 13 and 17? What predators or parasites have actually
existed to drive the cicadas to these periods? Also, a mystery remains as to
why, of the 1,500 cicada species worldwide, only a small number of the
genus Magicicada are known to be periodical.

SEE ALSO Ant Odometer (c. 150 Million B.C.), Ishango Bone (c. 18,000 B.C.), Sieve of
Eratosthenes (240 B.C.), Goldbach Conjecture (1742), Constructing a Regular Heptadecagon (1796),
Gauss’s Disquisitiones Arithmeticae (1801), Proof of the Prime Number Theorem (1896), Brun’s



Constant (1919), Gilbreath’s Conjecture (1958), Sierpinski Numbers (1960), Ulam Spiral (1963),
Erdös and Extreme Collaboration (1971), and Andrica’s Conjecture (1985).



Certain cicadas display a startling behavior: Their emergence from the soil is
synchronized with periods that are usually the prime numbers 13 and 17.
Sometimes more than 1.5 million individuals emerge in a single acre within a
short interval of time.



Knots
c. 100,000 B.C.

The use of knots may predate modern humans (Homo sapiens). For
example, seashells colored with ocher, pierced with holes, and dated to
82,000 years ago have been discovered in a Moroccan cave. Other
archeological evidence suggests much older bead use in humans. The
piercing implies the use of cords and the use of a knot to hold the objects to
a loop, such as a necklace.

The quintessence of ornamental knots is exemplified by The Book of
Kells, an ornately illustrated Gospel Bible, produced by Celtic monks in
about A.D. 800. In modern times, the study of knots, such as the trefoil knot
with three crossings, is part of a vast branch of mathematics dealing with
closed twisted loops. In 1914, German mathematician Max Dehn (1878–
1952) showed that the trefoil knot’s mirror images are not equivalent.

For centuries, mathematicians have tried to develop ways to distinguish
tangles that look like knots (called unknots) from true knots and to
distinguish true knots from one another. Over the years, mathematicians
have created seemingly endless tables of distinct knots. So far, more than
1.7 million nonequivalent knots with pictures containing 16 or fewer
crossings have been identified.

Entire conferences are devoted to knots today. Scientists study knots in
fields ranging from molecular genetics—to help us understand how to
unravel a loop of DNA—to particle physics, in an attempt to represent the
fundamental nature of elementary particles.

Knots have been crucial to the development of civilization, where they
have been used to tie clothing, to secure weapons to the body, to create
shelters, and to permit the sailing of ships and world exploration. Today,
knot theory in mathematics has become so advanced that mere mortals find
it challenging to understand its most profound applications. In a few
millennia, humans have transformed knots from simple necklace ties to
models of the very fabric of reality.

SEE ALSO Quipu (c. 3000 B.C.), Borromean Rings (834), Perko Knots (1974), Jones Polynomial
(1984), and Murphy’s Law and Knots (1988).



The quintessence of ornamental knots is exemplified by The Book of Kells, an
ornately illustrated Gospel Bible, produced by Celtic monks in about A.D. 800.
Various knot-like forms can be seen in the details of this illustration.



Ishango Bone
c. 18,000 B.C.

In 1960, Belgian geologist and explorer Jean de Heinzelin de Braucourt
(1920–1998) discovered a baboon bone with markings in what is today the
Democratic Republic of the Congo. The Ishango bone, with its sequence of
notches, was first thought to be a simple tally stick used by a Stone Age
African. However, according to some scientists, the marks suggest a
mathematical prowess that goes beyond counting of objects.

The bone was found in Ishango, near the headwaters of the Nile River,
the home of a large population of upper Paleolithic people prior to a
volcanic eruption that buried the area. One column of marks on the bone
begins with three notches that double to six notches. Four notches double to
eight. Ten notches halve to five. This may suggest a simple understanding
of doubling or halving. Even more striking is the fact that numbers in other
columns are all odd (9, 11, 13, 17, 19, and 21). One column contains the
prime numbers between 10 and 20, and the numbers in each column sum to
60 or 48, both multiples of 12.

A number of tally sticks have been discovered that predate the Ishango
bone. For example, the Swaziland Lebombo bone is a 37,000-year-old
baboon fibula with 29 notches. A 32,000-year-old wolf tibia with 57
notches, grouped in fives, was found in Czechoslovakia. Although quite
speculative, some have hypothesized that the markings on the Ishango bone
form a kind of lunar calendar for a Stone Age woman who kept track of her
menstrual cycles, giving rise to the slogan “menstruation created
mathematics.” Even if the Ishango was a simple bookkeeping device, these
tallies seem to set us apart from the animals and represent the first steps to
symbolic mathematics. The full mystery of the Ishango bone can’t be
solved until other similar bones are discovered.

SEE ALSO Primates Count (c. 30 Million B.C.), Cicada-Generated Prime Numbers (c. 1 Million
B.C.), and Sieve of Eratosthenes (240 B.C.).



The Ishango baboon bone, with its sequence of notches, was first thought to be a
simple tally stick used by a Stone Age African. However, some scientists believe
that the marks suggest a mathematical prowess that goes beyond counting of
objects.



Quipu
c. 3000 B.C.

The ancient Incas used quipus (pronounced “key-poos”), memory banks
made of strings and knots, for storing numbers. Until recently, the oldest-
known quipus dated from about A.D. 650. However, in 2005, a quipu from
the Peruvian coastal city of Caral was dated to about 5,000 years ago.

The Incas of South America had a complex civilization with a common
state religion and a common language. Although they did not have writing,
they kept extensive records encoded by a logical-numerical system on the
quipus, which varied in complexity from three to around a thousand cords.
Unfortunately, when the Spanish came to South America, they saw the
strange quipus and thought they were the works of the Devil. The Spanish
destroyed thousands of them in the name of God, and today only about 600
quipus remain.

Knot types and positions, cord directions, cord levels, and color and
spacing represent numbers mapped to real-world objects. Different knot
groups were used for different powers of 10. The knots were probably used
to record human and material resources and calendar information. The
quipus may have contained more information such as construction plans,
dance patterns, and even aspects of Inca history. The quipu is significant
because it dispels the notion that mathematics flourishes only after a
civilization has developed writing; however, societies can reach advanced
states without ever having developed written records. Interestingly, today
there are computer systems whose file managers are called quipus, in honor
of this very useful ancient device.

One sinister application of the quipu by the Incas was as a death
calculator. Yearly quotas of adults and children were ritually slaughtered,
and this enterprise was planned using a quipu. Some quipus represented the
empire, and the cords referred to roads and the knots to sacrificial victims.

SEE ALSO Knots (c. 100,000 B.C.) and Abacus (c. 1200).



The ancient Incas used quipus made of knotted strings to store numbers. Knot
types and positions, cord directions, cord levels, and colors often represented
dates and counts of people and objects.



Dice
c. 3000 B.C.

Imagine a world without random numbers. In the 1940s, the generation of
statistically random numbers was important to physicists simulating
thermonuclear explosions, and today, many computer networks employ
random numbers to help route Internet traffic to avoid congestion. Political
poll-takers use random numbers to select unbiased samples of potential
voters.

Dice, originally made from the anklebones of hoofed animals, were one
of the earliest means for producing random numbers. In ancient
civilizations, the gods were believed to control the outcome of dice tosses;
thus, dice were relied upon to make crucial decisions, ranging from the
selection of rulers to the division of property in an inheritance. Even today,
the metaphor of God controlling dice is common, as evidenced by
astrophysicist Stephen Hawking’s quote, “Not only does God play dice, but
He sometimes confuses us by throwing them where they can’t be seen.”

The oldest-known dice were excavated together with a 5,000-year-old
backgammon set from the legendary Burnt City in southeastern Iran. The
city represents four stages of civilization that were destroyed by fires before
being abandoned in 2100 B.C. At this same site, archeologists also
discovered the earliest-known artificial eye, which once stared out
hypnotically from the face of an ancient female priestess or soothsayer.

For centuries, dice rolls have been used to teach probability. For a single
roll of an n-sided die with a different number on each face, the probability
of rolling any value is 1/n. The probability of rolling a particular sequence
of i numbers is 1/ni. For example, the chance of rolling a 1 followed by a 4
on a traditional die is 1/62 = 1/36. Using two traditional dice, the probability
of throwing any given sum is the number of ways to throw that sum divided
by the total number of combinations, which is why a sum of 7 is much more
likely than a sum of 2.

SEE ALSO Law of Large Numbers (1713), Buffon’s Needle (1777), Least Squares (1795), Laplace’s
Théorie Analytique des Probabilités (1812), Chi-Square (1900), Lost in Hyperspace (1921), The Rise
of Randomizing Machines (1938), Pig Game Strategy (1945), and Von Neumann’s Middle-Square
Randomizer (1946).



Dice were originally made from the anklebones of animals and were among the
earliest means for producing random numbers. In ancient civilizations, people
used dice to predict the future, believing that the gods influenced dice outcomes.



Magic Squares
c. 2200 B.C.

Bernard Frénicle de Bessy (1602–1675)

Legends suggest that magic squares originated in China and were first
mentioned in a manuscript from the time of Emperor Yu, around 2200 B.C.
A magic square consists of N2 boxes, called cells, filled with integers that
are all different. The sums of the numbers in the horizontal rows, vertical
columns, and main diagonals are all equal.

If the integers in a magic square are the consecutive numbers from 1 to
N2, the square is said to be of the Nth order, and the magic number, or sum
of each row, is a constant equal to N(N2 + 1)/2. Renaissance artist Albrecht
Dürer created this wonderful 4 × 4 magic square below in 1514.

Note the two central numbers in the bottom row read “1514,” the year of
its construction. The rows, columns, and main diagonals sum to 34. In
addition, 34 is the sum of the numbers of the corner squares (16 + 13 + 4 +
1) and of the central 2 × 2 square (10 + 11 + 6 + 7).

As far back as 1693, the 880 different fourth-order magic squares were
published posthumously in Des quassez ou tables magiques by Bernard
Frénicle de Bessy, an eminent amateur French mathematician and one of the
leading magic square researchers of all time.

We’ve come a long way from the simplest 3 × 3 magic squares venerated
by civilizations of almost every period and continent, from the Mayan
Indians to the Hasua people of Africa. Today, mathematicians study these
magic objects in high dimensions—for example, in the form of four-
dimensional hypercubes that have magic sums within all appropriate
directions.

SEE ALSO Franklin Magic Square (1769) and Perfect Magic Tesseract (1999).



The Sagrada Família church in Barcelona, Spain, features a 4 × 4 magic square
with a magic constant of 33, the age at which Jesus died according to many
biblical interpretations. Note that this is not a traditional magic square because
some numbers are repeated.



Plimpton 322
c. 1800 B.C.

George Arthur Plimpton (1855–1936)

Plimpton 322 refers to a mysterious Babylonian clay tablet featuring
numbers in cuneiform script in a table of 4 columns and 15 rows. Eleanor
Robson, a historian of science, refers to it as “one of the world’s most
famous mathematical artifacts.” Written around 1800 B.C., the table lists
Pythagorean triples—that is, whole numbers that specify the side lengths of
right triangles that are solutions to the Pythagorean theorem a2 + b2 = c2.
For example, the numbers 3, 4, and 5 are a Pythagorean triple. The fourth
column in the table simply contains the row number. Interpretations vary as
to the precise meaning of the numbers in the table, with some scholars
suggesting that the numbers were solutions for students studying algebra or
trigonometry-like problems.

Plimpton 322 is named after New York publisher George Plimpton who,
in 1922, bought the tablet for $10 from a dealer and then donated the tablet
to Columbia University. The tablet can be traced to the Old Babylonian
civilization that flourished in Mesopotamia, the fertile valley of the Tigris
and Euphrates rivers, which is now located in Iraq. To put the era into
perspective, the unknown scribe who generated Plimpton 322 lived within
about a century of King Hammurabi, famous for his set of laws that
included “an eye for an eye, a tooth for a tooth.” According to biblical
history, Abraham, who is said to have led his people west from the city of
Ur on the bank of the Euphrates into Canaan, would have been another near
contemporary of the scribe.

The Babylonians wrote on wet clay by pressing a stylus or wedge into the
clay. In the Babylonian number system, the number 1 was written with a
single stroke and the numbers 2 through 9 were written by combining
multiples of a single stroke.

SEE ALSO Pythagorean Theorem and Triangles (c. 600 B.C.).



Plimpton 322 (here shown turned on its side) refers to a Babylonian clay tablet
featuring numbers in cuneiform script. These whole numbers specify the side
lengths of right triangles that are solutions to the Pythagorean theorem a2 + b2 =
c2.



Rhind Papyrus
c. 1650 B.C.

Ahmes (c. 1680 B.C.–c. 1620 B.C.), Alexander Henry Rhind (1833–
1863)

The Rhind Papyrus is considered to be the most important known source of
information concerning ancient Egyptian mathematics. This scroll, about a
foot (30 centimeters) high and 18 feet (5.5 meters) long, was found in a
tomb in Thebes on the east bank of the river Nile. Ahmes, the scribe, wrote
it in hieratic, a script related to the hieroglyphic system. Given that the
writing occurred in around 1650 B.C., this makes Ahmes the earliest-named
individual in the history of mathematics! The scroll also contains the
earliest-known symbols for mathematical operations—plus is denoted by a
pair of legs walking toward the number to be added.

In 1858, Scottish lawyer and Egyptologist Alexander Henry Rhind had
been visiting Egypt for health reasons when he bought the scroll in a market
in Luxor. The British Museum in London acquired the scroll in 1864.

Ahmes wrote that the scroll gives an “accurate reckoning for inquiring
into things, and the knowledge of all things, mysteries…all secrets.” The
content of the scroll concerns mathematical problems involving fractions,
arithmetic progressions, algebra, and pyramid geometry, as well as practical
mathematics useful for surveying, building, and accounting. The problem
that intrigues me the most is Problem 79, the interpretation of which was
initially baffling.

Today, many interpret Problem 79 as a puzzle, which may be translated
as “Seven houses contain seven cats. Each cat kills seven mice. Each mouse
had eaten seven ears of grain. Each ear of grain would have produced seven
hekats (measures) of wheat. What is the total of all of these?” Interestingly,
this indestructible puzzle meme, involving the number 7 and animals,
seems to have persisted through thousands of years! We observe something
quite similar in Fibonacci’s Liber Abaci (Book of Calculation), published in
1202, and later in the St. Ives puzzle, an Old English children’s rhyme
involving 7 cats.



SEE ALSO Ganita Sara Samgrahaa (850), Fibonacci’s Liber Abaci (1202), and Treviso Arithmetic
(1478).



The Rhind Papyrus is the most important source of information concerning
ancient Egyptian mathematics. The scroll, a portion of which is shown here,
includes mathematical problems involving fractions, arithmetic progressions,
algebra, geometry, and accounting.



Tic Tac Toe
c. 1300 B.C.

The game of Tic Tac Toe (TTT) is a among humanity’s best-known and
most ancient games. Although the precise date of TTT with its modern rules
may be relatively recent, archeologists can trace what appear to be “three-
in-a-row games” to ancient Egypt around 1300 B.C., and I suspect that
similar kinds of games originated at the very dawn of human societies. For
TTT, two players, O and X, take turns marking their symbols in the spaces
of a 3 × 3 grid. The player who first places three of his own marks in a
horizontal, vertical, or diagonal row wins. A draw can always be obtained
for the 3 × 3 board.

In ancient Egypt, during the time of the great pharaohs, board games
played an important role in everyday life, and TTT-like games are known to
have been played during these ancient days. TTT may be considered an
“atom” upon which the molecules of more advanced games of position
were built through the centuries. With the slightest of variations and
extensions, the simple game of TTT becomes a fantastic challenge requiring
significant time to master.

Mathematicians and puzzle aficionados have extended TTT to larger
boards, higher dimensions, and strange playing surfaces such as rectangular
or square boards that are connected at their edges to form a torus (doughnut
shape) or Klein bottle (a surface with just one side).

Consider some TTT curiosities. Players can place their Xs and Os on the
TTT board in 9! = 362,880 ways. There are 255,168 possible games in TTT
when considering all possible games that end in 5, 6, 7, 8, and 9 moves. In
the early 1980s, computer geniuses Danny Hillis, Brian Silverman, and
friends built a Tinkertoy® computer that played TTT. The device was made
from 10,000 Tinkertoy parts. In 1998, researchers and students at the
University of Toronto created a robot to play three-dimensional (4 × 4 × 4)
TTT with a human.

SEE ALSO Go (548 B.C.), Icosian Game (1857), Solving the Game of Awari (2002), and Checkers
Is Solved (2007).



Philosophers Patrick Grim and Paul St. Denis offer an analytic presentation of
all possible Tic-Tac-Toe games. Each cell in the Tic-Tac-Toe board is divided into
smaller boards to show various possible choices.



Pythagorean Theorem and Triangles
c. 600 B.C.

Baudhayana (c. 800 B.C.), Pythagoras of Samos (c. 580 B.C.–c. 500
B.C.)

Today, young children sometimes first hear of the famous Pythagorean
theorem from the mouth of the Scarecrow, when he finally gets a brain in
MGM’s 1939 film version of The Wizard of Oz. Alas, the Scarecrow’s
recitation of the famous theorem is completely wrong!

The Pythagorean theorem states that for any right triangle, the square of
the hypotenuse length c is equal to the sum of the squares on the two
(shorter) “leg” lengths a and b—which is written as a2 + b2 = c2. The
theorem has more published proofs than any other, and Elisha Scott
Loomis’s book Pythagorean Proposition contains 367 proofs.

Pythagorean triangles (PTs) are right triangles with integer sides. The “3–
4–5” PT—with legs of lengths 3 and 4, and a hypotenuse of length 5—is
the only PT with three sides as consecutive numbers and the only triangle
with integer sides, the sum of whose sides (12) is equal to double its area
(6). After the 3–4–5 PT, the next triangle with consecutive leg lengths is
21–20–29. The tenth such triangle is much larger: 27304197–27304196–
38613965.

In 1643, French mathematician Pierre de Fermat (1601–1665) asked for a
PT, such that both the hypotenuse c and the sum (a + b) had values that
were square numbers. It was startling to find that the smallest three numbers
satisfying these conditions are 4,565,486,027,761, 1,061,652,293,520, and
4,687,298,610,289. It turns out that the second such triangle would be so
“large” that if its numbers were represented as feet, the triangle’s legs
would project from Earth to beyond the sun!

Although Pythagoras is often credited with the formulation of the
Pythagorean theorem, evidence suggests that the theorem was developed by
the Hindu mathematician Baudhayana centuries earlier around 800 B.C. in
his book Baudhayana Sulba Sutra. Pythagorean triangles were probably
known even earlier to the Babylonians.



SEE ALSO Plimpton 322 (c. 1800 B.C.), Pythagoras Founds Mathematical Brotherhood (c. 530
B.C.), Quadrature of the Lune (c. 440 B.C.), Law of Cosines (c. 1427), and Viviani’s Theorem
(1659).



Persian mathematician Nasr al-Din al-Tusi (1201–1274) presented a version of
Euclid’s proof of the Pythagorean theorem. Al-Tusi was a prolific mathematician,
astronomer, biologist, chemist, philosopher, physician, and theologian.



Go
548 B.C.

Go is a two-player board game that originated in China around 2000 B.C.
The earliest written references to the game are from the earliest Chinese
work of narrative history, Zuo Zhuan (Chronicle of Zuo), which describes a
man in 548 B.C. who played the game. The game spread to Japan, where it
became popular in the thirteenth century. Two players alternately place
black and white stones on intersections of a 19 × 19 playing board. A stone
or a group of stones is captured and removed if it is tightly surrounded by
stones of the opposing color. The objective is to control a larger territory
than one’s opponent.

Go is complex for many reasons, including its large game board,
multifaceted strategies, and huge numbers of variations in possible games.
Simply having more stones than an opponent does not ensure victory. After
taking symmetry into account, there are 32,940 opening moves, of which
992 are considered to be strong ones. The number of possible board
configurations is usually estimated to be on the order of 10172, with about
10768 possible games. Typical games between talented players consist of
about 150 moves, with an average of about 250 choices per move. While
powerful chess software is capable of defeating top chess players, the best
Go programs often lose to skillful children.

Go-playing computers find it difficult to “look ahead” in the game to
judge outcomes because many more reasonable moves must be considered
in Go than in chess. The process of evaluating the favorability of a position
is also quite difficult because a difference of a single unoccupied grid point
can affect large groups of stones.

In 2006, two Hungarian researchers reported that an algorithm called
UCT (for Upper Confidence bounds applied to Trees) could compete with
professional Go players, but only on 9 × 9 boards. UCT helps the computer
focus its search on the most promising moves.

SEE ALSO Tic Tac Toe (c. 1300 B.C.), Solving the Game of Awari (2002), and Checkers Is Solved
(2007).



The game of Go is complex, due in part to the large game board, complicated
strategies, and huge numbers of variations in possible games. While powerful
chess software is capable of defeating top chess players, the best Go programs
often lose to skillful children.



Pythagoras Founds Mathematical
Brotherhood

c. 530 B.C.

Pythagoras of Samos (c. 580 B.C.–c. 500 B.C.)

Around 530 B.C., the Greek mathematician Pythagoras moved to Croton,
Italy, to teach mathematics, music, and reincarnation. Although many of
Pythagoras’s accomplishments may actually have been due to his disciples,
the ideas of his brotherhood influenced both numerology and mathematics
for centuries. Pythagoras is usually credited with discovering mathematical
relationships relevant to musical harmonies. For example, he observed that
vibrating strings produce harmonious sounds when the ratios of the lengths
of the strings are whole numbers. He also studied triangular numbers (based
on patterns of dots in a triangular shape) and perfect numbers (integers that
are the sum of their proper positive divisors). Although the famous theorem
that bears his name, a2 + b2 = c2 for a right triangle with legs a and b and
hypotenuse c, may have been known to the Indians and Babylonians much
earlier, some scholars have suggested that Pythagoras or his students were
among the first Greeks to prove it.

To Pythagoras and his followers, numbers were like gods, pure and free
from material change. Worship of the numbers 1 through 10 was a kind of
polytheism for the Pythagoreans. They believed that numbers were alive,
with a telepathic form of consciousness. Humans could relinquish their
three-dimensional lives and telepathize with these number beings by using
various forms of meditation.

Some of these seemingly odd ideas are not foreign to modern
mathematicians who often debate whether mathematics is a creation of the
human mind or if it is simply a part of the universe, independent of human
thought. To the Pythagoreans, mathematics was an ecstatic revelation.
Mathematical and theological blending flourished under the Pythagoreans
and eventually affected much of the religious philosophy in Greece, played
a role in religion of the Middle Ages, and extended to philosopher
Immanuel Kant in modern times. Bertrand Russell mused that if it were not



for Pythagoras, theologians would not have so frequently sought logical
proofs of God and immortality.

SEE ALSO Plimpton 322 (c. 1800 B.C.) and Pythagorean Theorem and Triangles (c. 600 B.C.).



Pythagoras (the bearded man at bottom left with a book) is teaching music to a
youth in The School of Athens by Raphael (1483–1520), the famous Renaissance
Italian painter and architect.



Zeno’s Paradoxes
c. 445 B.C.

Zeno of Elea (c. 490 B.C.–c. 430 B.C.)

For more than a thousand years, philosophers and mathematicians have
tried to understand Zeno’s paradoxes, a set of riddles that suggest that
motion should be impossible or that it is an illusion. Zeno was a pre-
Socratic Greek philosopher from southern Italy. His most famous paradox
involves the Greek hero Achilles and a slow tortoise that Achilles can never
overtake during a race once the tortoise is given a head start. In fact, the
paradox seems to imply that you can never leave the room you are in. In
order to reach the door, you must first travel half the distance there. You’ll
also need to continue to half the remaining distance, and half again, and so
on. You won’t reach the door in a finite number of jumps! Mathematically
one can represent this limit of an infinite sequence of actions as the sum of
the series (1/2 + 1/4 + 1/8 + …). One modern tendency is to attempt to
resolve Zeno’s paradox by insisting that the sum of this infinite series 1/2 +
1/4 + 1/8 is equal to 1. If each step is done in half as much time, the actual
time to complete the infinite series is no different than the real time required
to leave the room.

However, this approach may not provide a satisfying resolution because
it does not explain how one is able to finish going through an infinite
number of points, one after the other. Today, mathematicians make use of
infinitesimals (unimaginably tiny quantities that are almost but not quite
zero) to provide a microscopic analysis of the paradox. Coupled with a
branch of mathematics called nonstandard analysis and, in particular,
internal set theory, we may have resolved the paradox, but debate continues.
Some have also argued that if space and time are discrete, the total number
of jumps in going from one point to another must be finite.

SEE ALSO Aristotle’s Wheel Paradox (c. 320 B.C.), Harmonic Series Diverges (c. 1350), Discovery
of Series Formula for π (c. 1500), Discovery of Calculus (c. 1665), St. Petersburg Paradox (1738),
Barber Paradox (1901), Banach-Tarski Paradox (1924), Hilbert’s Grand Hotel (1925), Birthday
Paradox (1939), Coastline Paradox (c. 1950), Newcomb’s Paradox (1960), and Parrondo’s Paradox
(1999).



According to Zeno’s most famous paradox, the rabbit can never overtake the
tortoise once the tortoise is given a head start. In fact, the paradox seems to
imply that neither can ever cross the finish line.



Quadrature of the Lune
c. 440 B.C.

Hippocrates of Chios (c. 470 B.C.–c. 400 B.C.)

Ancient Greek mathematicians were enchanted by the beauty, symmetry,
and order of geometry. Succumbing to this passion, Greek mathematician
Hippocrates of Chios demonstrated how to construct a square with an area
equal to a particular lune. A lune is a crescent-shaped area, bounded by two
concave circular arcs, and this Quadrature of the Lune is one of the earliest-
known proofs in mathematics. In other words, Hippocrates demonstrated
that the area of these lunes could be expressed exactly as a rectilinear area,
or “quadrature.” In the example depicted here, two yellow lunes associated
with the sides of a right triangle have a combined area equal to that of the
triangle.

For the ancient Greeks, finding the quadrature meant using a straightedge
and compass to construct a square equal in area to a given shape. If such a
construction is possible, the shape is said to be “quadrable” (or
“squareable”). The Greeks had accomplished the quadrature of polygons,
but curved forms were more difficult. In fact, it must have seemed unlikely,
at first, that curved objects could be quadrable at all.

Hippocrates is also famous for compiling the first-known organized work
on geometry, nearly a century before Euclid. Euclid may have used some of
Hippocrates’ ideas in his own work, Elements. Hippocrates’ writings were
significant because they provided a common framework upon which other
mathematicians could build.

Hippocrates’ lune quest was actually part of a research effort to achieve
the “quadrature of the circle”—that is, to construct a square with the same
area as a circle. Mathematicians had tried to solve the problem of “squaring
the circle” for more than 2,000 years, until Ferdinand von Lindemann in
1882 proved that it is impossible. Today, we know that only five types of
lune exist that are quadrable. Three of these were discovered by
Hippocrates, and two more kinds were found in the mid-1770s.

SEE ALSO Pythagorean Theorem and Triangles (c. 600 B.C.), Euclid’s Elements (300 B.C.),
Descartes’ La Géométrie (1637), and Transcendental Numbers (1844).



The two lunes (the yellow crescent-shaped areas) associated with the sides of a
right triangle have a combined area equal to that of the triangle. Ancient Greek
mathematicians were enchanted by the elegance of these kinds of geometrical
findings.



Platonic Solids
c. 350 B.C.

Plato (c. 428 B.C.–c. 348 B.C.)

A Platonic solid is a convex multifaceted 3-D object whose faces are all
identical polygons, with sides of equal length and angles of equal degrees.
A Platonic solid also has the same number of faces meeting at every vertex.
The best-known example of a Platonic solid is the cube, whose faces are six
identical squares.

The ancient Greeks recognized and proved that only five Platonic solids
can be constructed: the tetrahedron, cube, octahedron, dodecahedron, and
icosahedron. For example, the icosahedron has 20 faces, all in the shape of
equilateral triangles.

Plato described the five Platonic solids in Timaeus in around 350 B.C. He
was not only awestruck by their beauty and symmetry, but he also believed
that the shapes described the structures of the four basic elements thought to
compose the cosmos. In particular, the tetrahedron was the shape that
represented fire, perhaps because of the polyhedron’s sharp edges. The
octahedron was air. Water was made up of icosahedra, which are smoother
than the other Platonic solids. Earth consisted of cubes, which look sturdy
and solid. Plato decided that God used the dodecahedron for arranging the
constellations in the heavens.

Pythagoras of Samos—the famous mathematician and mystic who lived
in the time of Buddha and Confucius, around 550 B.C.—probably knew of
three of the five Platonic solids (the cube, tetrahedron, and dodecahedron).
Slightly rounded versions of the Platonic solids made of stone have been
discovered in areas inhabited by the late Neolithic people of Scotland at
least 1,000 years before Plato. The German astronomer Johannes Kepler
(1571–1630) constructed models of Platonic solids nested within one
another in an attempt to describe the orbits of the planets about the sun.
Although Kepler’s theories were wrong, he was one of the first scientists to
insist on a geometrical explanation for celestial phenomena.

SEE ALSO Pythagoras Founds Mathematical Brotherhood (c. 530 B.C.), Archimedean Semi-
Regular Polyhedra (c. 240 B.C.), Euler’s Formula for Polyhedra (1751), Icosian Game (1857), Pick’s



Theorem (1899), Geodesic Dome (1922), Császár Polyhedron (1949), Szilassi Polyhedron (1977),
Spidrons (1979), and Solving of the Holyhedron (1999).



A traditional dodecahedron is a polyhedron with 12 pentagonal faces. Shown
here is Paul Nylander’s graphical approximation of a hyperbolic dodecahedron,
which uses a portion of a sphere for each face.



Aristotle’s Organon
c. 350 B.C.

Aristotle (384 B.C.–322 B.C.)

Aristotle was a Greek philosopher and scientist, a pupil of Plato, and a
teacher of Alexander the Great. The Organon (Instrument) refers to the
collection of six of Aristotle’s works on logic: Categories, Prior Analytics,
De Interpretatione, Posterior Analytics, Sophistical Refutations, and Topics.
Andronicus of Rhodes determined the ordering of the six works around 40
B.C. Although Plato (c. 428–348 B.C.) and Socrates (c. 470–399 B.C.)
delved into logical themes, Aristotle actually systematized the study of
logic, which dominated scientific reasoning in the Western world for 2,000
years.

The goal of the Organon is not to tell readers what is true, but rather to
give approaches for how to investigate truth and how to make sense of the
world. The primary tool in Aristotle’s tool kit is the syllogism, a three-step
argument, such as “All women are mortal; Cleopatra is a woman; therefore,
Cleopatra is mortal.” If the two premises are true, we know that the
conclusion must be true. Aristotle also made a distinction between
particulars and universals (general categories). Cleopatra is a particular
term. Woman and mortal are universal terms. When universals are used,
they are preceded by “all,” “some,” or “no.” Aristotle analyzed many
possible kinds of syllogisms and showed which of them are valid.

Aristotle also extended his analysis to syllogisms that involved modal
logic—that is, statements containing the words “possibly” or “necessarily.”
Modern mathematical logic can depart from Aristotle’s methodologies or
extend his work into other kinds of sentence structures, including ones that
express more complex relationships or ones that involve more than one
quantifier, such as “No women like all women who dislike some women.”
Nevertheless, Aristotle’s systematic attempt at developing logic is
considered to be one of humankind’s greatest achievements, providing an
early impetus for fields of mathematics that are in close partnership with
logic and even influencing theologians in their quest to understand reality.



SEE ALSO Euclid’s Elements (300 B.C.), Boolean Algebra (1854), Venn Diagrams (1880),
Principia Mathematica (1910–1913), Gödel’s Theorem (1931), and Fuzzy Logic (1965).



Italian Renaissance artist Raphael depicts Aristotle (right), holding his Ethics,
next to Plato. This Vatican fresco, The School of Athens, was painted between
1510 and 1511.



Aristotle’s Wheel Paradox
c. 320 B.C.

Aristotle (384 B.C.–322 B.C.)

The paradox of Aristotle’s wheel is mentioned in the ancient Greek text
Mechanica. The problem has haunted some of the greatest mathematicians
for centuries. Consider a small wheel mounted on a large wheel,
diagrammed as two concentric circles. A one-to-one correspondence exists
between points on the larger circle and those on the smaller circle; that is,
for each point in the large circle, there is exactly one point on the small
circle, and vice versa. Thus, the wheel assembly might be expected to travel
the same horizontal distance regardless of whether it is rolled on a rod that
touches the smaller wheel or rolled along the bottom wheel that touches the
road. But how can this be? After all, we know that the two circumferences
of the circles are different.

Today, mathematicians know that a one-to-one correspondence of points
doesn’t mean that two curves must have the same length. Georg Cantor
(1845–1918) showed that the number, or cardinality, of points on line
segments of any length is the same. He called this Transfinite Number of
points the “continuum.” For example, all the points in a segment from zero
to one can even be put in one-to-one correspondence with all points of an
infinite line. Of course, before the work of Cantor, mathematicians had
quite a difficult time with this problem. Also note that, from a physical
standpoint, if the large wheel did roll along the road, the smaller wheel
would skip and be dragged along the line that touches its surface.

The precise date and authorship of Mechanica may forever be shrouded
in mystery. Although often attributed as the work of Aristotle, many
scholars doubt that Mechanica, the oldest-known textbook on engineering,
was actually written by Aristotle. Another possible candidate for authorship
is Aristotle’s student Straton of Lampsacus (also known as Strato Physicus),
who died around 270 B.C.

SEE ALSO Zeno’s Paradoxes (c. 445 B.C.), St. Petersburg Paradox (1738), Cantor’s Transfinite
Numbers (1874), Barber Paradox (1901), Banach-Tarski Paradox (1924), Hilbert’s Grand Hotel



(1925), Birthday Paradox (1939), Coastline Paradox (c. 1950), Newcomb’s Paradox (1960),
Continuum Hypothesis Undecidability (1963), and Parrondo’s Paradox (1999).



Consider a small wheel glued to a large wheel. Describe the motion of the wheel
assembly as it moves from right to left along a rod that touches the smaller wheel
and a road that touches the bottom wheel.



Euclid’s Elements
300 B.C.

Euclid of Alexandria (c. 325 B.C.–c. 270 B.C.)

The geometer Euclid of Alexandria lived in Hellenistic Egypt, and his book
Elements is one of the most successful textbooks in the history of
mathematics. His presentation of plane geometry is based on theorems that
can all be derived from just five simple axioms, or postulates, one of which
is that only one straight line can be drawn between any two points. Given a
point and a line, another famous postulate suggests that only one line
through the point is parallel to the first line. In the 1800s, mathematicians
finally explored Non-Euclidean Geometries, in which the parallel
postulate was no longer always required. Euclid’s methodical approach of
proving mathematical theorems by logical reasoning not only laid the
foundations of geometry but also shaped countless other areas concerning
logic and mathematical proofs.

Elements consists of 13 books that cover two- and three-dimensional
geometries, proportions, and the theory of numbers. Elements was one of
the first books to be printed after the invention of the printing press and was
used for centuries as part of university curricula. More than 1,000 editions
of Elements have been published since its original printing in 1482.
Although Euclid was probably not the first to prove the various results in
Elements, his clear organization and style made the work of lasting
significance. Mathematical historian Thomas Heath called Elements “the
greatest mathematical textbook of all time.” Scientists like Galileo Galilei
and Isaac Newton were strongly influenced by Elements. Philosopher and
logician Bertrand Russell wrote, “At the age of eleven, I began Euclid, with
my brother as my tutor. This was one of the great events of my life, as
dazzling as first love. I had not imagined that there was anything so
delicious in the world.” The poet Edna St. Vincent Millay wrote, “Euclid
alone has looked on Beauty bare.”

SEE ALSO Pythagorean Theorem and Triangles (c. 600 B.C.), Quadrature of the Lune (c. 440 B.C.),
Aristotle’s Organon (c. 350 B.C.), Descartes’ La Géométrie (1637), Non-Euclidean Geometry
(1829), and Weeks Manifold (1985).



This is the frontispiece of Adelard of Bath’s translation of Euclid’s Elements, c.
1310. This translation from Arabic to Latin is the oldest surviving Latin
translation of Elements.



Archimedes: Sand, Cattle & Stomachion
c. 250 B.C.

Archimedes of Syracuse (c. 287 B.C.–c. 212 B.C.)

In 1941, mathematician G. H. Hardy wrote, “Archimedes will be
remembered when [playwright] Aeschylus is forgotten, because languages
die and mathematical ideas do not. ‘Immortality’ may be a silly word, but
probably a mathematician has the best chance of whatever it may mean.”
Indeed, Archimedes, the ancient Greek geometer, is often regarded as the
greatest mathematician and scientist of antiquity and one of the four
greatest mathematicians to have walked the Earth—together with Isaac
Newton, Carl Friedrich Gauss, and Leonhard Euler. Interestingly,
Archimedes sometimes sent his colleagues false theorems in order to trap
them when they stole his ideas.

In addition to many other mathematical ideas, he is famous for his
contemplation of tremendously large numbers. In his book The Sand
Reckoner, Archimedes estimated that 8 × 1063 grains of sand would fill the
universe.

More amazingly, the number 7.760271406486818269530232833213…
×10202544 is the solution to one version of Archimedes’ famous “cattle
problem,” which involves computing the total number of cattle in a puzzle
concerning four hypothetical herds of different colors. Archimedes wrote
that anyone who could solve the problem would be “crowned with glory”
and would be “adjudged perfect in this species of wisdom.” Not until 1880
did mathematicians have an approximate answer. A more precise number
was first calculated in 1965 by Canadian mathematicians Hugh C.
Williams, R. A. German, and C. Robert Zarnke using an IBM 7040
computer.

In 2003, math historians discovered long lost information on the
Stomachion of Archimedes. In particular, an ancient parchment, overwritten
by monks nearly a thousand years ago, describes Archimedes’ Stomachion,
a puzzle involving combinatorics. Combinatorics is a field of math dealing
with the number of ways a given problem can be solved. The goal of the
Stomachion is to determine in how many ways the 14 pieces shown here



can be put together to make a square. In 2003, four mathematicians
determined that the number is 17,152.

SEE ALSO π (c. 250 B.C.), Euler’s Polygon Division Problem (1751), Googol (c. 1920), and
Ramsey Theory (1928).



For Archimedes’ Stomachion puzzle, one goal is to determine in how many ways
the 14 pieces shown here can be put together to make a square. In 2003, four
mathematicians determined that the number is 17,152. (Rendering by Teja
Krašek.)



π
c. 250 B.C.

Archimedes of Syracuse (c. 287 B.C.–c. 212 B.C.)

Pi, symbolized by the Greek letter π, is the ratio of a circle’s circumference
to its diameter and is approximately equal to 3.14159. Perhaps ancient
peoples observed that for every revolution of a cartwheel, a cart moves
forward about three times the diameter of the wheel—an early recognition
that the circumference is about three times the diameter. An ancient
Babylonian tablet states that the ratio of the circumference of a circle to the
perimeter of an inscribed hexagon is 1 to 0.96, implying a value of pi of
3.125. Greek mathematician Archimedes (c. 250 B.C.) was the first to give
us a mathematically rigorous range for π—a value between 223/71 and
22/7. The Welsh mathematician William Jones (1675–1749) introduced the
symbol π in 1706, most likely after the Greek word for periphery, which
starts with the letter π.

The most famous ratio in mathematics is π, on Earth and probably for
any advanced civilization in the universe. The digits of π never end, nor has
anyone detected an orderly pattern in their arrangement. The speed with
which a computer can compute π is an interesting measure of a computer’s
computational ability, and today we know more than a trillion digits of π.

We usually associate π with a circle, and so did pre-seventeenth-century
humanity. However, in the seventeenth century, π was freed from the circle.
Many curves were invented and studied (for example, various arches,
hypocycloids, and curves known as witches), and it was found that their
areas could be expressed in terms of π. Finally, π appeared to flee geometry
altogether, and today π relates to unaccountably many areas in number
theory, probability, complex numbers, and series of simple fractions, such
as π/4 = 1 − 1/3 + 1/5 − 1/7…. In 2006, Akira Haraguchi, a retired Japanese
engineer, set a world record for memorizing and reciting 100,000 digits of
π.

SEE ALSO Archimedes: Sand, Cattle & Stomachion (c. 250 B.C.), Discovery of Series Formula for
π (c. 1500), Rope around the Earth Puzzle (1702), Euler’s Number, e (1727), Euler-Mascheroni



Constant (1735), Buffon’s Needle (1777), Transcendental Numbers (1844), Holditch’s Theorem
(1858), and Normal Number (1909).



Pi is approximately equal to 3.14 and is the ratio of a circle’s circumference to
its diameter. Ancient peoples may have noticed that for every revolution of a cart
wheel, the cart moves forward about three times the diameter of the wheel.



Sieve of Eratosthenes
c. 240 B.C.

Eratosthenes (c. 276 B.C.–c. 194 B.C.)

A prime number is a number larger than 1, such as 5 or 13, that is divisible
only by itself or 1. The number 14 is not prime because 14 = 7 × 2. Prime
numbers have fascinated mathematicians for more than two thousand years.
Around 300 B.C., Euclid showed that there is no “largest prime” and that an
infinitude of prime numbers exists. But how can we determine if a number
is prime? Around 240 B.C, the Greek mathematician Eratosthenes
developed the first-known test for primality, which we today call the Sieve
of Eratosthenes. In particular, the Sieve can be used to find all prime
numbers up to a specified integer. (The ever-versatile Eratosthenes served
as the director of the famous library in Alexandria and was also the first
person to provide a reasonable estimation of the diameter of the Earth.)

The French theologian and mathematician Marin Mersenne (1588–1648)
was also fascinated by prime numbers, and he tried to find a formula that he
could use to find all primes. Although he did not find such a formula, his
work on Mersenne numbers of the form 2p − 1, where p is an integer,
continues to be of interest to us today. Mersenne numbers, with p a prime
number, are the easiest type of number to prove prime, so they are usually
the largest primes of which humanity is aware. The forty-fifth known
Mersenne prime (243,112,609 − 1) was discovered in 2008, and it contains
12,978,189 digits!

Today, prime numbers play an important role in public-key cryptography
algorithms that may be used for sending secure messages. More important,
for pure mathematicians, prime numbers have been at the heart of many
intriguing unsolved conjectures through history, including the Riemann
Hypothesis, which concerns the distribution of prime numbers, and the
strong Goldbach Conjecture, which states that every even integer greater
than 2 can be written as a sum of two primes.

SEE ALSO Cicada-Generated Prime Numbers (c. 1 Million B.C.), Ishango Bone (c. 18,000 B.C.),
Goldbach Conjecture (1742), Constructing a Regular Heptadecagon (1796), Gauss’s Disquisitiones
Arithmeticae (1801), Riemann Hypothesis (1859), Proof of the Prime Number Theorem (1896),



Brun’s Constant (1919), Gilbreath’s Conjecture (1958), Sierpinski Numbers (1960), Ulam Spiral
(1963), Erdös and Extreme Collaboration (1971), Public-Key Cryptography (1977), and Andrica’s
Conjecture (1985).



Polish artist Andreas Guskos creates contemporary art by concatenating
thousands of prime numbers and using them as textures on various surfaces. This
work is called Eratosthenes, after the Greek mathematician who developed the
first-known test for primality.



Archimedean Semi-Regular Polyhedra
c. 240 B.C.

Archimedes of Syracuse (c. 287 B.C.–c. 212 B.C.)

Like Platonic Solids, Archimedean semi-regular polyhedra (ASRP) are
convex, multifaceted 3-D objects whose faces are all regular polygons that
have sides of equal length and angles of equal degrees. However, for the
ASRP, the faces are of different kinds. For example, the polyhedron formed
by 12 pentagons and 20 hexagons, which resembles a modern soccer ball,
was described by Archimedes along with 12 other such polyhedra. Around
every vertex (corner) of these kinds of solids, the same polygons appear in
the same sequence—for example, hexagon-hexagon-triangle.

Archimedes’ original writings that described the 13 ASRP are lost and
known only from other sources. During the Renaissance, artists discovered
all but one ASRP. In 1619, Kepler presented the entire set in his book
Harmonices Mundi (The Harmonies of the World). ASRPs may be specified
using a numerical notation that indicates the shapes around a vertex. For
example, 3,5,3,5 means that a triangle, pentagon, triangle, and pentagon
appear in that order. Using this notation, we have the following ASRPs:
3,4,3,4 (a cuboctahedron); 3,5,3,5 (an icosidodecahedron); 3,6,6 (a
truncated tetrahedron); 4,6,6 (a truncated octahedron); 3,8,8 (a truncated
cube); 5,6,6 (a truncated icosahedron, or soccer ball); 3,10,10 (a truncated
dodecahedron); 3,4,4,4 (a rhombicuboctahedron); 4,6,8 (a truncated
cuboctahedron); 3,4,5,4 (a rhombicosidodecahedron); 4,6,10 (a truncated
icosidodecahedron); 3,3,3,3,4 (a snub cube, or snub cuboctahedron); and
3,3,3,3,5 (a snub dodecahedron, or snub icosidodecahedron).

The 32-faced truncated icosahedron is particularly fascinating. Soccer
ball shapes are based on this Archimedean solid, and this was also the
configuration used for arranging lenses that focused the explosive shock
waves of the detonators in the “Fat Man” atomic bomb detonated over
Nagasaki, Japan, in World War II. In the 1980s, chemists succeeded in
creating the world’s tiniest soccer ball, a carbon molecule with 60 atoms at
the vertices of a truncated icosahedron. These so-called Buckyballs have



fascinating chemical and physical properties that are being explored in
applications ranging from lubrication to AIDS treatments.

SEE ALSO Platonic Solids (c. 350 B.C.), Archimedes: Sand, Cattle & Stomachion (c. 250 B.C.),
Euler’s Formula for Polyhedra (1751), Icosian Game (1857), Pick’s Theorem (1899), Geodesic
Dome (1922), Császár Polyhedron (1949), Szilassi Polyhedron (1977), Spidrons (1979), and Solving
of the Holyhedron (1999).



Slovenian artist Teja Krašek explores the 13 Archimedean semi-regular
polyhedra in her artwork titled Harmonices Mundi II, in honor of Johannes
Kepler’s presentation of these objects in his 1619 book Harmonices Mundi.



Archimedes’ Spiral
225 B.C.

Archimedes of Syracuse (c. 287 B.C.–c. 212 B.C.)

The term spiral is often used generically to describe any geometrically
smooth curve that winds about a central point or axis while also receding
from it. When we think of examples of spirals, both the mundane and the
exotic come to mind—the gentle curl of a fern tendril, the shape of an
octopus’s retracted arm, the death form assumed by a centipede, the spiral
intestine of a giraffe, the shape of a butterfly’s tongue, and the spiral cross
section of a scroll. Spirals possess a simple beauty that humans have copied
in their arts and tools, and that nature has used in the creation of many
structures of life.

The mathematics of the simplest spiral form, the spiral of Archimedes,
was first discussed by Archimedes in 225 B.C. in his book On Spirals. This
spiral can be expressed by the equation r = a + b . The parameter a rotates
the entire spiral, and b controls the distance between the successive
turnings. The most commonly observed spirals are of the Archimedean
type: tightly wound springs, edges of rolled-up rugs, and decorative spirals
on jewelry. Practical uses of the Archimedes spiral have included the
transformation of rotary to linear motion in sewing machines. The
Archimedean spiral spring is particularly interesting in its ability to respond
to both torsional and translational force.

Ancient examples of Archimedean spirals include prehistoric spiral
mazes, terra-cotta pot spiral designs from the sixth century B.C.,
decorations from ancient Altaic works (middle of the first millennium
B.C.), engravings on threshold stones of initiation chambers in the Bronze
Age in Ireland, scrollworks for Irish manuscripts, and Tibetan Tanka
artworks, the latter of which are painted or embroidered Buddhist designs
sometimes hung in monasteries. In fact, the spiral is a ubiquitous symbol
throughout the ancient world. Its frequent appearance at burial sites
suggests that this symbol may have represented a cycle of life, death, and
rebirth, as with the continual rising and falling of the sun.



SEE ALSO Golden Ratio (1509), Loxodrome (1537), Fermat’s Spiral (1636), Logarithmic Spiral
(1638), Voderberg Tilings (1936), Ulam Spiral (1963), and Spidrons (1979).



The fiddlehead fern exhibits the spiral of Archimedes, a shape discussed by
Archimedes in 225 B.C. in his book On Spirals.



Cissoid of Diocles
c. 180 B.C.

Diocles (c. 240 B.C.–c. 180 B.C.)

The cissoid of Diocles was discovered by Greek mathematician Diocles,
around 180 B.C., during his attempts to use its remarkable properties to
double a cube. “Doubling the cube” refers to a famous and ancient
challenge of constructing a cube with a volume twice the volume of a given
smaller cube, which means that the larger cube has an edge that is  times
larger than the first cube. Diocles’ use of the cissoid, and its intersection
with a straight line, was theoretically correct, but did not rigorously follow
the rules of Euclidean construction that allowed the use of only a compass
and a straightedge.

The name cissoid comes from the Greek term meaning “ivy-shaped.” The
graph of the curve extends to infinity along both directions of the y-axis and
has a single cusp. Both branches of the curve that extend away from the
cusp approach the same vertical asymptote. If we draw a circle that passes
through the cusp at point O and that is tangent to the asymptote, then any
line joining the cusp and a point M on the cissoid can be extended so that it
intersects the asymptote at B. The length of the linear extension from C to B
is always equal to the length between O and M. The curve may be
expressed in polar coordinates as r = 2a(sec  − cos ) or in rectangular
coordinates as y2 = x3/(2a − x). Interestingly, the cissoid can be produced by
tracing the vertex of a parabola as it rolls, without slipping, on a second
parabola of the same size.



Diocles was fascinated by curves known as conic sections, and in his
work On Burning Mirrors he discussed the focal point of a parabola. One of
his goals was to find a mirror surface that focuses the maximum amount of
heat when it is placed in sunlight.

SEE ALSO Cardioid (1637), The Length of Neile’s Semicubical Parabola (1657), and Astroid
(1674).



Parabolic telecommunication antenna. The Greek mathematician Diocles was
fascinated by curves such as these, and in his work On Burning Mirrors, he
discussed the focal point of a parabola. Diocles sought to find a mirror surface
that focused the maximum amount of heat when illuminated.



Ptolemy’s Almagest
c. 150

Claudius Ptolemaeus (c. 90–c. 168)

Mathematician and astronomer Ptolemy of Alexandria wrote the 13-book
Almagest, a comprehensive treatise on virtually all aspects of astronomy
known at his time. In the Almagest, Ptolemy deals with the apparent
movement of the planets and stars. His geocentric model, in which the
Earth is at the center of the universe and the Sun and planets orbit around
the Earth, was accepted as correct for more than a thousand years in Europe
and in the Arabic world.

Almagest is the Latin form of the Arabic name al-kitabu-l-mijisti (The
Great Book), and the work is of particular interest to mathematicians due to
its trigonometric content, which includes the equivalent of a table of sine
values for angles from 0° to 90° at 15-minute intervals and an introduction
to spherical trigonometry. The Almagest also contains theorems that
correspond to our modern “law of sines” and compound-angle and half-
angle identities. Jan Gullberg writes, “That so much of early Greek work on
astronomy has been lost could be a result of the completeness and elegance
of presentation of Ptolemy’s Almagest, making all earlier works appear
superfluous.” Gerd Grasshoff writes, “Ptolemy’s Almagest shares with
Euclid’s Elements the glory of being the scientific text longest in use. From
its conception in the second century up to the late Renaissance, this work
determined astronomy as a science.”

The Almagest was translated into Arabic around the year 827 and then
from Arabic to Latin in the twelfth century. The Persian mathematician and
astronomer Abu al-Wafa (940–998) built upon the Almagest and systemized
trigonometric theorems and proofs.

Interestingly, Ptolemy attempted to compute the size of the universe
based on his models of planetary motions in which a planet moves in a
small circle, called an epicycle, which in turn moves along a larger circle.
He estimated that a sphere containing the faraway “fixed stars” was 20,000
times the radius of the Earth.



SEE ALSO Euclid’s Elements (300 B.C.) and Law of Cosines (c. 1427).



Ptolemy’s Almagest describes a geocentric model of the universe, which places
the Earth at the center of the universe, and the Sun and planets orbit around the
Earth. This model was accepted for more than a thousand years in Europe and in
the Arabic world.



Diophantus’s Arithmetica
250

Diophantus of Alexandria (c. 200–c. 284)

Greek mathematician Diophantus of Alexandria, sometimes called the
“father of algebra,” was the author of Arithmetica (c. 250), a series of
mathematical texts that has influenced mathematics for centuries.
Arithmetica, the most famous work on algebra in all of Greek mathematics,
contains various problems along with numerical solutions to equations.
Diophantus is also important due to his advances in mathematical notation
and his treatment of fractions as numbers. In the dedication to Arithmetica,
Diophantus writes to Dionysus (most likely the bishop of Alexandria) that
although the material in the book may be difficult, “it will be easy to grasp,
with your enthusiasm and my teaching.”

Diophantus’s various works were preserved by the Arabs and translated
into Latin in the sixteenth century. Diophantine equations, with their integer
solutions, are named in his honor. Pierre de Fermat scribbled his famous
Fermat’s Last Theorem involving integer solutions of an + bn = cn in a
French translation of Arithmetica, published in 1681.

In Arithmetica, Diophantus was often interested in finding integer
solutions for equations like ax2 + bx = c. Although the Babylonians were
aware of some methods for solving linear and quadratic equations of the
kind that fascinated Diophantus, Diophantus is special, according to J. D.
Swift, for being “the first to introduce extensive and consistent algebraic
notation representing a tremendous improvement over the purely verbal
style of his predecessors (and many successors)…. The rediscovery of
Arithmetica through Byzantine sources greatly aided the renaissance of
mathematics in Western Europe and stimulated many mathematicians, of
whom the greatest was Fermat.”

Note that Persian mathematician al-Khwarizmi (780–850) also shares the
title “father of algebra” for his own book Algebra, which contained a
systematic solution of linear and quadratic equations. Al-Khwarizmi
introduced Hindu-Arabic numerals and algebraic concepts into European
mathematics, and the words algorithm and algebra are derived from his



name and al-jabr, respectively. Al-jabr is an Arabic word for a
mathematical operation used to solve quadratic equations.

SEE ALSO The Death of Hypatia (415), Al-Khwarizmi’s Algebra (830), Sumario Compendioso
(1556), and Fermat’s Last Theorem (1637).



Title page of the 1621 edition of Diophantus’s Arithmetica, translated into Latin
by French mathematician Claude Gaspard Bachet de Méziriac. The European
rediscovery of Arithmetica stimulated the renaissance of mathematics in Western
Europe.



Pappus’s Hexagon Theorem
c. 340

Pappus of Alexandria (c. 290–c. 350)

A farmer wishes to plant nine maple trees so that they form ten straight
rows with three trees in each row. One curious way to achieve this goal
makes use of Pappus’s theorem. If three points A, B, C are located
anywhere along one line, and three points D, E, F are located anywhere on a
second line, Pappus’s theorem guarantees that the intersections X, Y, Z of
opposite sides of a crossed hexagon A, F, B, D, C, E lie on a straight line.
The farmer can solve his problem and form a tenth row by sliding tree B to
bring B, Y, and E into alignment.

Pappus was one of the most important Hellenistic mathematicians of his
age and famous for Synagoge (Collection) written in c. 340. The work
focuses on topics in geometry that include polygons, polyhedra, circles,
spirals, and honeycomb construction by bees. The Synagoge is also
valuable because it includes results based on ancient works that have
subsequently been lost. Thomas Heath writes of Synagoge, “Obviously
written with the object of reviving the classical Greek geometry, it covers
practically the whole field.”

About the famous theorem of Pappus, Max Dehn writes that it “marks an
event in the history of geometry. From the beginning, geometry was
concerned with measures: lengths of lines, areas of plane figures, and
volumes of bodies. Here, we have for the first time a theorem which is
established by the ordinary theory of measures but is itself free of all
elements of measurements.” In other words, the theorem demonstrates the
existence of a figure that is determined only through the incidence of lines
and points. Dehn also says that this figure is the “first configuration of
projective geometry.”

Synagoge became widely known in Europe after 1588, when a Latin
translation by Federico Commandino was printed. Pappus’s figure intrigued
Isaac Newton and René Descartes. About 1,300 years after Pappus wrote
Synagoge, French mathematician Blaise Pascal provided an interesting
generalization of Pappus’s theorem.



SEE ALSO Descartes’ La Géométrie (1637), Projective Geometry (1639), and Sylvester’s Line
Problem (1893).



If three points A, B, C are located anywhere along one line, and three points D,
E, F are located anywhere on a second line, Pappus’s theorem guarantees that
the intersections X, Y, Z lie on a straight line.



Bakhshali Manuscript
c. 350

The Bakhshali manuscript is a famous mathematical collection, discovered
in 1881 within a stone enclosure in northwest India, and it may even date
back to the third century. When it was discovered, a large part of the
manuscript had been destroyed, and only about 70 leaves of birch bark
survived to the time of its discovery. The Bakhshali manuscript provides
techniques and rules for solving arithmetic, algebra, and geometry
problems, and it provides a formula for calculating the square root.

Here is one problem from the manuscript: “Before you is a group of 20
people comprising men, women, and children. They earn 20 coins between
them. Each man earns 3 coins, each woman 1.5 coins, and each child half a
coin. How many men, women, and children are there?” Can you solve this?
The solution turns out to be 2 men, 5 women, and 13 children. We can let
the number of men, women, and children be m, w, and c, respectively. Two
formulas describe our situation: m + w + c = 20 and 3m + (3/2)w + (1/2)c =
20. The solution given is the only valid one.

The manuscript was found near the village of Bakhshali in the Yusufzai
subdivision of the Peshawar district (now in Pakistan). The date of the
manuscript is subject to much debate; however, a number of scholars
believe it to be a commentary on an older work that may have existed
around A.D. 200 to 400. One unusual feature of the Bakhshali notation is
the use of a “+” sign placed after a number to indicate a negative. Equations
are given with a large dot representing the unknown value that is being
sought. A similar dot is used to represent zero. Dick Teresi writes, “Most
important is that the Bakhshali manuscript is the first document depicting a
form of Indian mathematics devoid of religious association.”

SEE ALSO Diophantus’s Arithmetica (250), Zero (c. 650), and Ganita Sara Samgrahaa (850).



A fragment of the Bakhshali manuscript, discovered in 1881 in northwest India.



The Death of Hypatia
415

Hypatia of Alexandria (c. 370–c. 415)

Hypatia of Alexandria was martyred by being torn to shreds by a Christian
mob, partly because she did not adhere to strict Christian principles. She
considered herself a neo-Platonist, a pagan, and a follower of Pythagorean
ideas. Interestingly, Hypatia is the first woman mathematician in the history
of humanity of whom we have reasonably secure and detailed knowledge.
She was said to be physically attractive and determinedly celibate. When
asked why she was obsessed with mathematics and would not marry, she
replied that she was wedded to the truth.

Hypatia’s works include commentaries on Diophantus’s Arithmetica. In
one of her mathematical problems for her students, she asked them for the
integer solution of the pair of simultaneous equations: x − y = a and x2 − y2

= (x − y) + b, where a and b are known. Can you find any integer values for
x, y, a, and b that make both of these formulas true?

The Christians were her strongest philosophical rivals, and they officially
discouraged her Platonic assertions about the nature of God and the
afterlife. On a warm March day in A.D. 414, a crowd of Christian zealots
seized her, stripped her, and proceeded to scrape her flesh from her bones
using sharp shells. Next, they cut up her body and burned the pieces. Like
some victims of religious terrorism today, she may have been seized merely
because she was a famous person on the other side of the religious divide. It
was not until after the Renaissance that another woman, Maria Agnesi,
made her name as a famous mathematician.

Hypatia’s death triggered the departure of many scholars from
Alexandria and, in many ways, marked the end of centuries of Greek
progress in mathematics. During the European Dark Ages, Arabs and
Hindus were the ones to play the leading roles in fostering the progress of
mathematics.

SEE ALSO Pythagoras Founds Mathematical Brotherhood (c. 530 B.C.), Diophantus’s Arithmetica
(250), Agnesi’s Instituzioni Analitiche (1748), and The Doctorate of Kovalevskaya (1874).



In 1885, British painter Charles William Mitchell depicted Hypatia moments
before her death at the hands of a Christian mob that stripped her and
slaughtered her in a church. According to some reports, she was flayed with
sharp objects and then burned alive.



Zero
c. 650

Brahmagupta (c. 598–c. 668), Bhaskara (c. 600–c. 680), Mahavira (c.
800–c. 870)

The ancient Babylonians originally had no symbol for zero, which caused
uncertainty in their notation, just as today we would be confused if numbers
like 12, 102, and 1,002 had no zero to distinguish them. The Babylonian
scribes only left a space where a zero should be, and it was not easy to
distinguish the number of spaces in the middle or at the ends of numbers.
Eventually, the Babylonians did invent a symbol to mark the gap between
their digits, but they probably had no concept of zero as an actual number.

Around A.D. 650, the use of the number was common in Indian
mathematics, and a stone tablet was found in Gwalior, south of Delhi, with
the numbers 270 and 50. The numbers on the tablet, dated to A.D. 876, look
very similar to modern numbers, except that the zeros are smaller and
raised. Indian mathematicians such as Brahmagupta, Mahavira, and
Bhaskara used zero in mathematical operations. For example, Brahmagupta
explained that a number subtracted from itself gives zero, and he noted that
any number when multiplied by zero is zero. The Bakhshali Manuscript
may be the first documented evidence of zero used for mathematical
purposes, but its date is unclear.

Around A.D. 665, the Mayan civilization in Central America also
developed the number zero, but its achievement did not seem to influence
other peoples. On the other hand, the Indian concept of zero spread to the
Arabs, Europeans, and Chinese, and changed the world.

Mathematician Hossein Arsham writes, “The introduction of zero into
the decimal system in the thirteenth century was the most significant
achievement in the development of a number system, in which calculation
with large numbers became feasible. Without the notion of zero, the…
modeling processes in commerce, astronomy, physics, chemistry, and
industry would have been unthinkable. The lack of such a symbol is one of
the serious drawbacks in the Roman numeral system.”



SEE ALSO Bakhshali Manuscript (c. 350), Ganita Sara Samgrahaa (850), Chapters in Indian
Mathematics (c. 953), Al-Samawal’s The Dazzling (c. 1150), and Fibonacci’s Liber Abaci (1202).



The notion of zero ignited a fire that eventually allowed humanity to more easily
work with large numbers and to become efficient in calculations in fields ranging
from commerce to physics.



Alcuin’s Propositiones ad Acuendos Juvenes
c. 800

Alcuin of York (c. 735–c. 804), Gerbert of Aurillac (c. 946–c. 1003)

Flaccus Albinus Alcuinus, also known as Alcuin of York, was a scholar
from York, England. At the invitation of King Charlemagne, he became a
leading teacher at the Carolingian court, where he wrote theological
treatises and poems. He was abbot of the Abbey of Saint Martin at Tours in
796 and foremost scholar of the revival of learning known as the
Carolingian Renaissance.

Scholars speculate that his mathematics book Propositiones ad acuendos
juvenes (Problems to Sharpen the Young) contributed to the education of the
last Pope Mathematician, Gerbert of Aurillac, who was fascinated by
mathematics and elected as Pope Sylvester II in 999. This pope’s advanced
knowledge of mathematics convinced some of his enemies that he was an
evil magician.

In the city of Reims, France, the “Number Pope” transformed the floor of
the cathedral into a giant abacus. He also adopted Arabic numerals (1, 2, 3,
4, 5, 6, 7, 8, and 9) as a replacement for Roman numerals. He contributed to
the invention of the pendulum clock, invented devices that tracked
planetary orbits, and wrote on geometry. When he realized that he lacked
knowledge of formal logic, he studied under German logicians. The
Number Pope said, “The just man lives by faith, but it is good that he
should combine science with his faith.”

Alcunius’s Propositiones contained roughly 50 word problems with
solutions, the most famous of which involve river crossings, counting doves
on a ladder, a dying father leaving vessels of wine to his sons, and three
jealous husbands, each of whom can’t let another man be alone with his
wife. Several major classes of problems appear for the first time in
Propositiones. Mathematics writer Ivars Peterson notes that “Browsing the
problems (and solutions) in Propositiones provides fascinating glimpses of
various aspects of life in medieval times. And it testifies to the enduring
power of puzzles in mathematical education.”



SEE ALSO Rhind Papyrus (1650 B.C.), Al-Khwarizmi’s Algebra (830), and Abacus (c. 1200).



Alcuin’s mathematical work very likely contributed to the education of the last
Pope Mathematician, Gerbert of Aurillac, who was fascinated by mathematics
and elected as Pope Sylvester II in 999. Shown here is a statue of the Number
Pope, located in Aurillac, Auvergne, France.



Al-Khwarizmi’s Algebra
830

Abu Ja’far Muhammad ibn Musa al-Khwarizmi (c. 780–c. 850)

Al-Khwarizmi was a Persian mathematician and astronomer who spent
most of his life in Baghdad. His book on algebra, Kitab al-mukhtasar fi
hisab al-jabr wa’l-muqabala (The Compendious Book on Calculation by
Completion and Balancing) was the first book on the systematic solution of
linear and quadratic equations and is sometimes referred to by the shortened
title Algebra. Along with Diophantus, he is considered the “father of
algebra.” The Latin translation of his works introduced the decimal
positional number system to Europe. Interestingly, the word algebra comes
from al-jabr, one of the two operations used in his book to solve quadratic
equations.

For al-Khwarizmi, al-jabr is a method in which we can eliminate
negative quantities in an equation by adding the same quantity to each side.
For example, we can reduce x2 = 50x − 5x2 to 6x2 = 50x by adding 5x2 to
both sides. Al-muqabala is a method whereby we gather quantities of the
same type to the same side of the equation. For example, x2 + 15 = x + 5 is
reduced to x2 + 10 = x.

The book helped readers to solve equations such as those of the forms x2

+ 10x = 39, x2 + 21 = 10x, and 3x + 4 = x2, but more generally, al-
Khwarizmi believed that the difficult mathematical problems could be
solved if broken down into a series of smaller steps. Al-Khwarizmi
intended his book to be practical, helping people to make calculations that
deal with money, property inheritance, lawsuits, trade, and the digging of
canals. His book also contained example problems and solutions.

Al-Khwarizmi worked most of his life in the Baghdad House of Wisdom,
a library, translation institute, and place of learning that was a major
intellectual center of the Islamic Golden Age. Alas, the Mongols destroyed
the House of Wisdom in 1258, and legend says that the waters of the Tigris
ran black with ink from the books tossed into its waters.

SEE ALSO Diophantus’s Arithmetica (250) and Al-Samawal’s The Dazzling (c. 1150).



A stamp from the Soviet Union, issued in 1983 in honor of al-Khwarizmi, the
Persian mathematician and astronomer whose book on algebra offered a
systematic solution to a wide variety of equations.



Borromean Rings
834

Peter Guthrie Tait (1831–1901)

A simple yet intriguing set of interlocking objects of interest to
mathematicians and chemists is formed by Borromean rings—three
mutually interlocked rings named after the Italian Renaissance family who
used them on its coat of arms in the fifteenth century.

Notice that Borromean rings have no two rings that are linked, so if we
cut any one of the rings, all three rings come apart. Some historians
speculate that the ancient ring configurations once represented the three
families of Visconti, Sforza, and Borromeo, who formed a tenuous union
through intermarriages. The rings also appear in 1467 in the Church of San
Pancrazio in Florence. Even older, triangular versions were used by the
Vikings, one famous example of which was found on a bedpost of a
prominent woman who died in 834.

The rings appear in a mathematical context in the 1876 paper on knots
by Scottish mathematical physicist Peter Tait. Because two choices (over or
under) are possible for each ring crossing, 26 = 64 possible interlaced
patterns exist. If we take symmetry into account, only 10 of these patterns
are geometrically distinct.

Mathematicians now know that we cannot actually construct a true set of
Borromean rings with flat circles, and, in fact, you can see this for yourself
if you try to create the interlocked rings out of wire, which requires some
deformation or kinks in the wires. In 1987, Michael Freedman and Richard
Skora proved the theorem stating that Borromean rings are impossible to
construct with flat circles.

In 2004, UCLA chemists created a molecular Borromean ring compound
that was 2.5 nanometers across and that included six metal ions.
Researchers are currently contemplating ways in which they may use
molecular Borromean rings in such diverse fields as spintronics (a
technology that exploits electron spin and charge) and medical imaging.

SEE ALSO Knots (c. 100,000 B.C.), Johnson’s Theorem (1916), and Murphy’s Law and Knots
(1988).



This Borromean ring motif was found in a thirteenth-century French manuscript
where it symbolized the Christian Trinity. The original contains trinitas (Latin for
“Trinity” or “three in one”) broken into its three syllables—tri, ni, and tas—that
were written in the three circles.



Ganita Sara Samgraha
850

Mahavira (c. 800–c. 870)

The Ganita Sara Samgraha (Compendium of the Essence of Mathematics),
dated A.D. 850, is special for several reasons. First, it is the only existing
treatise on arithmetic by a Jaina scholar. Second, it included essentially all
mathematical knowledge of mid-ninth-century India. It is the earliest extant
Indian text devoted entirely to mathematics.

Ganita was written by Mahavira (or Mahaviracharya, meaning
“Mahavira the Teacher”), who lived in southern India. One particular
problem in the book has delighted scholars for centuries and was worded as
follows: A young lady has a quarrel with her husband and damages her
necklace. One-third of the necklace’s pearls scatter toward the lady. One-
sixth fall on the bed. One-half of what remains (and one-half of what
remains thereafter and again one-half of what remains after that, and so on,
counting six times in all) fall everywhere else. A total of 1,161 pearls were
found to remain unscattered. How many pearls did the girl originally have
in total?

The astounding answer is that the girl originally had 148,608 pearls on
her necklace! Let’s reflect on the problem. One-sixth fell on the bed. One-
third scattered toward her. This means the remaining pearls that are neither
on the bed nor near her are half of all the pearls. The remaining pearls are
halved six times, so ((1/2)7)x = 1,161, where x is the total number of pearls;
thus, x is 148,608. The Indian woman’s huge necklace was well worth
quarreling over!

Ganita was notable for its explicit assertion that the square root of a
negative number did not exist. In Ganita, Mahavira also discussed the
properties of the number zero and provided a naming scheme for numbers
from 10 up to 1024, methods for obtaining the sum of a series whose terms
are squares of an arithmetical progression, rules for determining the area
and perimeter of an ellipse, and methods for solving linear and quadratic
equations.



SEE ALSO Bakhshali Manuscript (c. 350), Zero (c. 650), and Treviso Arithmetic (1478).



The Ganita Sara Samgraha discusses a mathematical problem involving a woman
who has a quarrel with her husband and damages her necklace. The pearls
scatter according to a particular set of rules, and we must determine how many
pearls the necklace originally contained.



Thabit Formula for Amicable Numbers
c. 850

Thabit ibn Qurra (826–901)

The Pythagoreans of ancient Greece were fascinated by amicable numbers
for which each such number is the sum of the proper divisors of the other.
(A proper divisor of a number does not include the number itself.) The
smallest such pair is 220 and 284. The number 220 is evenly divisible by 1,
2, 4, 5, 10, 11, 20, 22, 44, 55, and 110, which sum to 284, and 284 is evenly
divisible by 1, 2, 4, 71, and 142, which sum to 220.

In 850, Thabit ibn Qurra, an Arab astronomer and mathematician,
presented a formula that could be used to generate amicable numbers.
Compute p = 3 × 2n − 1 − 1, q = 3 × 2n − 1, and r = 9 × 22n − 1 − 1 for an
integer n > 1. If p, q, and r are prime numbers, then 2npq and 2nr are a pair
of amicable numbers. When n = 2, this gives the numbers 220 and 284, but
the formula does not generate every amicable number that exists. In every
known case, the numbers of a pair are either both even or both odd. Will we
ever discover an even-odd amicable pair? Amicable numbers are quite
difficult to find. For example, by 1747, Leonhard Euler, a Swiss
mathematician and physicist, had found only 30 pairs. Today, we know of
more than 11 million pairs, but only 5,001 of such pairs have both numbers
less than 3.06 × 1011.

In Genesis 32:14, Jacob gives a present of 220 goats to his brother.
According to mystics, this was a “hidden secret arrangement” because 220
is one of a pair of amicable numbers, and Jacob sought to secure friendship
with Esau. Martin Gardner, a popular mathematics and science writer,
stated, “One poor Arab of the eleventh century recorded that he once tested
the erotic effect of eating something labeled with 284, at the same time
having someone else swallow something labeled 220, but he failed to add
how the experiment worked out.”

SEE ALSO Pythagoras Founds Mathematical Brotherhood (c. 530 B.C.).



In Genesis, Jacob gives a present of 220 goats to his brother. According to
mystics, this was a “hidden secret arrangement” because 220 is one of a pair of
amicable numbers, and Jacob sought to secure friendship with Esau.



Chapters in Indian Mathematics
c. 953

Abu’l Hasan Ahmad ibn Ibrahim al-Uqlidisi (c. 920–c. 980)

Al-Uqlidisi (“the Euclidian”) was an Arab mathematician whose Kitab al-
fusul fi al-hisab al-Hindi (Chapters in Indian Mathematics) is the earliest-
known Arabic work discussing the positional use of the Hindu-Arabic
numerals, meaning the use of digits corresponding to 0 through 9 in which
each position starting from the right of a multi-digit number corresponds to
a power of 10 (for example, 1, 10, 100, and 1,000). Al-Uqlidisi’s work also
represents the earliest-known arithmetic extant in Arabic. Although al-
Uqlidisi was born and died in Damascus, he was well traveled and may
have learned about Hindu mathematics in India. Only one copy of this
manuscript remains today.

Al-Uqlidisi also discussed the problems of previous mathematicians in
terms of the new system of numerals. Dick Teresi, the author of several
books about science and technology, writes, “His name was evidence of his
reverence for the Greeks. He copied the works of Euclid, hence the name
al-Uqlidisi. One of his legacies is paper-and-pen mathematics.” During al-
Uqlidisi’s time, it was common in India and the Islamic world to perform
mathematical calculations in the sand or in dust, erasing steps with one’s
hand as one proceeded. Al-Uqlidisi suggested that paper and pen be used
instead. Written arithmetic preserves the process, and although his scheme
did not involve erasure of ink numbers, it did permit greater flexibility in
calculation. In a sense, paper drove the evolution of modern methods for
performing multiplication and long division.

Régis Morelon, the editor of the Encyclopedia of the History of Arabic
Science, writes, “One of the most remarkable ideas in the arithmetic of al-
Uqlidisi is the use of decimal fractions” and the use of the decimal symbol.
For example, to halve 19 successively, al-Uqlidisi gave the following: 19,
9.5, 4.75, 2.375, 1.1875, 0.59375. Eventually, the advanced calculations
enabled by the decimal system led to its common use throughout the region
and the world.



SEE ALSO Zero (c. 650).



In India and the Islamic world during al-Uqlidisi’s time, mathematical
calculations were often performed in the sand or in dust, erasing steps with one’s
hand as one proceeded. With al-Uqlidisi’s paper-and-pen approach, written
arithmetic preserved the calculation process and permitted greater flexibility in
calculation.



Omar Khayyam’s Treatise
1070

Omar Khayyam (1048–1131)

Omar Khayyam, the Persian mathematician, astronomer, and philosopher, is
best known for his collection of poems, the Rubaiyat of Omar Khayyam.
However, he has also achieved great fame for his influential Treatise on
Demonstration of Problems of Algebra (1070). Here, he derived methods
for solving cubic and some higher-order equations. An example of a cubic
equation that he solved is x3 + 200x = 20x2 + 2000. Although his
approaches were not entirely new, his generalizations that could be used to
solve all cubics were noteworthy. His Treatise contains a comprehensive
classification of cubic equations with geometric solutions found by means
of intersecting conic sections.

Khayyam also was able to show how to obtain the nth power of the
binomial a + b in powers of a and b, when n is any whole number. As
background, consider the expression (a + b)n, which equals (a + b) × (a + b)
× (a + b)…with n repetitions of (a + b). According to the binomial
expansion, for example, (a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 +
b5. The numerical coefficients (1, 5, 10, 10, 5, and 1) are referred to as
binomial coefficients, which are the values in a row of Pascal’s Triangle.
Some of Khayyam’s work on this subject actually appears in another book
to which he refers but which is now lost.

Khayyam’s 1077 work on geometry, Sharh ma ashkala min musadarat
kitab Uqlidis (Commentaries on the Difficulties in the Postulates of Euclid’s
Book), provides an interesting look at Euclid’s famous parallel postulate. In
Sharh, Khayyam discussed properties of Non-Euclidean Geometries and
thus stumbled into a realm of mathematics that would not flourish until the
1800s.

A literal translation of Khayyam’s name is “tent maker,” the possible
trade of his father. Khayyam once referred to himself as one “who stitched
the tents of science.”



SEE ALSO Euclid’s Elements (300 B.C.), Cardano’s Ars Magna (1545), Pascal’s Triangle (1654),
Normal Distribution Curve (1733), and Non-Euclidean Geometry (1829).



Tomb of Omar Khayyam in Neishapur, Iran. The open structure features
inscriptions of the poet’s verse.



Al-Samawal’s The Dazzling
c. 1150

Ibn Yahya al-Maghribi al-Samawal (c. 1130–c. 1180), Abu Bakr ibn
Muhammad ibn al Husayn al-Karaji (c. 953–c. 1029)

Al-Samawal (also known as Samau’al al-Maghribi) was born in Baghdad to
a Jewish family. He started to develop his passion for mathematics at the
age of 13 when he began his study using Hindu methods of calculation. By
the time he was 18 years old, he had read almost all the available
mathematical literature that existed in his day. Al-Samawal wrote his most
famous work, al-Bahir fi’l-jabr (translated as either The Brilliant in Algebra
or The Dazzling in Algebra), when he was only 19 years old. The Dazzling
is significant for both its original ideas as well as its information concerning
the lost works of the tenth-century Persian mathematician al-Karaji.

The Dazzling emphasizes the principles of arithmetization of algebra,
explaining how unknown arithmetic quantities, or variables, can be treated
just like ordinary numbers when considering arithmetic operations. Al-
Samawal goes on to define powers of numbers, polynomials, and methods
for finding roots of polynomials. Many scholars consider The Dazzling to
be the first treatise to assert that x0 = 1 (in modern notation). In other words,
al-Samawal realized and published the idea that any number raised to the
power of 0 is 1. He was also quite comfortable with using negative numbers
and zero in his work, considering such concepts (in modern notation) as 0 −
a = −a. He also understood how to handle multiplication involving negative
numbers and was proud of his finding 12 + 22 + 32 +…+ n2 = n(n + 1)(2n +
1)/6, an expression that does not seem to appear in earlier works.

In 1163, after a great deal of study and contemplation, al-Samawal
converted from Judaism to Islam. He would have converted earlier in his
life but delayed because he did not wish to hurt his father’s feelings. His
work Decisive Refutation of the Christians and Jews still survives today.

SEE ALSO Diophantus’s Arithmetica (250), Zero (c. 650), Al-Khwarizmi’s Algebra (830), and
Fundamental Theorem of Algebra (1797).



Al-Samawal’s The Dazzling is likely to be the first treatise to assert that x0 = 1
(in modern notation). In other words, al-Samawal realized and published the
idea that any number raised to the power of 0 is 1.



Abacus
c. 1200

In 2005, Forbes.com readers, editors, and a panel of experts ranked the
abacus as the second most important tool of all time in terms of its impact
on human civilization. (First and third on the list were the knife and the
compass, respectively.)

The modern abacus with beads and wires, used for counting, has it roots
in ancient devices such as the Salamis tablet, the oldest surviving counting
board used by the Babylonians around 300 B.C. These boards were usually
wood, metal, or stone, and they contained lines or grooves along which
beads or stones were moved. Around A.D. 1000, the Aztecs invented the
nepohualtzitzin (referred to by aficionados as the “Aztec computer”), an
abacus-like device that made use of corn kernels threaded through wooden
frames to help operators perform computations.

The abacus, as we know it today, which contains beads that move along
wires, was used in A.D. 1200 in China, where it was called the suan-pan. In
Japan, the abacus is called the soroban. In some sense, the abacus may be
considered the ancestor of the computer, and like the computer, the abacus
serves as a tool to allow humans to perform fast calculations in commerce
and in engineering. Abaci are still used in China, Japan, parts of the Soviet
Union, and Africa, and sometimes by blind people, with slight variations in
design. Although the abacus is generally used for fast addition and
subtraction operations, experienced users are able to quickly multiply,
divide, and calculate square roots. In 1946 in Tokyo, a calculating speed
contest featured a competition between a Japanese soroban operator and a
person using an electric calculator of that time. The soroban operator
usually beat the electric calculator.

SEE ALSO Quipu (c. 3000 B.C.), Alcuin’s Propositiones ad Acuendos Juvenes (c. 800), Slide Rule
(1621), Babbage Mechanical Computer (1822), and Curta Calculator (1948).

http://forbes.com/


The abacus is among the most important tools of all time in terms of its impact
on human civilization. For many centuries, this device served as a tool to allow
humans to perform fast calculations in commerce and in engineering.



Fibonacci’s Liber Abaci
1202

Leonardo of Pisa (also known as Fibonacci, c. 1175–c. 1250)

Carl Boyer refers to Leonardo of Pisa, also known as Fibonacci, as “without
a doubt, the most original and most capable mathematician of the medieval
Christian world.” Fibonacci, a wealthy Italian merchant, traveled through
Egypt, Syria, and Barbary (Algeria), and in 1202 published the book Liber
Abaci (The Book of the Abacus), which introduced the Hindu-Arabic
numerals and decimal number system to Western Europe. This system is
now used throughout the world, having overcome the terribly cumbersome
Roman numerals common in Fibonacci’s time. In Liber Abaci, Fibonacci
notes, “These are the nine figures of the Indians: 9 8 7 6 5 4 3 2 1. With
these nine figures, and with this sign 0, which in Arabic is called zephirum,
any number can be represented, as will be demonstrated.”

Although Liber Abaci was not the first European book to describe the
Hindu-Arabic numerals—and even though decimal numerals did not gain
widespread use in Europe directly after its publication—the book is
nevertheless considered to have had a strong impact on European thought
because it was directed to both academicians and businesspeople.

Liber Abaci also introduced Western Europe to the famous number
sequence 1, 1, 2, 3, 5, 8, 13…, which today is called the Fibonacci
sequence. Notice that except for the first two numbers, every successive
number in the sequence equals the sum of the previous two. These numbers
appear in an amazing number of mathematical disciplines and in nature.

Is God a mathematician? Certainly, the universe seems to be reliably
understood using mathematics. Nature is mathematics. The arrangement of
seeds in a sunflower can be understood using Fibonacci numbers.
Sunflower heads, like those of other flowers, contain families of interlaced
spirals of seeds—one spiral winding clockwise, the other counterclockwise.
The number of spirals in such heads, as well as the number of petals in
flowers, is very often a Fibonacci number.

SEE ALSO Zero (c. 650), Treviso Arithmetic (1478), Fermat’s Spiral (1636), and Benford’s Law
(1881).



Sunflower heads contain families of interlaced spirals of seeds—one spiral
winding clockwise, the other counterclockwise. The number of spirals in such
heads, as well as the number of petals in flowers, is very often a Fibonacci
number.



Wheat on a Chessboard
1256

Abu-l ‘Abbas Ahmad ibn Khallikan (1211–1282), Dante Alighieri
(1265–1321)

The problem of Sissa’s chessboard is notable in the history of mathematics
because it has been used for centuries to demonstrate the nature of
geometric growth or geometric progressions, and it is one of the earliest
mentions of chess in puzzles. The Arabic scholar Ibn Khallikan in 1256
appears to be the first author to discuss the story of Grand Vizier Sissa ben
Dahir, who, according to legend, was asked by the Indian King Shirham
what reward he wanted for inventing the game of chess.

Sissa addressed the king: “Majesty, I would be happy if you were to give
me a grain of wheat to place on the first square of the chessboard, and two
grains of wheat to place on the second square, and four grains of wheat to
place on the third, and eight grains of wheat to place on the fourth, and so
on for the sixty-four squares.”

“And is that all you wish, Sissa, you fool?” the astonished King shouted.
The king did not realize how many grains Sissa would be awarded! One

way to determine the solution is to compute the sum of the first 64 terms of
a geometrical progression, 1 + 2 + 22 +…+ 263 = 264 − 1, which is a
walloping 18,446,744,073,709, 551,615 grains of wheat.

It is possible that some version of this story was known to Dante, because
he referred to a similar concept in the Paradiso to describe the abundance
of Heaven’s lights: “They were so many that their number piles up faster
than the chessboard doubling.” Jan Gullberg writes, “With about 100 grains
to a cubic centimeter, the total volume of [Sissa’s] wheat would be nearly…
two hundred cubic kilometers, to be loaded on two thousand million
railway wagons, which would make up a train reaching a thousand times
around the Earth.”

SEE ALSO Harmonic Series Diverges (c. 1350), Rope around the Earth Puzzle (1702), and Rubik’s
Cube (1974).



The famous problem of Sissa’s chessboard demonstrates the nature of geometric
progressions. In the smaller version depicted here, how many pieces of candy
will the hungry beetle get if the progression 1 + 2 + 4 + 8 + 16 … continues?



Harmonic Series Diverges
c. 1350

Nicole Oresme (1323–1382), Pietro Mengoli (1626–1686), Johann
Bernoulli (1667–1748), Jacob Bernoulli (1654–1705)

If God were infinity, then divergent series would be His angels flying
higher and higher to reach Him. Given an eternity, all such angels approach
their Creator. For example, consider the following infinite series: 1 + 2 + 3
+ 4 …. If we add one term of the series each year, in four years the sum will
be 10. Eventually, after an infinite number of years, the sum reaches
infinity. Mathematicians call such series divergent because they explode to
infinity, given an infinite number of terms. For this entry, we are interested
in a series that diverges much more slowly. We’re interested in a more
magical series, an angel, perhaps, with weaker wings.

Consider the harmonic series, the first famous example of a divergent
series whose terms approach zero: 1 + 1/2 + 1/3 + 1/4 + .… Of course, this
series explodes more slowly than does our previous example, but it still
grows to infinity. In fact, it grows so incredibly slowly that if we added a
term a year, in 1043 years we’d have a sum less than 100. William Dunham
writes, “Seasoned mathematicians tend to forget how surprising this
phenomenon appears to the uninitiated student—that, by adding ever more
negligible terms, we nonetheless reach a sum greater than any preassigned
quantity.”

Nicole Oresme, the famous French philosopher of the Middle Ages, was
the first to prove the divergence of the harmonic series (c. 1350). His results
were lost for several centuries, and the result was proved again by Italian
mathematician Pietro Mengoli in 1647 and by Swiss mathematician Johann
Bernoulli in 1687. His brother Jacob Bernoulli published a proof in his
1689 work Tractatus de Seriebus Infinitis (Treatise on Infinite Series),
which he closes with: “So the soul of immensity dwells in minutia. And in
narrowest limits no limits inhere. What joy to discern the minute in infinity!
The vast to perceive in the small, what divinity!”

SEE ALSO Zeno’s Paradoxes (c. 445 B.C.), Wheat on a Chessboard (1256), Discovery of Series
Formula for π (c. 1500), Brun’s Constant (1919), and Polygon Circumscribing (c. 1940).



Depiction of Nicole Oresme from his Tractatus de origine, natura, jure et
mutationibus monetarum (On the Origin, Nature, Juridical Status, and Variations
of Coinage), which was published around the year 1360.



Law of Cosines
c. 1427

Ghiyath al-Din Jamshid Mas’ud al-Kashi (c. 1380–1429), François
Viète (1540–1603)

The law of cosines may be used for calculating the length of one side of a
triangle when the angle opposite this side, and the length of the other two
sides, are known. The law may be expressed as c2 = a2 + b2 – 2abcos(C),
where a, b, and c are triangle side lengths, and C is an angle between sides
a and b. Because of its generality, the application of the law ranges from
land surveying to calculating the flight paths of aircraft.

Notice how the law of cosines becomes the Pythagorean Theorem (c2 =
a2 + b2) for right triangles, when C becomes 90° and the cosine becomes
zero. Also note that if all three side lengths of a triangle are known, we can
use the law of cosines to compute the angles of a triangle.

Euclid’s Elements (c. 300 B.C.) contains the seeds of concepts that lead
to the law of cosines. In the fifteenth century, the Persian astronomer and
mathematician al-Kashi provided accurate trigonometric tables and
expressed the theorem in a form suitable for modern usage. French
mathematician François Viète discovered the law independently of al-
Kashi.

In French, the law of cosines is named Théorème d’Al-Kashi, after al-
Kashi’s unification of existing works on the subject. Al-Kashi’s most
important work is The Key to Arithmetic, completed in 1427, which
discusses mathematics used in astronomy, surveying, architecture, and
accounting. Al-Kashi uses decimal fractions in calculating the total surface



area needed for certain muqarnas, decorative structures in Islamic and
Persian architecture.

Viète had a fascinating life. At one point, he successfully broke the codes
of Philip II of Spain for Henry IV of France. Philip believed that the very
complex cipher could not be broken by mere men, and when he discovered
that the French knew of his military plans, he complained to the Pope that
black magic was being used against his country.

SEE ALSO Pythagorean Theorem and Triangles (c. 600 B.C.), Euclid’s Elements (300 B.C.),
Ptolemy’s Almagest (c. 150), and Polygraphiae Libri Sex (1518).



An Iranian stamp issued in 1979 commemorating al-Kashi. In French, the law of
cosines is called Théorème d’Al-Kashi, after al-Kashi’s unification of existing
works on the subject.



Treviso Arithmetic
1478

European arithmetic texts in the fifteenth and sixteenth centuries often
presented mathematical word problems related to commerce in order to
teach mathematical concepts. The general idea of word problems for
students dates back for centuries, and some of the oldest-known word
problems were presented in ancient Egypt, China, and India.

Treviso Arithmetic is brimming with word problems, many involving
merchants investing money and who wish to avoid being cheated. The book
was written in a Venetian dialect and published in 1478 in the town of
Treviso, Italy. The unknown author of the book writes, “I have often been
asked by certain youths in whom I have much interest, and who look
forward to mercantile pursuits, to put into writing the fundamental
principles of arithmetic. Therefore, being impelled by my affection for
them, and by the value of the subject, I have to the best of my small ability
undertaken to satisfy them in some slight degree.” He then gives numerous
word problems involving merchants with names like Sebastiano and
Jacomo who invest their money for gain in a partnership. The book also
shows several ways for performing multiplication and includes information
from the Fibonacci work Liber Abaci (1202).

Treviso is particularly significant because it is the earliest-known printed
mathematics book in Europe. It also promoted the use of the Hindu Arabic
numeral system and computational algorithms. Because commerce of the
time began to have a wide international component, prospective
businessmen had urgent needs to become facile with mathematics. Today,
scholars are fascinated by Treviso because it provides a portal into the
methods of teaching mathematics in fifteenth-century Europe. Similarly,
because the problems involve calculating payment for exchanging goods,
fabric cutting, saffron trading, alloy mixtures in coins, currency exchange,
and calculating shares of profits derived from partnerships, readers come to
understand the contemporary concerns with respect to cheating, usury, and
determination of interest charges.

SEE ALSO Rhind Papyrus (1650 B.C.), Ganita Sara Samgraha (850), Fibonacci’s Liber Abaci
(1202), and Sumario Compendioso (1556).



Stained-glass depiction of a European merchant, circa. 1475, working in his
warehouse, surrounded by the tools of his trade and weighing goods on a large
balance. Treviso Arithmetic, the earliest known printed mathematics book in
Europe, includes problems involving merchants, investment, and trade.



Discovery of Series Formula for π
c. 1500

Gottfried Wilhelm Leibniz (1646–1716), James Gregory (1638–1675),
Nilakantha Somayaji (1444–1544)

An infinite series is the sum of infinitely many numbers, and it plays an
important role in mathematics. For a series such as 1 + 2 + 3 +…, the sum
is infinite, and the series is said to diverge. An alternating series is one in
which every other term is negative. One particular alternating series has
intrigued mathematicians for centuries.

Pi, symbolized by the Greek letter π, is the ratio of a circle’s
circumference to its diameter and can be expressed by a remarkably simple
formula: π/4 = 1 − 1/3 + 1/5 − 1/7 + .… Note also that the arctan function in
trigonometry can be expressed by arctan(x) = x − x3/3 + x5/5 − x7/7 + .…
Using the arctan series, the series for π/4 is obtained by setting x = 1.

Ranjan Roy notes that the independent discovery of the infinite series for
π “by different persons living in different environments and cultures gives
us insight into the character of mathematics as a universal discipline.” The
series was discovered by German mathematician Gottfried Wilhelm
Leibniz, Scottish mathematician and astronomer James Gregory, and an
Indian mathematician of the fourteenth or fifteenth century whose identity
is not definitively known, although the result is usually ascribed to
Nilakantha Somayaji. Leibniz discovered the formula in 1673, and Gregory
discovered it in 1671. Roy writes, “Leibniz’s discovery of the infinite series
for π was Leibniz’s first greatest achievement.” Dutch mathematician
Christiaan Huygens told Leibniz that this remarkable property of the circle
would be celebrated among mathematicians forever. Even Newton said that
the formula revealed Leibniz’s genius.

Gregory’s discovery involving the arctan formula came before Leibniz,
although Gregory did not note the special case of the arctan formula for π/4.
This arctan infinite series was also given in Somayaji’s 1500 book
Tantrasangraha. Somayaji was aware that a finite series of rational numbers
could never suffice to represent π.



SEE ALSO π (c. 250 B.C.), Zeno’s Paradoxes (c. 445 B.C.), Harmonic Series Diverges (c. 1350),
and Euler-Mascheroni Constant (1735).



The number π, which can be approximated by the digits shown in this
illustration, also can be expressed by a remarkably simple formula: π/4 = 1 − 1/3
+ 1/5 − 1/7 + ….



Golden Ratio
1509

Fra Luca Bartolomeo de Pacioli (1445–1517)

In 1509, Italian mathematician Luca Pacioli, a close friend of Leonardo da
Vinci, published Divina Proportione, a treatise on a number that is now
widely known as the “Golden Ratio.” This ratio, symbolized by ø, appears
with amazing frequency in mathematics and nature. We can understand the
proportion most easily by dividing a line into two segments so that the ratio
of the whole segment to the longer part is the same as the ratio of the longer
part to the shorter part, or (a + b)/b = b/a = 1.61803….

If the lengths of the sides of a rectangle are in the golden ratio, then the
rectangle is a “golden rectangle.” It’s possible to divide a golden rectangle
into a square and a golden rectangle. Next, we can cut the smaller golden
rectangle into a smaller square and golden rectangle. We may continue this
process indefinitely, producing smaller and smaller golden rectangles.

If we draw a diagonal from the top right of the original rectangle to the
bottom left, and then from the bottom right of the baby (that is, the next
smaller) golden rectangle to the top left, the intersection point shows the
point to which all the baby golden rectangles converge. Moreover, the
lengths of the diagonals are in golden ratio to each another. The point to
which all the golden rectangles converge is sometimes called the “Eye of
God.”

The golden rectangle is the only rectangle from which a square can be cut
so that the remaining rectangle will always be similar to the original
rectangle. If we connect the vertices in the diagram, we approximate a
logarithmic spiral that “envelops” the Eye of God. Logarithmic spirals are
everywhere—seashells, animal horns, the cochlea of the ear—anywhere
nature needs to fill space economically and regularly. A spiral is strong and



uses a minimum of materials. While expanding, it alters its size but never
its shape.

SEE ALSO Archimedes’ Spiral (225 B.C.), Fermat’s Spiral (1636), Logarithmic Spiral (1638), and
Squaring a Rectangle (1925).



Artistic depiction of golden ratios. Note that the two diagonal lines intersect at a
point to which all the baby golden rectangles will converge.



Polygraphiae Libri Sex
1518

Johannes Trithemius (1462–1516), Abu Yusuf Yaqub ibn Ishaq al-
Sabbah Al-Kindi (c. 801–c. 873)

Today, mathematical theory has become central to cryptography. However,
in ancient times, simple substitution ciphers were often used in which
letters in a message were replaced by other letters. For example, CAT
becomes DBU when substituting each letter in CAT with the one following
it in the alphabet. Of course, such simple ciphers became easy to break after
the discovery of frequency analysis, for example, by the Arab scholar al-
Kindi in the ninth century. This method analyzes which letters occur most
frequently in a language—such as ETAOIN SHRDLU in English—and uses
this information to solve substitution codes. More complex statistics can be
used, such as considering counts of pairs of letters. For example, Q almost
always occurs together with U in English.

The first printed book on cryptography, Polygraphiae Libri Sex (Six
Books of Polygraphy), was written by German abbot Johannes Trithemius
and published in 1518 after his death. Polygraphiae contains hundreds of
columns of Latin words, arranged in two columns per page. Each word
stands for a letter of the alphabet. For example, the first page starts like this:

a: Deus      a: clemens
b: Creator      b: clementissimus
c: Conditor      c: pius

To encode a message, one uses a word to stand for a letter. Remarkably,
Trithemius constructed the tables so that the coded passage appears to make
sense as an actual prayer. For example, if the first two letters in a message
were CA, the prayer would start with Conditor clemens (Merciful Creator)
as the first two words in a Latin sentence. The remaining books of
Polygraphiae present more sophisticated cryptographic methods, along
with tables, for creatively hiding information.

Trithemius’s other famous work, Steganographia (written in 1499 and
published in 1606), was placed on the Catholic Church’s “List of Prohibited



Books” because it appeared to be a book about black magic, but in reality
was just another code book!

SEE ALSO Law of Cosines (c. 1427) and Public-Key Cryptography (1977).



Engraving of German abbot Johannes Trithemius, by André de Thevet (1502–
1590). Trithemius’s Polygraphiae, the first printed book on cryptography,
provided various Latin words that may be used to encode secret messages that
appear to be ordinary prayers if intercepted.



Loxodrome
1537

Pedro Nunes (1502–1578)

For the purposes of terrestrial navigation, the loxodromic spiral—also
known as a spherical helix, loxodrome, or rhumb line—goes through the
north-south meridians of the Earth at a constant angle. The loxodrome coils
like a gigantic snake around the Earth and spirals around the poles without
reaching them.

One way of sailing the Earth is to attempt to travel the shortest path
between points, which is along an arc of a great circle around the Earth.
However, even though this is the shortest path, a navigator must continually
make adjustments to the course based on compass readings, a nearly
impossible task for early navigators.

On the other hand, a loxodromic path allows the navigator to continually
direct the vessel to the same point of the compass even though the path to
the destination is longer. For example, using this approach to travel from
New York to London, a voyager could head at a constant bearing of 73°
east of north. A loxodrome is represented as a straight line on a Mercator
projection map.

The loxodrome was invented by Portuguese mathematician and
geographer Pedro Nunes. Nunes lived during a time when the Inquisition
struck fear in the heart of Europe. Many Jews in Spain were forcibly
converted to Roman Catholicism, and Nunes was converted as a child. The
main targets of the later Spanish Inquisition were descendants of these
conversos, such as Nunes’s grandsons in the early 1600s. Gerardus
Mercator (1512–1594), a Flemish cartographer, was imprisoned by the
Inquisition because of his Protestant faith and wide travels, and he narrowly
escaped execution.

Some Muslim groups in North America make use of a loxodrome line to
Mecca southeastward) as their qibla (praying direction) instead of using the
traditional shortest path. In 2006, the Malaysian National Space Agency
(MYNASA) sponsored a conference to determine the proper qibla for
Muslims in orbit.



SEE ALSO Archimedes’ Spiral (225 B.C.), Mercator Projection (1569), Fermat’s Spiral (1636),
Logarithmic Spiral (1638), and Voderberg Tilings (1936).



Computer-graphics artist Paul Nylander created this attractive double spiral by
applying a stereographic projection to a loxodrome curve. (A stereographic
projection maps a sphere onto a plane.)



Cardano’s Ars Magna
1545

Gerolamo Cardano (1501–1576), Niccolo Tartaglia (1500–1557),
Lodovico Ferrari (1522–1565)

Italian Renaissance mathematician, physician, astrologer, and gambler
Gerolamo Cardano is most famous for his work on algebra titled Artis
magnae, sive de regulis algebraicis (Of the Great Art, or The Rules of
Algebra)—also referred to more succinctly as Ars magna. Although the
book sold well, Jan Gullberg notes, “No single publication has promoted
interest in algebra like Cardano’s Ars magna, which, however, provides
very boring reading to a present-day peruser by consistently devoting pages
of verbose rhetoric to a solution…. With the untiring industry of an organ
grinder, Cardano monotonously reiterates the same solution for a dozen or
more near-identical problems where just one would do.”

Nevertheless, Cardano’s impressive work revealed solutions to different
types of cubic and quartic equations—that is, equations with variables
raised to the third and fourth powers, respectively. Italian mathematician
Niccolo Tartaglia had earlier communicated to Cardano the solution to the
cubic, x3 + ax = b, and he attempted to ensure that Cardano would never
publish the solution by making Cardano swear an oath to God. Cardano
published the solution anyway, after he seemed to discover that Tartaglia
was not the first to solve the cubic equation using radicals. The general
quartic equation was solved by Cardano’s student Lodovico Ferrari.

In Ars magna, Cardano explored the existence of what are now called
imaginary numbers, which are based on the square root of –1, although he
did not fully appreciate their properties. In fact, he presents the first
calculation with complex numbers when he writes: “Dismissing mental
tortures, and multiplying 5 + √−15 by 5 − √−15, we obtain 25 − (−15).
Therefore, the product is 40.”

In 1570, as a result of the Inquisition, Cardano was thrown in jail for
several months on the charge of heresy, because he had cast the horoscope
of Jesus Christ. According to legend, Cardano correctly predicted the exact



date of his own death, a prophecy he is said to have ensured by killing
himself on this date.

SEE ALSO Omar Khayyam’s Treatise (1070), Imaginary Numbers (1572), and Group Theory
(1832).



Italian mathematician Gerolamo Cardano, well known for his work on algebra
titled Artis magnae, sive de regulis algebraicis, also referred to as Ars Magna
(The Great Art).



Sumario Compendioso
1556

Juan Diez (1480–1549)

The Sumario compendioso, published in Mexico City in 1556, is the first
work on mathematics printed in the Americas. The publication of Sumario
compendioso in the New World preceded by many decades the emigration
of the Puritans to North America and the settlement in Jamestown, Virginia.
The author, Brother Juan Diez, was a companion of Hernándo Cortes, the
Spanish conquistador, during Cortes’s conquests of the Aztec Empire.

Diez wrote the book primarily for people buying gold and silver
recovered from the mines of Peru and Mexico. In addition to providing
tables to make it easy for merchants to obtain numerical values without
much calculation, he also devoted part of the work to algebra related to the
quadratic equation—that is, equations of the form ax2 + bx + c = 0 with a ≠
0. For example, one of the problems may be translated as: “Find the square
from which if 15 3/4 is subtracted, the result is its own root.” This is
equivalent to solving x2 − 15 3/4 = x.

The full title of Diez’s work is Sumario compendioso de las quentas de
plata y oro que en los reynos del Piru son necessarias a los mercaderes y
todo genero de tratantes. Con algunas reglas tocantes al Arithmetica,
which translates to Comprehensive Summary of the Counting of Silver and
Gold, Which, in the Kingdoms of Peru, Are Necessary for Merchants and
All Kinds of Traders. The printing press and paper were shipped from Spain
and then carried to Mexico City. Only four known copies of Sumario
compendioso exist today.

According to Shirley Gray and C. Edward Sandifer, “The New World’s
first mathematics book in English was not published until 1703…. Of all
the colonial mathematics books, the ones in Spanish are the most
interesting, because they were mostly written in America for use by people
living in America.”

SEE ALSO Diophantus’s Arithmetica (250), Al-Khwarizmi’s Algebra (830), and Treviso Arithmetic
(1478).



The Sumario Compendioso is the first work on mathematics printed in the
Americas.



Mercator Projection
1569

Gerardus Mercator (1512–1594), Edward Wright (c. 1558–1615)

Many of the ancient Greek ideas for representing a spherical Earth on a flat
map were lost during the Middle Ages. John Short explains that, in the
fifteenth century, “the value of sea charts rivaled gold as a primary target
for buccaneer captains. Later, maps became status symbols among wealthy
merchants who built vast fortunes thanks to thriving trade routes made
possible by reliable sea navigation.”

One of the most famous map projections in history is the Mercator map
(1569), which became commonly used for nautical voyages and is named
after Flemish cartographer Gerardus Mercator. Norman Thrower writes,
“Like several other projections, the Mercator is conformal (shapes around a
point are correct), but it also has a unique property: straight lines are rhumb
lines or loxodromes (lines of constant compass bearing).” This latter
quality was invaluable to marine navigators who chose routes using
compasses and other devices to indicate geographical directions and to steer
the ships. The use of the Mercator map increased in the 1700s, after the
invention of the accurate marine chronometer, a timekeeping device used to
determine longitude by means of celestial navigation.

Although Mercator was the first mapmaker to create his projection in
which compass lines intersect meridians at a constant, given angle, he
probably used graphical methods and little mathematics. English
mathematician Edward Wright provided an analysis of the fascinating
properties of the map in his Certaine Errors in Navigation (1599). For the
mathematically inclined reader, the Mercator map projection with x and y
coordinates may be created from latitude φ and longitude λ values by: x = λ
− λ0 and y = sinh−1(tan(φ)), where λ0 is the longitude at the center of the
map. The Mercator projection does have its imperfections; for example, it
exaggerates the size of areas far from the equator.

SEE ALSO Loxodrome (1537), Projective Geometry (1639), and Three-Armed Protractor (1801).



The Mercator map has been commonly used for nautical voyages. However, the
map creates distortions. For example, Greenland appears to be roughly the same
as Africa, even though Africa’s area is 14 times that of Greenland.



Imaginary Numbers
1572

Rafael Bombelli (1526–1572)

An imaginary number is one whose square has a negative value. The great
mathematician Gottfried Leibniz called imaginary numbers “a wonderful
flight of God’s Spirit; they are almost an amphibian between being and not
being.” Because the square of any real number is positive, for centuries
many mathematicians declared it impossible for a negative number to have
a square root. Although various mathematicians had inklings of imaginary
numbers, the history of imaginary numbers started to blossom in sixteenth-
century Europe. The Italian engineer Rafael Bombelli, well known during
his time for draining swamps, is today famous for his Algebra, published in
1572, that introduced a notation for √(−1), which would be a valid solution
to the equation x2 + 1 = 0. He wrote, “It was a wild thought in the judgment
of many.” Numerous mathematicians were hesitant to “believe” in
imaginary numbers, including Descartes, who actually introduced the term
imaginary as a kind of insult.

Leonhard Euler in the eighteenth century introduced the symbol i for
√(−1)—for the first letter of the Latin word imaginarius—and we still use
Euler’s symbol today. Key advances in modern physics would not have
been possible without the use of imaginary numbers, which have aided
physicists in a vast range of computations, including efficient calculations
involving alternating currents, relativity theory, signal processing, fluid
dynamics, and quantum mechanics. Imaginary numbers even play a role in
the production of gorgeous fractal artworks that show a wealth of detail
with increasing magnifications.

From string theory to quantum theory, the deeper one studies physics, the
closer one moves to pure mathematics. Some might even say that
mathematics “runs” reality in the same way that Microsoft’s operating
system runs a computer. Schrödinger’s wave equation—which describes
basic reality and events in terms of wave functions and probabilities—may
be thought of as the evanescent substrate on which we all exist, and it relies
on imaginary numbers.



SEE ALSO Cardano’s Ars Magna (1545), Euler’s Number, e (1727), Quaternions (1843), Riemann
Hypothesis (1859), Boole’s Philosophy and Fun of Algebra (1909), and Fractals (1975).



Imaginary numbers play a role in the production of Jos Leys’s gorgeous fractal
artworks that show a wealth of detail with increasing magnifications. Early
mathematicians were so suspicious of the usefulness of imaginary numbers that
they insulted those who suggested their existence.



Kepler Conjecture
1611

Johannes Kepler (1571–1630), Thomas Callister Hales (b. 1958)

Imagine that your goal is to fill a large box with as many golf balls as
possible. Close the lid tightly when finished. The density of balls is
determined from the proportion of the volume of the box that contains a
ball. In order to stuff the most balls into the box, you need to discover an
arrangement with the highest possible density. If you simply drop balls into
the box, you’ll only achieve a density of roughly 65 percent. If you are
careful, and create a layer at the bottom in a hexagonal arrangement, and
then put the next layer of balls in the indentations created by the bottom
layer, and continue, you’ll be able to achieve a packing density of π/√18,
which is about 74 percent.

In 1611, German mathematician and astronomer Johannes Kepler wrote
that no other arrangement of balls has a higher average density. In
particular, he conjectured in his monograph The Six-Cornered Snowflake
that it is impossible to pack identical spheres in three dimensions greater
than the packing found in face-centered (hexagonal) cubic packing. In the
nineteenth century, Karl Friedrich Gauss proved that the traditional
hexagonal arrangement was the most efficient for a regular 3-D grid.
Nevertheless, the Kepler conjecture remained, and no one was sure if a
denser packing could be achieved with an irregular packing.

Finally, in 1998, American mathematician Thomas Hales stunned the
world when he presented a proof that Kepler had been right. Hales’s
equation and its 150 variables expressed every conceivable arrangement of
50 spheres. Computers confirmed that no combination of variables led to a
packing efficiency higher than 74 percent.

The Annals of Mathematics agreed to publish the proof, provided it was
accepted by a panel of 12 referees. In 2003, the panel reported that they
were “99 percent certain” of the correctness of the proof. Hales estimates
that to produce a complete formal proof will take around 20 years of work.

SEE ALSO Sangaku Geometry (c. 1789), Four-Color Theorem (1852), and Hilbert’s 23 Problems
(1900).



Fascinated by Kepler’s famous conjecture, Princeton University scientists Paul
Chaikin, Salvatore Torquato, and colleagues studied the packing of M&M
chocolate candies. They discovered that the candies had a packing density of
about 68 percent, or 4 percent greater than for randomly packed spheres.



Logarithms
1614

John Napier (1550–1617)

Scottish mathematician John Napier is famous as the inventor and promoter
of logarithms in his 1614 book A Description of the Marvelous Rule of
Logarithms. This method has since contributed to countless advances in
science and engineering by making difficult calculations possible. Before
electronic calculators became widely available, logarithms and tables of
logarithms were commonly used in surveying and navigation. Napier was
also the inventor of Napier’s bones, rods carved with multiplication tables
that could be arranged in patterns in order to aid in calculations.

A logarithm (to a base b) of a number x is expressed as logb(x) and equals
the exponent y that satisfies x = by. For example, because 35 = 3 × 3 × 3 × 3
× 3 = 243, we say that the log of 243 (base 3) is 5, or log3(243) = 5. As
another example, log10(100) = 2. For practical purposes, consider that a
multiplication such as 8 × 16 = 128 can be rewritten as 23 × 24 = 27, thereby
converting the calculations into ones involving the simple additions of the
powers (3 + 4 = 7). Prior to calculators, in order to multiply two numbers,
an engineer often looked up the logarithms of both numbers in a table,
added them, and then looked up the result in the table to find the product.
This could often be faster than multiplying by hand and is the principle on
which slide rules are based.

Today, various quantities and scales in science are expressed as
logarithms of other quantities. For example, the pH scale in chemistry, the
bel unit of measurement in acoustics, and the Richter scale used for
measuring earthquake intensity all involve a base-10 logarithmic scale.
Interestingly, the discovery of logarithms just prior to the era of Isaac
Newton had an impact on science comparable to the invention of the
computer in the twentieth century.

SEE ALSO Slide Rule (1621), Logarithmic Spiral (1638), and Stirling’s Formula (1730).



John Napier, the discoverer of logarithms, created a calculation device known as
Napier’s rods or bones. Napier’s rotatable rods reduced multiplication to a
sequence of simple additions.



Slide Rule
1621

William Oughtred (1574–1660)

Those of you who went to high school before the 1970s may recall that the
slide rule once seemed to be as common as the typewriter. In just seconds,
engineers could multiply, divide, find square roots, and do much more. The
earliest version with sliding pieces was invented in 1621 by English
mathematician and Anglican minister William Oughtred, based on the
logarithms of Scottish mathematician John Napier. Oughtred may not have
initially recognized the value of his work, because he did not quickly
publish his findings. According to some accounts, one of his students stole
the idea and published a pamphlet on the slide rule, which emphasized its
portability, and raved that the device was “fit for use on horseback as on
foot.” Oughtred was outraged by his student’s duplicity.

In 1850, a 19-year-old French artillery lieutenant modified the original
design of the slide rule, and the French army used it to perform projectile
calculations when fighting the Prussians. During World War II, American
bombers often used specialized slide rules.

Slide-rule guru Cliff Stoll writes, “Consider the engineering
achievements that owe their existence to rubbing two sticks together: the
Empire State Building; the Hoover Dam; the curves of the Golden Gate
Bridge; hydrodynamic automobile transmissions, transistor radios; the
Boeing 707 airliner.” Wernher Von Braun, the designer of the German V-2
rocket, relied on slide rules made by the German company Nestler, as did
Albert Einstein. Pickett slide rules were aboard Apollo space missions in
case the computers failed!

In the twentieth century, 40 million slide rules were produced worldwide.
Given the crucial role that this device played from the Industrial Revolution
until modern times, the device deserves a place in this book. Literature from
the Oughtred Society states, “For a span of 3.5 centuries, it was used to
perform design calculations for virtually all the major structures built on
this earth.”



SEE ALSO Abacus (c. 1200), Logarithms (1614), Curta Calculator (1948), HP-35: First Scientific
Pocket Calculator (1972), and Mathematica (1988).



The slide rule played a crucial role from the Industrial Revolution until modern
times. In the twentieth century, 40 million slide rules were produced and were
used by engineers for countless applications.



Fermat’s Spiral
1636

Pierre de Fermat (1601–1665), René Descartes (1596–1650)

In the early 1600s, Pierre de Fermat, a French lawyer and mathematician,
made brilliant discoveries in number theory and other areas of mathematics.
His 1636 manuscript “Ad locos planos et solidos lisagoge” (“Introduction
to Plane and Solid Loci”) went beyond René Descartes’ work in analytical
geometry and allowed Fermat to define and study many important curves
that included the cycloid and the Fermat spiral.

The Fermat spiral, or parabolic spiral, can be created using the polar
equation r2 = a2 . Here, r is the distance of the curve from the origin, a is a
constant that determines how tightly wound the spiral is, and  is the polar
angle. For any given positive value of u, negative and positive values for r
exist, which leads to a curve that is symmetrical about the origin. Fermat
studied the relationship of the area enclosed by an arm of the spiral and the
x-axis as the spiral turns.

Today, computer graphics specialists sometimes use this curve to model
the arrangement of seed heads in flowers. For example, we may draw spots
that have center positions determined by polar coordinate values, r(i) = ki½,
and angles  defined by (i)= 2iπ/ . Here,  is the golden number (1+√5)/2,
and i is simply a counter that steps as 1, 2, 3, 4,…

This graphics approach produces many different spiral arms that twist in
one direction or another. It is possible to trace various sets of symmetrical
spirals, radiating from the center of the pattern, for example a set of 8, 13,
or 21 spiral arms, and these numbers of arms are all Fibonacci numbers (see
entry Fibonacci’s Liber Abaci).

Michael Mahoney writes, “Fermat had been working with spirals for
some time before he encountered one in Galileo’s Dialogue. In a letter of
June 3, 1636, he described to Mersenne the spiral r2 = a2 ….”

SEE ALSO Archimedes’ Spiral (225 B.C.), Fibonacci’s Liber Abaci (1202), Golden Ratio (1509),
Loxodrome (1537), Fermat’s Last Theorem (1637), Logarithmic Spiral (1638), Voderberg Tilings
(1936), Ulam Spiral (1963), and Spidrons (1979).



The Fermat spiral, or parabolic spiral, can be created using the polar equation
r2 = a2 . For any given positive value of , two values for r exist, which leads to
a curve that is symmetrical about the origin, which is located at the center of this
artistic rendition.



Fermat’s Last Theorem
1637

Pierre de Fermat (1601–1665), Andrew John Wiles (b. 1953), Johann
Dirichlet (1805–1859), Gabriel Lamé (1795–1870)

In the early 1600s, Pierre de Fermat, a French lawyer, made brilliant
discoveries in number theory. Although he was an “amateur”
mathematician, he created mathematical challenges such as Fermat’s Last
Theorem (FLT), which was not solved until 1994 by British-American
mathematician Andrew Wiles. Wiles spent seven years of his life trying to
prove the famous theorem, which may have generated more attempts at
proofs than any other theorem.

FLT states that xn + yn = zn has no non-zero integer solutions for x, y, and
z when n > 2. Fermat stated his theorem in 1637 when he wrote in his copy
of Diophantus’s Arithmetica, “I have a truly marvelous proof of this
proposition which this margin is too narrow to contain.” Today, we believe
that Fermat had no such proof.

Fermat was no ordinary lawyer, indeed. He is considered, along with
Blaise Pascal (1623–1662), the founder of probability theory. As the co-
inventor of analytic geometry, along with René Descartes (1596–1650), he
is regarded as one of the first modern mathematicians. He once pondered if
it was possible to find a right triangle whose hypotenuse and sums of legs
were squares. Today, we know that the smallest three numbers satisfying
these conditions are quite large: 4,565,486,027,761, 1,061,652,293,520, and
4,687,298,610,289.

Since Fermat’s time, FLT has spawned significant mathematical research
and completely new methods. In 1832, Johann Dirichlet published a proof
of Fermat’s Last Theorem for n = 14. Gabriel Lamé proved it for n = 7 in
1839. Amir Aczel writes that FLT “would become the world’s most baffling
mathematical mystery. Simple, elegant, and [seemingly] utterly impossible
to prove, Fermat’s Last Theorem captured the imaginations of amateur and
professional mathematicians for over three centuries. For some it became a
wonderful passion. For others it was an obsession that led to deceit,
intrigue, or insanity.”



SEE ALSO Pythagorean Theorem and Triangles (c. 600 B.C.), Diophantus’s Arithmetica (250),
Fermat’s Spiral (1636), Descartes’ La Géométrie (1637), Pascal’s Triangle (1654), and Catalan
Conjecture (1844).



Pierre de Fermat by French painter Robert Lefèvre (1756–1831).



Descartes’ La Géométrie
1637

René Descartes (1596–1650)

In 1637, French philosopher and mathematician René Descartes published
La géométrie, which shows how geometrical shapes and figures can be
analyzed using algebra. Descartes’ work influenced the evolution of
analytical geometry, a field of mathematics that involves the representation
of positions in a coordinate system and in which mathematicians
algebraically analyze such positions. La géométrie also shows how to solve
mathematical problems and discusses the representation of points of a plane
through the use of real numbers, and the representation and classification of
curves through the use of equations.

Interestingly, La géométrie does not actually use “Cartesian” coordinate
axes or any other coordinate system. The book pays as much attention to
representing algebra in geometric forms as vice versa. Descartes believed
that algebraic steps in a proof should usually correspond to a geometrical
representation.

Jan Gullberg writes, “La géométrie is the earliest mathematical text that a
modern student of mathematics could read without stumbling over an
abundance of obsolete notations….Along with Newton’s Principia, it is one
of the most influential scientific texts of the seventeenth century.”
According to Carl Boyer, Descartes desired to “free geometry” from the use
of diagrams through algebraic procedures and to give meaning to the
operations of algebra through geometric interpretation.

More generally, Descartes was groundbreaking in his proposal to unite
algebra and geometry into a single subject. Judith Grabiner writes, “Just as
the history of Western philosophy has been viewed as a series of footnotes
to Plato, so the past 350 years of mathematics can be viewed as a series of
footnotes to Descartes’ Geometry…and the triumph of Descartes’ methods
of problem solving.”

Boyer concludes, “In terms of mathematical ability, Descartes probably
was the most able thinker of his day, but he was at heart not really a



mathematician.” His geometry was only one facet of a full life that revolved
around science, philosophy, and religion.

SEE ALSO Pythagorean Theorem and Triangles (c. 600 B.C.), Quadrature of the Lune (c. 440 B.C.),
Euclid’s Elements (300 B.C.), Pappus’s Hexagon Theorem (c. 340), Projective Geometry (1639), and
Fractals (1975).



The Ancient of Days (1794), a watercolor etching by William Blake. European
medieval scholars often associated geometry and the laws of nature with the
divine. Through the centuries, geometry’s focus on compass and straightedge
constructions became more abstract and analytical.



Cardioid
1637

Albrecht Dürer (1471–1528), Étienne Pascal (1588–1640), Ole Rømer
(1644–1710), Philippe de La Hire (1640–1718), Johann Castillon (1704–
1791)

The heart-shaped cardioid has fascinated mathematicians for centuries due
to its mathematical properties, graphic beauty, and practical applications.
The curve can be produced simply by tracking a point on a circle as it rolls
around on another (fixed) circle of the same radius. The name is derived
from the Greek word for heart, and its polar equation may be written as r =
a(1 − cos ). The area of the cardioid is (3/2)πa2, and its perimeter is 8a.

The cardioid may also be generated by drawing a circle C and fixing a
point P on it. Next, draw a set of various circles centered on the
circumference of C and passing through P. These circles trace out a cardioid
shape. The cardioid appears in a wide range of seemingly disparate
mathematical areas, from the caustics in the field of optics to the central
shape of the Mandelbrot Set in fractal geometry.

Many dates may be associated with the cardioid. French lawyer and
amateur mathematician Étienne Pascal, father of mathematician Blaise
Pascal, formally studied the more general case of the curve, called the
Limaçon of Pascal, around 1637. However, even earlier, German painter
and mathematician Albrecht Dürer provided a method for drawing the
Limaçon in Underweysung der Messung Instruction in Measurement),
published in 1525. In 1674, Danish astronomer Ole Rømer contemplated
the cardioid when considering shapes for gear teeth. French mathematician
Philippe de La Hire determined its length in 1708. Interestingly, the
cardioid was not given its evocative name until 1741, when Johann
Castillon named it in his treatise in the Philosophical Transactions of the
Royal Society.

Glen Vecchione explains the practical side of cardioids, when he writes
that they can show “the interference and congruence patterns of waves that
radiate concentrically from a point source. In doing so, they can identify the



areas of greatest sensitivity on microphones or antennas….A cardioid
microphone is sensitive to front sound and minimizes rear sound.”

SEE ALSO Cissoid of Diocles (c. 180 B.C.), The Length of Neile’s Semicubical Parabola (1657),
Astroid (1674), Fractals (1975), and Mandelbrot Set (1980).



A cardioid form is traced out by straight lines that connect one point of a circle
to another, the front end of the line going twice as fast around the circle as the
rear end. (This rendering is by Jos Leys.)



Logarithmic Spiral
1638

René Descartes (1596–1650), Jacob Bernoulli (1654–1705)

Logarithmic spirals in nature are ubiquitous and have a range of botanical
and zoological manifestations. Probably the most common examples are the
logarithmic spirals of nautilus shells and other seashells, the horns of a
variety of mammals, the arrangement of seeds of many plants (such as the
sunflower and daisy), and the scales of a pinecone. Martin Gardner has
noted that Eperia, a common variety of spider, spins a web in which a
strand coils around the center in a logarithmic spiral.

The logarithmic spiral (also known as the equiangular spiral or Bernoulli
spiral) can be expressed as r = kea , where r is the distance from the origin.
The angle  between a tangent line to the curve and a radial line drawn to (r,
) is constant. The spiral was first discussed by French mathematician and

philosopher René Descartes in 1638 in letters written to French theologian
and mathematician Marin Mersenne. Later, the spiral was studied more
extensively by Swiss mathematician Jacob Bernoulli.

The most impressive appearance of the logarithmic spiral is in the huge
arms of many galaxies, and the traditional view is that it is necessary to
have a long-range interaction like gravity to create such vast order. In spiral
galaxies, the spiral arms are sites of active star formation.

Spiral patterns often occur spontaneously in matter that is organized
through symmetry transformations: change of size (growth) and rotation.
Form follows function, and the spiral form can allow for the compaction of
a relatively long length. Long yet compact tubes are useful in mollusks and
cochleas for obvious reasons, including physical strength and increased
surface area. As a member of a species grows to maturity, it generally
transforms in such a way that its parts maintain approximately the same
proportion with respect to each other, and this is probably a reason why
nature often exhibits self-similar spiral growth.

SEE ALSO Archimedes’ Spiral (225 B.C.), Golden Ratio (1509), Loxodrome (1537), Logarithms
(1614), Fermat Spiral (1636), The Length of Neile’s Semicubical Parabola (1657), Voderberg Tilings
(1936), Ulam Spiral (1963), and Spidrons (1979).



The nautilus seashell exhibits a logarithmic spiral form. The shell is internally
divided into chambers, the number of which can grow to 30 or more in adult
creatures.



Projective Geometry
1639

Leon Battista Alberti (1404–1472), Gérard Desargues (1591–1661),
Jean-Victor Poncelet (1788–1867)

Projective geometry generally concerns the relationships between shapes
and their mappings, or “images,” that result from projecting the shapes onto
a surface. Projections may often be visualized as the shadows cast by
objects.

The Italian architect Leon Battista Alberti was one of the first individuals
to experiment with projective geometry through his interest in perspective
in art. More generally, Renaissance artists and architects were concerned
with methods for representing three-dimensional objects in two-
dimensional drawings. Alberti sometimes placed a glass screen between
himself and the landscape, closed one eye, and marked on the glass certain
points that appeared to be in the image. The resulting 2-D drawing gave a
faithful impression of the 3-D scene.

French mathematician Gérard Desargues was the first professional
mathematician to formalize projective geometry while searching for ways
to extend Euclidean geometry. In 1636, Desargues published Exemple de
l’une des manières universelles du S.G.D.L. touchant la pratique de la
perspective (Example of a Universal Method by Sieur Girard Desargues
Lyonnais Concerning the Practice of Perspective), in which he presented a
geometric method for constructing perspective images of objects.
Desargues also examined the properties of shapes that were preserved under
perspective mappings. Painters and engravers made use of his approach.

Desargues’ most important work, Brouillon project d’une atteinte aux
événements des rencontres d’un cône avec un plan (Rough Draft of
Attaining the Outcome of Intersecting a Cone with a Plane), published in
1639, treats the theory of conic sections using projective geometry. In 1882,
French mathematician and engineer Jean-Victor Poncelet (1788–1867)
published a treatise that revitalized interest in projective geometry.

In projective geometry, elements such as points, lines, and planes
generally remain points, lines, and planes when projected. However,



lengths, ratios of lengths, and angles may change under projection. In
projective geometry, parallel lines in Euclidean geometry intersect at
infinity in the projection.

SEE ALSO Pappus’s Hexagon Theorem (c. 340), Mercator Projection (1569), and Descartes’ La
Géométrie (1637).



Drawing by Jan Vredeman de Vries (1527–c. 1607), a Dutch Renaissance
architect and engineer who experimented with the principles of perspective in his
artwork. Projective geometry grew from the principles of perspective art
established during the European Renaissance.



Torricelli’s Trumpet
1641

Evangelista Torricelli (1608–1647)

Your friend hands you a gallon of red paint and asks how you would
completely paint an infinite surface with this gallon of paint. What surface
would you choose? Many possible answers to this question exist, but
Torricelli’s trumpet is one famous shape to consider—a hornlike object
created by revolving f(x) = 1/x for x  of [1, ∞) about the x-axis. Standard
calculus methods can be used to demonstrate that the Torricelli’s trumpet
has finite volume but infinite surface area!

John dePillis explains that, mathematically speaking, pouring red paint
into the Torricelli’s trumpet could fill the funnel and, in so doing, you could
paint the entire interior infinite surface, even though you have a finite
number of paint molecules. This seeming paradox can be partly resolved by
remembering that the Torricelli’s trumpet is actually a mathematical
construct, and our finite number of paint molecules that “fills” the horn is
an approximation to the actual finite volume of the horn.

For what values of a does f(x) = 1/xa produce a horn with finite volume
and infinite area? This is something for you to ponder with your
mathematical friends.

Torricelli’s trumpet is sometimes called Gabriel’s horn and is named after
Italian physicist and mathematician Evangelista Torricelli, who discovered
it in 1641. He was astounded by this trumpet that seemed to be an infinitely
long solid with an infinite-area surface and a finite volume. Torricelli and
his colleagues thought that it was a deep paradox and unfortunately did not
have the tools of calculus to fully appreciate and understand the object.
Today, Torricelli is remembered for the telescopic astronomy he did with
Galileo and for his invention of the barometer. The name “Gabriel’s horn”
conjures visions of Archangel Gabriel blowing his horn to announce
Judgment Day, thereby associating the infinite with the powers of God.

SEE ALSO Discovery of Calculus (c. 1665), Minimal Surface (1774), Beltrami’s Pseudosphere
(1868), and Cantor’s Transfinite Numbers (1874).



Torricelli’s trumpet encloses a finite volume but has an infinite surface area.
This form is also sometimes called Gabriel’s horn, which conjures visions of
Archangel Gabriel blowing his horn to announce Judgment Day. (This rendering
is by Jos Leys and rotated by 180°.)



Pascal’s Triangle
1654

Blaise Pascal (1623–1662), Omar Khayyam (1048–1131)

One of the most famous integer patterns in the history of mathematics is
Pascal’s triangle. Blaise Pascal was the first to write a treatise about this
progression in 1654, although the pattern had been known by the Persian
poet and mathematician Omar Khayyam as far back as A.D. 1100, and even
earlier to the mathematicians of India and ancient China. The first seven
rows of Pascal’s triangle are depicted at upper right.

Each number in the triangle is the sum of the two above it.
Mathematicians have discussed the role that Pascal’s triangle plays in
probability theory, in the expansion of binomials of the form (x + y)n, and in
various number theory applications for years. Mathematician Donald Knuth
(b. 1938) once indicated that there are so many relations and patterns in
Pascal’s triangle that when someone finds a new identity, there aren’t many
people who get excited about it anymore, except the discoverer.
Nonetheless, fascinating studies have revealed countless wonders, including
special geometric patterns in the diagonals, the existence of perfect square
patterns with various hexagonal properties, and an extension of the triangle
and its patterns to negative integers and to higher dimensions.

When even numbers in the triangle are replaced by dots and odd numbers
by gaps, the resulting pattern is a fractal, with intricate repeating patterns
on different size scales. These fractal figures may have a practical
importance in that they can provide models for materials scientists to help
produce new structures with novel properties. For example, in 1986,
researchers created wire gaskets on the micron size scale almost identical to
Pascal’s triangle, with holes for the odd numbers. The area of their smallest
triangle was about 1.38 microns squared, and the scientists investigated
many unusual properties of their superconducting gasket in a magnetic
field.



George W. Hart created this nylon model of Pascal’s pyramid using a physical
process known as selective laser sintering.

SEE ALSO Omar Khayyam’s Treatise (1070), Normal Distribution Curve (1733), and Fractals
(1975).



The fractal Pascal triangle discussed in the text. The number of cells in the
central red triangles is always even (6, 28, 120, 496, 2,016….) and includes all
perfect numbers (numbers that are the sum of their proper positive divisors).



The Length of Neile’s Semicubical Parabola
1657

William Neile (1637–1670), John Wallis (1616–1703)

In 1657, British mathematician William Neile became the first person to
“rectify,” or find the arc length of, a nontrivial algebraic curve. This special
curve is called a semicubical parabola, defined by x3 = ay2. When written
as y = ± ax3/2, it is easier to see how it might have been considered “half a
cubic” and hence the genesis of the term semicubic. A report of Neile’s
work appeared in British mathematician John Wallis’s De Cycloide in 1659.
Interestingly, only the arc lengths of transcendental curves, such as the
logarithmic spiral and cycloid, had been calculated before 1659.

Because attempts to rectify the ellipse and hyperbola were unsuccessful,
some mathematicians, such as French philosopher and mathematician René
Descartes (1596–1650), had conjectured that few curves could be rectified.
However, Italian physicist and mathematician Evangelista Torricelli (1608–
1647) rectified the logarithmic spiral, which was the first curved line (other
than the circle) whose length was determined. The cycloid was the next
curve rectified, by English geometer and architect Sir Christopher Wren
(1632–1723) in 1658.

Around 1687, Dutch mathematician and physicist Christiaan Huygens
(1629–1695) showed that the semicubical parabola is a curve along which a
particle may descend under the force of gravity so that it moves equal
vertical distances in equal times. The semicubical parabola can also be
expressed as a pair of equations: x = t2 and y = at3. Given this form, the
length of the curve as a function of t is (1/27) × (4 + 9t2)3/2 − 8/27. In other
words, the curve has this length on the interval from 0 to t. In the literature,
we sometimes see Neile’s parabola referred to as the curve for y3 = ax2,
which places the cusp of the curve pointing downward along the y-axis
instead of to the left on the x-axis.



Semicubical parabolas defined by x3 = ay2 for two different values of a.

SEE ALSO Cissoid of Diocles (c. 180 B.C.), Descartes’ La Géométrie (1637), Logarithmic Spiral
(1638), Torricelli’s Trumpet (1641), Tautochrone Problem (1673), and Transcendental Numbers
(1844).



Christiaan Huygens by Flemish artist Bernard Vaillant (1632–1698). Huygens
considered the behavior of particles descending along the semicubical parabola
under the force of gravity.



Viviani’s Theorem
1659

Vincenzo Viviani (1622–1703)

Place a point inside an equilateral triangle. From this point, draw a line to
each of the sides so that these three lines are perpendicular to each side. No
matter where you placed your point, the sum of the perpendicular distances
from the point to the sides is equal to the height of the triangle. The theorem
is named after Italian mathematician and scientist Vincenzo Viviani. Galileo
was so impressed by Viviani’s talent that he took him into his house in
Arcetri, Italy, as a collaborator.

Researchers have found ways to extend Viviani’s theorem to problems in
which the point is placed outside the triangle and have also explored the
application of the theorem to any regular n-sided polygon. In this case, the
sum of the perpendicular distances from an interior point to the n sides is n
times the apothem of the polygon. (An apothem is the distance from the
center to a side.) The theorem can also be studied in higher dimensions.

When Galileo died, Viviani wrote Galileo’s biography and hoped to
publish a complete edition of Galileo’s works. Alas, the Church prohibited
this effort, which hurt Viviani’s reputation and was a blow to science in
general. Viviani published the Italian version of Euclid’s Elements in 1690.

Not only is the theorem interesting mathematically due to its numerous
different proofs, the theorem is used for teaching children various aspects of
geometry. Some teachers have placed the problem in a real-world setting by
casting it in the context of a surfer stranded on an island in the shape of an
equilateral triangle. The surfer wants to build a hut where the sum of the
distances to the sides is a minimum, because she surfs on each of the three
beaches an equal amount of time. Students are intrigued to learn that the
placement of the hut does not matter.

SEE ALSO Pythagorean Theorem and Triangles (c. 600 B.C.), Euclid’s Elements (300 B.C.), Law of
Cosines (c. 1427), Morley’s Trisector Theorem (1899), and Ball Triangle Picking (1982).



Place a point anywhere inside an equilateral triangle. Draw lines, as shown, to
the sides of the triangle. The sum of the perpendicular distances from the point to
the sides is always equal to the height of the triangle.



Discovery of Calculus
c. 1665
Isaac Newton (1642–1727), Gottfried Wilhelm Leibniz (1646–1716)

English mathematician Isaac Newton and German mathematician Gottfried
Wilhelm Leibniz are usually credited with the invention of calculus, but
various earlier mathematicians explored the concept of rates and limits,
starting with the ancient Egyptians who developed rules for calculating the
volume of pyramids and approximating the areas of circles.

In the 1600s, both Newton and Leibniz puzzled over problems of
tangents, rates of change, minima, maxima, and infinitesimals
(unimaginably tiny quantities that are almost but not quite zero). Both men
understood that differentiation (finding the tangent to a curve at a point—
that is, a straight line that “just touches” the curve at that point) and
integration (finding the area under a curve) are inverse processes. Newton’s
discovery (1665–1666) started with his interest in infinite sums; however,
he was slow to publish his findings. Leibniz published his discovery of
differential calculus in 1684 and of integral calculus in 1686. He said, “It is
unworthy of excellent men, to lose hours like slaves in the labor of
calculation….My new calculus … offers truth by a kind of analysis and
without any effort of imagination.” Newton was outraged. Debates raged
for many years on how to divide the credit for the discovery of calculus,
and, as a result, progress in calculus was delayed. Newton was the first to
apply calculus to problems in physics, and Leibniz developed much of the
notation seen in modern calculus books.

Today, calculus has invaded every field of scientific endeavor and plays
invaluable roles in biology, physics, chemistry, economics, sociology, and
engineering, and in any field where some quantity, like speed or
temperature, changes. Calculus can be used to help explain the structure of
a rainbow, teach us how to make more money in the stock market, guide a
spacecraft, make weather forecasts, predict population growth, design
buildings, and analyze the spread of diseases. Calculus has caused a
revolution. It has changed the way we look at the world.

SEE ALSO Zeno’s Paradoxes (c. 445 B.C.), Torricelli’s Trumpet (1641), L’Hôpital’s Analysis of the
Infinitely Small (1696), Agnesi’s Instituzioni Analitiche (1748), Laplace’s Théorie Analytique des



Probabilités (1812), and Cauchy’s Le Calcul Infinitésimal (1823).



William Blake’s Newton (1795). Blake, a poet and artist, portrays Isaac Newton
as a kind of divine geometer, gazing at technical diagrams drawn on the ground
as he ponders mathematics and the cosmos.



Newton’s Method
1669

Isaac Newton (1642–1727)

The use of computational techniques based on recurrence relationships, in
which each term of a sequence is defined as a function of the preceding
term, can be traced back to the dawn of mathematics. The Babylonians used
such techniques to compute the square root of a positive number, and the
Greeks to approximate pi. Today, many important special functions of
mathematical physics may be computed by recurrence formulas.

Numerical analysis is often concerned with obtaining approximate
solutions to difficult problems. Newton’s method is one of the most famous
numerical methods for solving equations of the form f(x) = 0, some
solutions of which may be difficult to find using simple algebraic methods.
The problem of finding the zeros, or roots, of a function by these kinds of
methods occurs frequently in science and engineering.

To apply Newton’s method, one starts with a numerical guess for the
solution of the root, and then the function is approximated by its tangent
line, which is a straight line that “just touches” the graph of the function at a
point. After determining the x-intercept of this line, which is often a better
approximation to the nearby root than the initial guess, the method can be
iterated (repeated) to produce successively accurate approximations. The
precise formula for Newton’s method is xn + 1 = xn − f(xn)/f ′(xn), where the
prime symbol (′) indicates the first derivative of the function f.

When the method is applied to functions with complex values, computer
graphics renditions are sometimes used to give an indication of where the
method can be relied upon and where it behaves strangely. The resulting
graphics often reveal chaotic behavior and beautiful fractal patterns.

The mathematical seeds for Newton’s method were described by Isaac
Newton in De analysi per aequationes numero terminorum infinitas (On
Analysis by Equations with an Infinite Number of Terms), written in 1669
and published by William Jones in 1711. In 1740, British mathematician
Thomas Simpson refined the approach and described Newton’s method as
an iterative method for solving general nonlinear equations using calculus.



SEE ALSO Discovery of Calculus (c. 1665), Chaos and the Butterfly Effect (1963), and Fractals
(1975).



Computer graphics can be useful for revealing the intricate behavior of Newton’s
method when applied to finding the complex-number roots of an equation. Paul
Nylander generated this image by employing the method in order to find the
solutions of z5− 1 = 0.



Tautochrone Problem
1673

Christiaan Huygens (1629–1695)

In the 1600s, mathematicians and physicists sought a curve that specified
the shape of a special kind of ramp. In particular, objects are placed on the
ramp, one at a time, and they must slide down to the very bottom, always in
the same amount of time and no matter where they start on the ramp. The
objects are accelerated by gravity, and the ramp is considered to have no
friction.

Dutch mathematician, astronomer, and physicist Christiaan Huygens
discovered a solution in 1673 and published it in his Horologium
oscillatoriumi (The Pendulum Clock). Technically speaking, the
tautochrone is a cycloid—that is, a curve defined by the path of a point on
the edge of a circle as the circle rolls along a straight line. The tautochrone
is also called the brachistochrone when referring to the curve that gives a
frictionless object the fastest rate of descent when the object slides down
from one point to another.

Huygens attempted to use his discovery to design a more accurate
pendulum clock. The clock made use of portions of tautochrone surfaces
near where the string pivoted to ensure that the string followed the optimum
curve no matter where the pendulum started swinging. (Alas, the friction
due to the surfaces introduced significant errors.)

The special property of the tautochrone is mentioned in Moby Dick in a
discussion on a try-pot, a bowl used for rendering blubber to produce oil:
“[The try-pot] is also a place for profound mathematical meditation. It was
in the left-hand try-pot of the Pequod, with the soapstone diligently circling
round me, that I was first indirectly struck by the remarkable fact, that in
geometry all bodies gliding along a cycloid, my soapstone, for example,
will descend from any point in precisely the same time.”

SEE ALSO The Length of Neile’s Semicubical Parabola (1657).



Under the influence of gravity, three balls run along the tautochrone curve
starting from different positions, yet the balls will arrive at the bottom at the
same time. (The balls are placed on the ramp, one at a time.)



Astroid
1674

Ole Christensen Rømer (1644–1710)

The astroid is a curve with four cusps that is traced by a point on a circle
that rolls like a gear along the inside of a larger circle. This larger circle is
four times the diameter of the small circle. The astroid is notable for the
diversity of famous mathematicians who researched its intriguing
properties. The curve was first studied by the Danish astronomer Ole
Rømer in 1674, as a result of his quest for gear teeth with more useful
shapes. Swiss mathematician Johann Bernoulli (1691), German
mathematician Gottfried Leibniz (1715), and French mathematician Jean
d’Alembert (1748) all became fascinated by the curve.

The astroid has the equation x2/3 + y2/3 = R2/3, where R is the radius of the
stationary outer circle, and R/4 is the radius of the inner rolling circle. The
length of the astroid is 6R, and the area is 3πR2/8. Interestingly, its 6R
circumference has no dependence on π, despite the involvement of circles
that are used for generating the astroid.

In 1725, mathematician Daniel Bernoulli discovered that an astroid is
also traced by an inner circle that has 3/4 the diameter of the fixed circle. In
other words, this traces out the same curve as the inner circle with only 1/4
the diameter of the larger one.

In physics, the Stoner-Wohlfarth astroid curve is used to characterize
various proper ties of energy and magnetism. U.S. Patent 4,987,984
describes the use of an astroid for mechanical roller clutches: “The astroid
curve provides the same good dispersal of stresses that the equivalent



circular arc would, but removes less cam race material, giving a stronger
structure.”

Interestingly, tangent lines along the astroid curve, when extended until
they touch the x- and y-axes, all have the same length. You can visualize
this by imagining a ladder leaning at all possible angles against a wall,
which traces out a portion of the astroid curve.

SEE ALSO Cissoid of Diocles (c. 180 B.C.), Cardioid (1637), The Length of Neile’s Semicubical
Parabola (1657), Reuleaux Triangle (1875), and Superegg (c. 1965).



Artistic depiction of an astroid as the “envelope” of a family of ellipses. (In
geometry, an envelope of a family of curves is a curve that is tangent to each
member of the family at some point.)



L’Hôpital’s Analysis of the Infinitely Small
1696

Guillaume François Antoine, Marquis de l’Hôpital (1661–1704)

In 1696, French mathematician Marquis de l’Hôpital published Europe’s
first calculus textbook, Analyse des infiniment petits, pour l’intelligence des
lignes courbes (Analysis of the Infinitely Small, for the Understanding of
Curves). He intended the book to be a vehicle to promote understanding of
the techniques of the differential calculus. Calculus had been invented a few
years earlier by Isaac Newton and Gottfried Leibniz and refined by the
Bernoulli brothers, mathematicians Jacob and Johann. Keith Devlin writes,
“In fact, until the appearance of l’Hôpital’s book, Newton, Leibniz, and the
two Bernoullis were pretty well the only people on the face of the earth who
knew much about calculus.”

In the early 1690s, l’Hôpital hired Johann Bernoulli to teach him
calculus. L’Hôpital was so intrigued by calculus that he learned quickly, and
soon consolidated his knowledge into his comprehensive textbook. Rouse
Ball writes of l’Hôpital’s book, “the credit of putting together the first
treatise which explained the principles and use of the method is due to
l’Hôpital….This work had a wide circulation; it brought the differential
notation into general use in France, and helped make it known in Europe.”

Aside from his textbook, l’Hôpital is known for the rule of calculus,
included in his book, for calculating the limiting value of a fraction whose
numerator and denominator either both approach zero or both approach
infinity. He initially had planned a military career, but poor eyesight caused
him to switch to mathematics.

Today, we know that l’Hôpital, in 1694, paid Bernoulli 300 francs a year
to tell him of his discoveries, which l’Hôpital described in his book. In
1704, after l’Hôpital’s death, Bernoulli began to speak of the deal and
claimed that many of the results in Analysis of the Infinitely Small were due
to him.

SEE ALSO Discovery of Calculus (c. 1665), Agnesi’s Instituzioni Analitiche (1748), and Cauchy’s
Le Calcul Infinitésimal (1823).





Frontispiece for Europe’s first calculus textbook: Analyse des infiniment petits,
pour l’intelligence des lignes courbes (Analysis of the Infinitely Small, for the
Understanding of Curves).



Rope around the Earth Puzzle
1702

William Whiston (1667–1752)

Although this puzzle is not a mathematical milestone on par with most of
the others in this book, this little gem from 1702 is worthy of mention
simply because it has intrigued schoolchildren and adults for more than two
centuries and is a metaphor for how simple mathematics may help analysts
reason beyond the limits of their own intuition.

Imagine that you are given a rope that tightly encircles the equator of a
basketball. How much longer would you have to make the rope so that it is
one foot from the surface of the basketball at all points? What is your
guess?

Next, imagine that we have the rope around the equator of a sphere the
size of the Earth, which would make the rope around 25,000 miles long!
How much longer would you now have to make the rope so that it is one
foot off the ground all the way around the equator?

The answer, which is a surprise to most people, is 2π or approximately
6.28 feet for both the basketball and the Earth—only about the length of an
adult man. If R is the radius of the Earth, and 1 + R is the radius, in feet, of
the enlarged circle, we can compare the rope circumference before (2πR)
and after 2π(1 + R), which shows that the difference is 2π feet, independent
of the radius of either the Earth or the basketball.

A puzzle very similar to this appeared in William Whiston’s The
Elements of Euclid, a book written in 1702 for students. Whiston—an
English theologian, historian, and mathematician—was probably most
famous for his A New Theory of the Earth from its Original to the
Consummation of All Things (1696), in which he suggests that Noah’s
Flood was caused by a comet.

SEE ALSO Euclid’s Elements (300 B.C.), π (c 250 B.C.), and Wheat on a Chessboard (1256).



A rope or metal band is tightly wrapped around an Earth-size sphere at the
equator (or along another great circle). How much longer would the band be if it
were enlarged and now one foot off the ground all the way around?



Law of Large Numbers
1713

Jacob Bernoulli (1654–1705)

In 1713, Swiss mathematician Jacob Bernoulli’s proof of his Law of Large
Numbers LLN) was presented in a posthumous publication, Ars
Conjectandi (The Art of Conjecturing). The LLN is a theorem in probability
that describes the long-term stability of a random variable. For example,
when the number of observations of an experiment such as the tossing of a
coin) is sufficiently large, then the proportion of an outcome such as the
occurrence of heads) will be close to the probability of the outcome, for
example 0.5. Stated more formally, given a sequence of independent and
identically distributed random variables with a finite population mean and
variance, the average of these observations will approach the theoretical
population mean.

Imagine you are tossing a standard six-sided die. We expect the mean of
the values obtained by tossing to be the average, or 3.5. Imagine that your
first three tosses happen to be 1, 2, and 6, giving a mean of 3. With more
tosses, the value of the average eventually settles to the expected value of
3.5. Casino operators love the LLN because they can count on stable results
in the long run and can plan accordingly. Insurers rely on the LLN to cope
with and plan for variations in losses.

In Ars Conjectandi, Bernoulli estimates the proportion of white balls in
an urn filled with an unknown number of black and white balls. By drawing
balls from the urn and “randomly” replacing a ball after each draw, he
estimates the proportion of white balls by the proportion of balls drawn that
are white. By doing this enough times, he obtains any desired accuracy for
the estimate. Bernoulli writes, “If observations of all events were to be
continued throughout all eternity (and, hence, the ultimate probability
would tend toward perfect certainty), everything in the world would be
perceived to happen in fixed ratios….Even in the most accidental…
occurrences, we would be bound to recognize…a certain fate.”

SEE ALSO Dice (c. 3000 B.C.), Normal Distribution Curve (1733), St. Petersburg Paradox (1738),
Bayes’ Theorem (1761), Buffon’s Needle (1777), Laplace’s Théorie Analytique des Probabilités



(1812), Benford’s Law (1881), and Chi-Square (1900).



Swiss commemorative stamp of mathematician Jacob Bernoulli, issued in 1994.
The stamp features both a graph and a formula related to his Law of Large
Numbers.



Euler’s Number, e
1727

Leonhard Paul Euler (1707–1783)

British science writer David Darling writes that the number e is “possibly
the most important number in mathematics. Although pi is more familiar to
the layperson, e is far more significant and ubiquitous in the higher reaches
of the subject.”

The number e, which is approximately equal to 2.71828, can be
calculated in many ways. For example, it is the limit value of the expression
(1 + 1/n) raised to the nth power, when n increases indefinitely. Although
mathematicians like Jacob Bernoulli and Gottfried Leibniz were aware of
the constant, Swiss mathematician Leonhard Euler was among the first to
extensively study the number, and he was the first to use the symbol e in
letters written in 1727. In 1737, he showed that e is irrational—that is, it
cannot be expressed as a ratio of two integers. In 1748, he calculated 18 of
its digits, and today more than 100,000,000,000 digits of e are known.

e is used in diverse areas, such as in the formula for the catenary shape of
a hanging rope supported at its two ends, in the calculation of compound
interest, and in numerous applications in probability and statistics. It also
appears in one of the most amazing mathematical relationships ever
discovered, eiπ + 1 = 0, which unites the five most important symbols of
mathematics: 1, 0, π, e, and i (the square root of minus one). Harvard
mathematician Benjamin Pierce said that “we cannot understand [the
formula], and we don’t know what it means, but we have proved it, and
therefore we know it must be the truth.” Several surveys among
mathematicians have placed this formula at the top of the list for the most
beautiful formula in mathematics. Kasner and Newman note, “We can only
reproduce the equation and not stop to inquire into its implications. It
appeals equally to the mystic, the scientist, and the mathematician.”

SEE ALSO π (c. 250 B.C.), Imaginary Numbers (1572), Euler-Mascheroni Constant (1735),
Transcendental Numbers (1844), and Normal Number (1909).



The St. Louis Gateway Arch is in the shape of an upside-down catenary. A
catenary can be described by the formula y = (a/2)·(ex/a + e−x/a). The Gateway
Arch is the world’s tallest monument, with a height of 630 feet (192 meters).



Stirling’s Formula
1730

James Stirling (1692–1770)

These days, factorials are everywhere in mathematics. For non-negative
integers n, “n factorial” (written as n!), is the product of all positive integers
less than or equal to n. For example, 4! = 1 × 2 × 3 × 4 = 24. The notation
n! was introduced by French mathematician Christian Kramp in 1808.
Factorials are important in combinatorics, for example, when determining
the number of different ways of arranging objects in a sequence. They also
occur in number theory, probability, and calculus.

Because factorial values grow so large (for example, 70! is greater than
10100, and 25,206! is greater than 10100,000), convenient methods for
approximating large factorials are extremely useful. Stirling’s formula, n! ≈
(2π)1/2e−nnn+1/2, provides an accurate estimate for n factorial. Here, the ≈
symbol means “approximately equal to,” and e and π are the mathematical
constants e ≈ 2.71828 and π ≈ 3.14159. For large values of n, this
expression results in an even simpler-looking approximation, ln(n!) ≈ nln(n)
− n, which can also be written as n! ≈ nn e−n.

In 1730, Scottish mathematician James Stirling presented his
approximation for the value of n! in his most important work, Methodus
Differentialis. Stirling began his career in mathematics amidst political and
religious conflicts. He was friends with Newton, but devoted most of his
life after 1735 to industrial management.

Keith Ball writes, “To my mind, this is one of the quintessential
discoveries of eighteenth-century mathematics. A formula like this gives us
some idea of the astonishing transformation of mathematics that took place
in the seventeenth and eighteenth centuries. Logarithms were not invented
until about 1600. Newton’s Principia, setting out the principles of calculus,
appeared 90 years later. Within another 90 years, mathematicians were
producing formulae like Stirling’s formula of a subtlety that would have
been unimaginable without a formalization of the calculus. Mathematics
was no longer a game for amateurs—it had become a job for professionals.”



SEE ALSO Logarithms (1614), Pigeonhole Principle (1834), Transcendental Numbers (1844), and
Ramsey Theory (1928).



Stirling’s formula, surrounded by precisely 4!, or 24, beetles.



Normal Distribution Curve
1733

Abraham de Moivre (1667–1754), Johann Carl Friedrich Gauss (1777–
1855), Pierre-Simon Laplace (1749–1827)

In 1733, French mathematician Abraham de Moivre was the first to
describe the normal distribution curve, or law of errors, in Approximatio ad
summam terminorum binomii (a+b)n in seriem expansi (“Approximation to
the Sum of the Terms of a Binomial (a+b)n Expanded as a Series”).
Throughout his life, de Moivre remained poor and earned money on the
side by playing chess in coffeehouses.

The normal distribution—also called the Gaussian distribution, in honor
of Carl Friedrich Gauss, who studied the curve years later—represents an
important family of continuous probability distributions that are applied in
countless fields in which observations are made. These fields include
studies of population demographics, health statistics, astronomical
measurements, heredity, intelligence, insurance statistics, and any fields in
which variation exists in experimental data and observed characteristics. In
fact, early in the eighteenth century, mathematicians began to realize that a
vast number of different measurements tended to show a similar form of
scattering or distribution.

The normal distribution is defined by two key parameters, the mean (or
average) and the standard deviation, which quantifies the spread or
variability of the data. The normal distribution, when graphed, is often
called the bell curve because of its symmetric bell-like shape with values
more concentrated in the middle than in the tails at the sides of the curve.

De Moivre researched the normal distribution during his studies of
approximations to the binomial distribution, which arises, for example, in
coin toss experiments. Pierre-Simon Laplace used the distribution in 1783
to study measurement errors. Gauss applied it in 1809 to study astronomical
data.

The anthropologist Sir Francis Galton wrote of the normal distribution, “I
know of scarcely anything so apt to impress the imagination as the
wonderful form of cosmic order expressed by the ‘Law of Frequency of



Error.’ The law would have been personified by the Greeks and deified, if
they had known of it. It reigns with serenity and in complete self-
effacement amidst the wildest confusion.”

SEE ALSO Omar Khayyam’s Treatise (1070), Pascal’s Triangle (1654), Law of Large Numbers
(1713), Buffon’s Needle (1777), Laplace’s Théorie Analytique des Probabilités (1812), and Chi-
Square (1900).



A deutsche mark banknote featuring Carl Friedrich Gauss and a graph and
formula of the normal probability function.



Euler-Mascheroni Constant
1735

Leonhard Paul Euler (1707–1783), Lorenzo Mascheroni (1750–1800)

The Euler-Mascheroni constant, denoted by the Greek letter γ, has a
numerical value of 0.5772157….This number links the exponentials and
logarithms to number theory, and it is defined by the limit of (1 + 1/2 + 1/3
+…+ 1/n − log n) as n approaches infinity. The reach of γ is far and wide, as
it plays roles in such diverse areas as infinite series, products, probability,
and definite integral representations. For example, the average number of
divisors of all numbers from 1 to n is very close to ln n + 2γ − 1.

Calculating γ has not attracted the same public interest as calculating π,
but γ has still inspired many ardent devotees. While we presently know π to
1,241,100,000,000 decimal places, in 2008, only about 10,000,000,000
places of γ were known. The evaluation of γ is considerably more difficult
than π. Here are the first few digits:

0.5772156649015328606065120
9008240243104215933593992.…

This mathematical constant has a long and fascinating history, just as do
other famous constants like π and e. Swiss mathematician Leonhard Euler
discussed γ in a paper, “De Progressionibus harmonicis observationes”
(“Observations about Harmonic Progressions”), published in 1735, but he
was only able to calculate it to six decimal places at the time. In 1790,
Italian mathematician and priest Lorenzo Mascheroni computed additional
digits. Today, we don’t know if the number can be expressed as a fraction
(in the way that a number like 0.1428571428571…can be expressed as 1/7).
Julian Havil, who devoted an entire book to γ, tells of stories in which the
English mathematician G. H. Hardy offered to give up his Savilian Chair at
Oxford to anyone who proved γ could not be expressed as a fraction.

SEE ALSO π (c. 250 B.C.), Discovery of Series Formula for π (c. 1500), and Euler’s Number, e
(1727).



A 1737 portrait of Leonhard Euler by Johann Georg Brucker.



Königsberg Bridges
1736

Leonhard Paul Euler (1707–1783)

Graph theory is an area of mathematics that concerns how objects are
connected and often simplifies problems by representing them as dots
connected by lines. One of the oldest problems in graph theory involves the
seven Königsberg bridges of Germany (now part of Russia). People in old
Königsberg loved to take walks along the river, bridges, and islands. In the
early 1700s, people still wondered if it was possible to take a journey across
all seven bridges without having to cross any bridge more than once, and
return to the starting location. Finally, in 1736, Swiss mathematician
Leonhard Euler proved that such a tour was impossible.

Euler represented the bridges by a graph in which land areas are
represented by dots and bridges by lines. He showed that one could traverse
such a graph by going through every segment just once only if the graph
had fewer than three vertices of odd valence. (The valence of a vertex is the
number of lines that start or stop at the vertex.) The Königsberg bridges did
not have the proper graph characteristics; thus, it is not possible to traverse
the graph without going through a line more than once. Euler generalized
his findings to journeys on any network of bridges.

The Königsberg bridge problem is important in the history of
mathematics because Euler’s solution corresponds to the first theorem in
graph theory. Today, graph theory is used in countless fields, from the study
of chemical pathways and car traffic flow to the social networks of Internet
users. Graph theory can even explain how sexually transmitted diseases
spread. Euler’s very simple representations of the bridges’ connectivity,
without regard to the specifics of bridge lengths, was a forerunner of
topology, the mathematical field concerned with shapes and their
relationships to one another.



One possible route through four of the seven Königsberg bridges.

SEE ALSO Euler’s Formula for Polyhedra (1751), Icosian Game (1857), The Möbius Strip (1858),
Poincaré Conjecture (1904), Jordan Curve Theorem (1905), and Sprouts (1967).



Matt Britt’s partial map of the Internet. The lengths of the lines are indicative of
the delay between two nodes. Colors indicate node type—for example,
commercial, government, military, or educational.



St. Petersburg Paradox
1738

Daniel Bernoulli (1700–1782)

Daniel Bernoulli, the Dutch-born Swiss mathematician, physicist, and
medical doctor, wrote a fascinating paper on probability, which was finally
published in 1738 in Commentaries of the Imperial Academy of Science of
Saint Petersburg. The paper described a paradox now known as the St.
Petersburg paradox, and it can be expressed in terms of coin flips and
money that a gambler is to receive, depending on the outcome of the flips.
Philosophers and mathematicians have long discussed what the fair price
should be for joining the game. How much would you be ready to pay for
joining this activity?

Here’s one way to view the St. Petersburg scenario. Flip a penny until it
lands tails. The total number of flips, n, determines the prize, which equals
$2n. Thus, if the penny lands on tails the first time, the prize is $21 = $2,
and the game ends. If the penny comes up heads the first time, it is flipped
again. If it comes up tails the second time, the prize is $22 = $4, and the
game ends. And so on. A detailed discussion of the paradox of this game is
beyond the scope of this book, but, according to game theory, a “rational
gambler” would enter a game if and only if the price of entry was less than
the expected value of the financial payoff. In some analyses of the St.
Petersburg game, any finite price of entry is smaller than the expected value
of the game, and a rational gambler might desire to play the game no matter
how large we set a finite entry price!

Peter Bernstein comments on the profundity of Bernoulli’s paradox: “His
paper is one of the most profound documents ever written, not just on the
subject of risk but on human behavior as well. Bernoulli’s emphasis on the
complex relationships between measurement and gut touches on almost
every aspect of life.”

SEE ALSO Zeno’s Paradoxes (c. 445 B.C.), Aristotle’s Wheel Paradox (c. 320 B.C.), Law of Large
Numbers (1713), Barber Paradox (1901), Banach-Tarski Paradox (1924), Hilbert’s Grand Hotel
(1925), Birthday Paradox (1939), Coastline Paradox (c. 1950), Newcomb’s Paradox (1960), and
Parrondo’s Paradox (1999).



Since the 1730s, philosophers and mathematicians have pondered the St.
Petersburg paradox. According to some analyses, a player may be expected to
win an unlimited amount of money, but how much would you really pay for
joining this game?



Goldbach Conjecture
1742

Christian Goldbach (1690–1764), Leonhard Paul Euler (1707–1783)

Sometimes the most challenging problems in mathematics are among the
easiest and simplest to state. In 1742, Prussian historian and mathematician
Christian Goldbach conjectured that every integer greater than 5 can be
written as the sum of three prime numbers, such as 21 = 11 + 7 + 3. (A
prime number is a number larger than 1, such as 5 or 13, that is divisible
only by itself or 1.) As re-expressed by Swiss mathematician Leonhard
Euler, an equivalent conjecture (called the “strong” Goldbach conjecture)
asserts that all positive even integers greater than 2 can be expressed as the
sum of two primes. In order to promote the novel Uncle Petros and
Goldbach’s Conjecture, publishing giant Faber and Faber offered a
$1,000,000 prize to anyone who proved Goldbach’s conjecture between
March 20, 2000, and March 20, 2002, but the prize went unclaimed, and the
conjecture remains open. In 2008, Tomás Oliveira e Silva, a researcher at
the University of Aveiro, Portugal, ran a distributed computer search that
has verified the conjecture up to 12 · 1017.

Of course, no amount of computing power can confirm the conjecture for
every number; thus, mathematicians hope for an actual proof that
Goldbach’s intuition was right. In 1966, Chen Jing-Run, a Chinese
mathematician, made some progress when he proved that every sufficiently
large even number is the sum of one prime, plus a number that is the
product of at most two primes. So, for example, 18 is equal to 3 + (3 × 5).
In 1995, French mathematician Olivier Ramaré showed that every even
number greater than or equal to 4 is the sum of at most six primes.

SEE ALSO Cicada-Generated Prime Numbers (c. 1 Million B.C.), Sieve of Eratosthenes (c. 240
B.C.), Constructing a Regular Heptadecagon (1796), Gauss’s Disquisitiones Arithmeticae (1801),
Riemann Hypothesis (1859), Proof of the Prime Number Theorem (1896), Brun’s Constant (1919),
Gilbreath’s Conjecture (1958), Ulam Spiral (1963), Erdös and Extreme Collaboration (1971), Public-
Key Cryptography (1977), and Andrica’s Conjecture (1985).



Goldbach’s comet illustrates the number of ways (x-axis) to write an even
number n (y-axis) as the sum of two primes (4 ≤ n ≤ 1,000,000). The star at



bottom left is at 0,0. The x-axis goes from 0 to approximately 15,000.



Agnesi’s Instituzioni Analitiche
1748

Maria Gaetana Agnesi (1718–1799)

Italian mathematician Maria Agnesi is the author of Instituzioni analitiche
(Analytical Institutions), the first comprehensive textbook that covered both
differential and integral calculus, and the first surviving mathematical work
written by a woman. Dutch mathematician Dirk Jan Struik referred to
Agnesi as “the first important woman mathematician since Hypatia (A.D.
fifth century).”

Agnesi was a child prodigy, speaking at least seven languages by age 13.
For much of her life, she avoided social interactions and devoted herself
entirely to the study of mathematics and religion. Clifford Truesdell writes,
“She did ask her father’s permission to become a nun. Horrified that his
dearest child should desire to leave him, he begged her to change her
mind.” She agreed to continue living with her father so long as she could
live in relative seclusion.

The publication of Instituzioni analitiche caused a sensation in the
academic world. The committee of the Académie des Sciences in Paris
wrote, “It took much skill and sagacity to reduce … to almost uniform
methods these discoveries scattered among the works of modern
mathematicians and often presented by methods very different from each
other. Order, clarity, and precision reign in all parts of this work….We
regard it as the most complete and best made treatise.” The book also
includes a discussion of the cubic curve now known as the Witch of Agnesi
and expressed as y = 8a3/(x2 + 4a2).

The president of the Academy of Bologna invited Agnesi to accept the
Chair of Mathematics at the University of Bologna. According to some
accounts, she never actually went to Bologna because, by this time, she was
devoting herself entirely to religion and charitable work. Nonetheless, this
made her the second woman to be appointed professor at a university; the
first was Laura Bassi (1711–1778). Agnesi spent all her money on helping
the poor, and she died in total poverty in a poorhouse.



SEE ALSO The Death of Hypatia (415), Discovery of Calculus (c. 1665), L’Hôpital’s Analysis of the
Infinitely Small (1696), and The Doctorate of Kovalevskaya (1874).





Frontispiece from Instituzioni analitiche (Analytical Institutions), the first
comprehensive textbook that covers both differential and integral calculus, and
the first surviving mathematical work written by a woman.



Euler’s Formula for Polyhedra
1751

Leonhard Paul Euler (1707–1783), René Descartes (1596–1650), Paul
Erdös (1913–1996)

Euler’s formula for polyhedra is considered to be one of the most beautiful
formulas in all of mathematics and one of the first great formulas of
topology—the study of shapes and their interrelationships. A survey
conducted of Mathematical Intelligencer readers ranked the formula as the
second most beautiful formula in history, second to Euler’s eiπ + 1 = 0,
discussed in the entry Euler’s Number, e (1727).

In 1751, Swiss mathematician and physicist Leonhard Euler discovered
that any convex polyhedron (an object with flat faces and straight edges),
with V vertices, E edges, and F faces, satisfies the equation V − E + F = 2.
A polyhedron is convex if it has no indentations or holes, or more formally,
if every line segment connecting interior points is entirely contained within
the interior of the figure.

For example, the surface of a cube has six faces, twelve edges, and eight
vertices. Plugging these values into Euler’s formula, we obtain 8 − 12 + 6 =
2. For a dodecahedron with its 12 faces, we have 20 − 30 + 12 = 2.
Interestingly, around 1639, René Descartes discovered a related polyhedral
formula that may be converted to Euler’s formula through several
mathematical steps.

The polyhedron formula was later generalized to the study of networks
and graphs, and to help mathematicians understand a wide range of shapes
with holes and in higher dimensions. The formula also facilitates many
practical applications such as helping computer specialists find ways to
arrange wire paths in electrical circuits and cosmologists ponder models for
the shape of our universe.

Euler is second only to Hungarian Paul Erdös as the most prolific
mathematician in history in terms of number of publications. Sadly, Euler
went blind toward the end of his life. However, British science writer David
Darling notes, “the quantity of his output seemed to be inversely



proportional to the quality of his sight, because his rate of publication
increased after he became almost totally blind in 1766.”

SEE ALSO Platonic Solids (c. 350 B.C.), Archimedean Semi-Regular Polyhedra (c. 240 B.C.),
Euler’s Number, e (1727), Königsberg Bridges (1736), Icosian Game (1857), Pick’s Theorem (1899),
Geodesic Dome (1922), Császár Polyhedron (1949), Erdös and Extreme Collaboration (1971),
Szilassi Polyhedron (1977), Spidrons (1979), and Solving of the Holyhedron (1999).



Non-convex polyhedra, such as this small stellated dodecahedron by Teja
Krašek, can have Euler characteristics other than 2, where the characteristic is
equal to V − E + F. Here, F = 12, E = 30, and V = 12, so that the characteristic
is −6.



Euler’s Polygon Division Problem
1751

Leonhard Paul Euler (1707–1783)

In 1751, Swiss mathematician Leonhard Paul Euler posed the following
problem to Prussian mathematician Christian Goldbach (1690–1764): In
how many ways En can a planar convex polygon of n sides be divided into
triangles by diagonals? Or, stated more informally: How many ways can
you divide a polygonal pie into triangles, starting your straight, downward
knife cuts at one corner and ending at another? Your cuts can’t intersect one
another. The formula Euler found was this:

A polygon is convex if, for every pair of points that belong to the shape,
the shape contains the entire straight line segment connecting the two
points. Author and mathematician Heinrich Dörrie writes, “This problem is
of the greatest interest because it involves many difficulties in spite of its
innocuous appearance, as many a surprised reader will discover….Euler
himself said, ‘The process of induction I employed was quite laborious.’”

For example, for a square, we have E4 = 2, which corresponds to the two
diagonals. For a pentagon, we have E5 = 5. In fact, earlier experimenters
were inclined to use graphic representations to get a feel for the solution,
but this visual approach soon becomes intractable as the number of polygon
sides grows. By the time we get to a 9-sided polygon, we have 429 ways to
divide the polygon into triangles by diagonals.

The polygon division problem has attracted much attention. In 1758,
Carpatho-German mathematician Johann Andreas Segner (1704–1777)
developed a recurrence formula for determining the values: En = E2En−1 +
E3En−2 +…+ En−1E2. A recurrence formula is one in which each term of the
sequence is defined as a function of the preceding terms.



Interestingly, the values of En are intimately tied to another class of
numbers called Catalan numbers (En = Cn−1). Catalan numbers arise in
combinatorics, the field of mathematics concerned with problems of
selection, arrangement, and operation within a finite or discrete system.

SEE ALSO Archimedes: Sand, Cattle & Stomachion (c. 250 B.C.), Goldbach Conjecture (1742),
Morley’s Trisector Theorem (1899), and Ramsey Theory (1928).



A regular pentagon can be divided by diagonals into triangles in five different
ways.



Knight’s Tours
1759

Abraham de Moivre (1667–1754), Leonhard Paul Euler (1707–1783),
Adrien-Marie Legendre (1752–1833)

To create a Knight’s Tour, a chess knight must jump exactly once to every
square on the 8 × 8 chessboard in a complete tour. Various kinds of Knight’s
Tours have fascinated mathematicians for centuries. The earliest recorded
solution was provided by Abraham de Moivre, the French mathematician
better known for the normal distribution curve and his theorems about
complex numbers. In his solution, the knight ends its tour on a square that is
far away from its starting position. The French mathematician Adrien-
Marie Legendre “improved” on this and found a solution in which the first
and last squares are a single move apart so that the tour closes up on itself
into a single loop of 64 knight moves. Such a tour is said to be reentrant.
The Swiss mathematician Leonhard Euler found a reentrant tour that visits
two halves of the board in turn.

Euler was the first to write a mathematical paper analyzing Knight’s
Tours. He presented the paper to the Academy of Sciences at Berlin in
1759, but this influential paper was not published until 1766. Interestingly,
in 1759, the Academy proposed a prize of 4,000 francs for the best memoir
on the Knight’s Tour, but the prize was never awarded, perhaps because
Euler was the Director of Mathematics at the Berlin Academy and ineligible
for the prize.

My favorite Knight’s Tour is one over the six surfaces of a cube, each
surface being a chessboard. Henry E. Dudeney presented the cube tour in
his book Amusement in Mathematics, and I believe he based the solution (in
which each face is toured in turn) on the earlier work of French
mathematician Alexandre-Théophile Vandermonde (1735–1796). The
properties of Knight’s Tours have since been carefully studied on
checkerboards on the surfaces of a cylinder, Möbius Strip, torus, and Klein
Bottle, and even in higher dimensions.

SEE ALSO The Möbius Strip (1858), Klein Bottle (1882), and Peano Curve (1890).



Knight’s Tour path on a 30 × 30 chessboard, discovered by computer scientist
Dmitry Brant using a neural network consisting of an interconnected group of
artificial neurons that work together to produce the solution.



Bayes’ Theorem
1761

Thomas Bayes (c. 1702–1761)

Bayes’ theorem, formulated by British mathematician and Presbyterian
minister Thomas Bayes, plays a fundamental role in science and can be
stated by a simple mathematical formula used for calculating conditional
probabilities. Conditional probability refers to the probability of some event
A, given the occurrence of some other event B, written as P(A|B). Bayes’
theorem states: P(A|B) = [P(B|A) × P(A)]/P(B). Here, P(A) is called the
prior probability of A because it is the probability of event A without taking
into account anything we know about B. P(B|A) is the conditional
probability of B given A. P(B) is the prior probability of B.

Imagine we have two boxes. Box 1 has 10 golf balls and 30 billiard balls.
Box 2 has 20 of each. You select a box at random and pull out a ball. We
assume that the balls are equally likely to be selected. Your ball turns out to
be a billiard ball. How probable is it that you chose Box 1? In other words,
what is the probability that you chose Box 1, given that you have a billiard
ball in your hand?

Event A corresponds to your picking Box 1. Event B is your picking a
billiard ball. We want to compute P(A|B). P(A) is 0.5, or 50 percent. P(B) is
the probability of picking a billiard ball regardless of any information on
the boxes. It is computed as the sum of the probability of getting a billiard
ball from a box multiplied by the probability of selecting a box. The
probability of picking a billiard ball from Box 1 is 0.75. The probability of
picking one from Box 2 is 0.5. The probability of getting a billiard ball
overall is 0.75 × 0.5 + 0.5 × 0.5 = 0.625. P(B|A), or the probability of
getting a billiard ball given that you selected Box 1, is 0.75. We can use
Bayes’ formula to find that the probability of your having chosen Box 1,
which is P(A|B) = 0.6.

SEE ALSO Law of Large Numbers (1713) and Laplace’s Théorie Analytique des Probabilités
(1812).



Box 1 (upper box) and Box 2 (lower box) are shown here. You select a box at
random and withdraw a billiard ball. How probable it is that you choose the
upper box?



Franklin Magic Square
1769

Benjamin Franklin (1706–1790)

Benjamin Franklin was a scientist, inventor, statesman, printer, philosopher,
musician, and economist. In 1769, in a letter to a colleague, he describes a
Magic Square he had created earlier in his life.

His 8 × 8 magic square is filled with wondrous symmetries, some of
which Ben Franklin was probably not aware. Each row and column of the
square has a sum of 260. Half of each row or column sums to half of 260. In
addition, each of the bent rows has the sum 260. See the gray highlighted
squares for two examples of bent rows. See the squares with thick black
borders for an example of a broken bent row (14 + 61 + 64 + 15 + 18 + 33 +
36 + 19), which also sums to 260. Numerous other symmetries can be found
—for example, the four corner numbers and the four middle numbers sum
to 260. The sum of the numbers in any 2 × 2 subsquare is 130, and the sum
of any four numbers that are arranged equidistant from the center of the
square also equals 130. When converted to binary numbers, even more
startling symmetries are found. Alas, despite all the marvelous symmetries,
the main diagonals don’t each sum to 260, so this cannot strictly qualify as
a magic square according to the common definition that includes the
diagonal sums.

We do not know what method Franklin used to construct his squares.
Many people have tried to crack the secret, but until the 1990s no quick



recipe could be found, although Franklin claimed he could generate the
squares “as fast as he could write.” In 1991, author Lalbhai Patel invented a
method to construct the Franklin squares. Although the method seems quite
long, Patel has trained himself to quickly carry out the procedure. So many
wonderful patterns have been found in Franklin’s magic square that this
square has become a metaphor for mathematical objects that contain
symmetries and other properties that continue to be discovered long after
the inventor’s death.

SEE ALSO Magic Squares (c. 2200 B.C.) and Perfect Magic Tesseract (1999).



Portrait of Benjamin Franklin (1767) by artist David Martin (1737–1797).



Minimal Surface
1774

Leonhard Paul Euler (1707–1783), Jean Meusnier (1754–1793),
Heinrich Ferdinand Scherk (1798–1885)

Imagine withdrawing a flat wire ring from soapy water. Because the ring
contains a disk-shaped soap film that has less area than other shapes that
hypothetically may have formed, mathematicians call the surface a minimal
surface. More formally, a finite minimal surface is often characterized as
having the smallest possible area bounded by a given closed curve or
curves. The mean curvature of the surface is zero. The mathematician’s
quest for minimal surfaces and proofs of their minimality has lasted for
more than two centuries. Minimal surfaces with bounding curves that twist
into the third dimensions can be both beautiful and complicated.

In 1744, Swiss mathematician Leonhard Euler discovered the catenoid,
the first example of a minimal surface beyond mere trivial examples like
circular areas. In 1776, French geometer Jean Meusnier discovered the
helicoid minimal surface. (Meusnier was also a military general and
designer of the first propeller-driven, elliptically shaped balloon for
carrying people.)

Another minimal surface wasn’t found until 1873 by German
mathematician Heinrich Scherk. The same year, the Belgian physicist
Joseph Plateau performed experiments that led him to conjecture that soap
films always form minimal surfaces. “Plateau’s problem” deals with the
mathematics required to prove this to be true. (Plateau went blind as a result
of staring into the sun for 25 seconds in an experiment dealing with vision
physiology.) More recent examples include Costa’s minimal surface, which
was first described mathematically in 1982 by Brazilian mathematician
Celso Costa.

Computers and computer graphics now play a significant role in helping
mathematicians construct and visualize minimal surfaces, some of which
can be quite complicated. Minimal surfaces may one day have numerous
applications in materials science and nanotechnology. For example, certain
polymers, when mixed, form interfaces that are minimal surfaces.



Knowledge of the interface shapes may help scientists predict the chemical
properties of such mixtures.

SEE ALSO Torricelli’s Trumpet (1641), Beltrami’s Pseudosphere (1868), and Boy’s Surface (1901).



A version of Enneper’s surface, an example of a minimal surface rendered by
Paul Nylander. The surface was discovered around 1863 by German
mathematician Alfred Enneper (1830–1885).



Buffon’s Needle
1777

Georges-Louis Leclerc, Comte de Buffon (1707–1788)

Named after a district in Monaco famous for its many casinos, Monte Carlo
methods play critical roles in mathematics and science, and make use of
randomness in order to solve problems ranging from the statistics of nuclear
chain reactions to the regulation of traffic flows.

One of the earliest and most famous uses of the method occurred in the
eighteenth century when French naturalist and mathematician Comte de
Buffon showed that by dropping a needle repeatedly onto a lined sheet of
paper, and counting the number of times the needle touched a line, he could
obtain an estimate for the value of the mathematical constant pi (π =
3.1415…). In the simplest case, imagine dropping a toothpick onto a
hardwood floor with spacing between the floor lines equal to the toothpick
length. To approximate pi from the toothpick drops, simply consider the
number of drops and multiply it by 2, and then divide by the number of
times the toothpick touched a line.

Buffon was a man of many talents. His 36-volume Histoire naturelle,
générale et particulière (Natural History: General and Particular) includes
everything known about the natural world and influenced Charles Darwin
and the theory of evolution.

Today, powerful computers can generate huge quantities of
pseudorandom numbers per second and allow scientists to take full
advantage of Monte Carlo methods in order to understand problems in
economics, physics, chemistry, protein structure prediction, galactic
formation, artificial intelligence, cancer therapy, stock forecasting, oil-well
exploration, the design of aerodynamic shapes, and problems in pure
mathematics for which no other methods are available.

In modern times, the Monte Carlo approach was brought to world
attention by mathematicians and physicists such as Stanislaw Ulam, John
von Neumann, Nicholas Metropolis, and Enrico Fermi. Fermi used the
approach to study properties of the neutron. Monte Carlo methods were



crucial to the simulations required for the Manhattan Project, America’s
program to develop an atomic bomb during World War II.

SEE ALSO Dice (c. 3000 B.C.), π (c. 250 B.C.), Law of Large Numbers (1713), Normal
Distribution Curve (1733), Laplace’s Théorie Analytique des Probabilités (1812), The Rise of
Randomizing Machines (1938), Von Neumann’s Middle-Square Randomizer (1946), and Ball
Triangle Picking (1982).



Portrait of Georges-Louis Leclerc, Comte de Buffon, by François-Hubert
Drouais (1727–1775).



Thirty-Six Officers Problem
1779

Leonhard Paul Euler (1707–1783), Gaston Tarry (1843–1913)

Consider six army regiments, each consisting of six officers of different
ranks. In 1779, Leonhard Euler asked if it was possible to arrange these 36
officers in a 6 × 6 square array so that each of six ranks and each of six
regiments are represented once in each row and column. In the language of
mathematics, this problem is equivalent to finding two mutually orthogonal
Latin squares of order six. Euler correctly conjectured that there was no
solution, and French mathematician Gaston Tarry proved this in 1901.
Through the centuries, the problem had led to significant work in
combinatorics, the area of mathematics concerned with the selection and
arrangement of objects. Latin squares also play a role in error-correcting
codes and communications.

A Latin square consists of n sets of numbers, 1 to n, arranged in such a
way that no row or column contains the same two numbers. The numbers of
Latin squares starting with order n = 1 are 1, 2, 12, 576, 161,280,
812,851,200, 61,479,419,904,000, 108,776,032,459,082,956,800, and so
forth.

A pair of Latin squares is said to be orthogonal if the n2 pairs formed by
juxtaposing the two arrays are all distinct. (Juxtaposing refers to combining
the two numbers to form an ordered pair.) For example, two orthogonal
Latin squares of order 3 are:

Euler conjectured that if n = 4k + 2, where k is a positive integer, then no
pair of orthogonal n × n Latin squares exists. This conjecture was not
settled for more than a century, until 1959, when mathematicians Bose,
Shikhande, and Parker constructed a pair of 22 × 22 orthogonal Latin



squares. Today, we know that a pair of orthogonal n × n Latin squares exists
for every positive integer n except n = 2 and n = 6.

SEE ALSO Magic Squares (c. 2200 B.C.), Archimedes: Sand, Cattle & Stomachion (c. 250 B.C.),
Euler’s Polygon Division Problem (1751), and Ramsey Theory (1928).



An example of a 6 × 6 Latin square consisting of six colors, arranged in such a
way that no row or column contains the same two colors. Today, we know that
812,851,200 order-six Latin squares exist.



Sangaku Geometry
c. 1789
Fujita Kagen (1765–1821)

A tradition known as Sangaku, or “Japanese temple geometry,” arose
during Japan’s period of isolation from the West, roughly between 1639 and
1854. Mathematicians, farmers, samurai, women, and children solved
difficult geometry problems and inscribed the solutions on tablets. These
colorful tablets were then hung under the roofs of the temples. More than
800 tablets have survived, and many of them feature problems concerning
tangent circles. As one example, consider the figure on the opposite page, a
late Sangaku tablet from 1873 created by an 11-year-old boy named Kinjiro
Takasaka. The illustration shows a fan, which is one-third of a complete
circle. Given the diameter d1 of the yellow-shaded circle, what is the
diameter d2 of the green-shaded circle? The answer is d2 ≈ d1(√3072 +
62)/193.

In 1789, Japanese mathematician Fujita Kagen published Shimpeki
Sampo Mathematical Problems Suspended before the Temple), the first
collection of Sangaku problems. The oldest surviving tablet dates from
1683, although other historical documents refer to examples from as early
as 1668. Most of the Sangaku are strangely different from typical geometry
problems found in textbooks because the Sangaku aficionados were usually
obsessed with circles and ellipses. Some of the Sangaku problems are so
difficult that physicist Tony Rothman and educator Hidetoshi Fukagawa
write, “Modern geometers invariably tackle them with advanced methods,
including calculus and affine transformations.” However, by avoiding
calculus, Sangaku problems were, in principle, sufficiently simple that
children could solve them with some effort.

Chad Boutin writes, “Perhaps it’s not surprising that Sudoku—the
number puzzles that everyone seems to be working on these days—first
became popular in Japan before spreading across the ocean. The fad is
reminiscent of a math craze that swept the islands centuries ago, when
ardent enthusiasts went so far as to turn the most beautiful geometrical
solutions into finely illustrated wooden tablets, called Sangaku….”



SEE ALSO Euclid’s Elements (300 B.C.), Kepler Conjecture (1611), and Johnson’s Theorem
(1916).



A late Sangaku pattern from 1873, created by an 11-year-old boy.



Least Squares
1795

Johann Carl Friedrich Gauss (1777–1855)

You enter a cave with marvelous stalactites protruding from the ceiling. You
might expect that a correlation exists between the length of a stalactite and
its age, although the relationship between these two variables may not be
exact. Unpredictable temperature and humidity fluctuations probably affect
the growth. However, assuming that chemical or physical methods exist for
estimating the age of a stalactite, some kind of trend surely exists between
age and length that lets us make rough predictions.

The method of least squares has played a crucial role in science for
elucidating and visualizing trends such as these, and today the method is
available in most statistical computer packages that draw lines or smooth
curves through noisy experimental data. Least squares is a mathematical
procedure for finding the “best-fitting” curve for a given set of data points
by minimizing the sum of the squares of the offsets of the points from the
curve.

In 1795, German mathematician and scientist Carl Friedrich Gauss, at the
age of 18, began to develop least-squares analysis. He demonstrated the
value of his approach in 1801, when he predicted the future location of the
asteroid Ceres. As background, the Italian astronomer Giuseppe Piazzi
(1746–1826) had originally discovered Ceres in 1800, but the asteroid later
disappeared behind the sun and could not be relocated. Austrian astronomer
Franz Xaver von Zach (1754–1832) noted that “without the intelligent work
and calculations of Doctor Gauss, we might not have found Ceres again.”
Interestingly, Gauss kept his methods a secret to maintain an advantage
over his contemporaries and to enhance his reputation. Later in his life, he
sometimes published scientific results as a cipher, so that he could always
prove that he had made various discoveries before others had. Gauss finally
published his secret least-squares method in 1809 in his Theory of the
Motion of the Heavenly Bodies.

SEE ALSO Laplace’s Théorie Analytique des Probabilités (1812) and Chi-Square (1900).



A least-squares plane. Here, the least-squares procedure is used to find the
“best-fitting” plane for a given set of data points by minimizing the sum of the
squares of the lengths of the blue segments parallel to the y-axis.



Constructing a Regular Heptadecagon
1796

Johann Carl Friedrich Gauss (1777–1855)

In 1796, when Gauss was still a teenager, he discovered a way to construct
a regular 17-sided polygon, also known as a heptadecagon, using just a
straightedge and compass. He published the result in his monumental 1801
work, Disquisitiones Arithmeticae Arithmetic Disquisitions). Gauss’s
construction was very significant because only failed attempts had been
made since the time of Euclid.

For more than 1,000 years, mathematicians had known how to construct,
with a compass and straightedge, regular n-gons in which n was a multiple
of 3, 5, and powers of 2. Gauss was able to add more polygons to this list,
namely those with a prime number of sides of the form 2(2n) + 1, where n is
an integer. We can make a list of the first few such numbers: F0 = 3, F1 = 5,
F2 = 17, F3 = 257, and F4 = 65,537. (Numbers of this form are also known
as Fermat numbers, and they are not necessarily prime.) A 257-gon was
constructed in 1832.

When he was older, Gauss still regarded his 17-gon finding as one of his
greatest achievements, and he asked that a regular 17-gon be placed on his
tombstone. According to legend, the stonemason declined, stating that the
difficult construction would essentially make the 17-gon look like a circle.

The year 1796 was an auspicious year for Gauss, when his ideas gushed
like a fountain from a fire hose. Aside from solving the heptadecagon
construction (March 30), Gauss invented modular arithmetic and presented
his quadratic reciprocity law April 8) and the prime number theorem (May
31). He proved that every positive integer is represented as a sum of at most
three triangular numbers (July 10). He also discovered solutions of
polynomials with coefficients in finite fields (October 1). Regarding the
heptadecagon, Gauss said he was “amazed” that so little had been
discovered with respect to polygon construction since Euclid’s time.

SEE ALSO Cicada-Generated Prime Numbers (c. 1 Million B.C.), Sieve of Eratosthenes (c. 240
B.C.), Goldbach Conjecture (1742), Gauss’s Disquisitiones Arithmeticae (1801), Riemann



Hypothesis (1859), Proof of the Prime Number Theorem (1896), Brun’s Constant (1919), Gilbreath’s
Conjecture (1958), Ulam Spiral (1963), and Andrica’s Conjecture (1985).



A fish swims and explores in a heptadecagonal pool.



Fundamental Theorem of Algebra
1797

Johann Carl Friedrich Gauss (1777–1855)

The Fundamental Theorem of Algebra (FTA) is stated in several forms, one
of which is that every polynomial of degree n ≥ 1, with real or complex
coefficients, has n real or complex roots. In other words, a polynomial P(x)
of degree n has n values xi (some of which are possibly repeated) for which
P(xi) = 0. As background, polynomial equations of degree n are of the form
P(x) = anxn + an−1xn−1 +…+ a1x + a0 = 0 where an ≠ 0.

As an example, consider the quadratic polynomial f(x) = x2 − 4. When
plotted, the curve is a parabola with its minimum at f(x) = −4. The
polynomial has two distinct real roots (x = 2 and x = −2), which are
graphically seen as points where the parabola intersects the x-axis.

This theorem is notable, in part, because of the sheer number of attempts
at proving it through history. German mathematician Carl Friedrich Gauss
is usually credited with the first proof of the FTA, discovered in 1797. In his
doctoral thesis, published in 1799, he presented his first proof, which
focused on polynomials with real coefficients, and also on his objections to
the other previous attempts at proofs. By today’s standards, Gauss’s proof
was not rigorously complete, because he relied on the continuity of certain
curves, but it was a significant improvement over all previous attempts at a
proof.

Gauss considered the FTA to have great importance, as evidenced by his
returning to the problem repeatedly. His fourth proof was in the last paper
he ever wrote, which appeared in 1849, exactly 50 years after his
dissertation. Note that Jean-Robert Argand (1768–1822) published a
rigorous proof of the Fundamental Theorem of Algebra in 1806 for
polynomials with complex coefficients. The FTA arises in many areas of
mathematics, and the various proofs span fields that range from abstract
algebra and complex analysis to topology.

SEE ALSO Al-Samawal’s The Dazzling (c. 1150), Constructing a Regular Heptadecagon (1796),
Gauss’s Disquisitiones Arithmeticae (1801), and Jones Polynomial (1984).



Greg Fowler’s depiction of the three solutions to z3 − 1 = 0. These roots (or
zeros) are 1, −0.5 + 0.86603i, and −0.5 − 0.86603i, and are located at the center
of the three large bull’s-eyes in this Newton’s method rendition of the solutions.



Gauss’s Disquisitiones Arithmeticae
1801

Johann Carl Friedrich Gauss (1777–1855)

Stephen Hawking writes, “When Gauss began work on his epochal
Disquisitiones Arithmeticae (Arithmetic Disquisitions), number theory was
merely a collection of isolated results…. In the Disquisitiones, he
introduced the notion of congruence and in so doing unified number
theory.” Gauss published this monumental work at the age of 24.

The Disquisitiones involves modular arithmetic, which relies on
congruency relationships. Two integers p and q are “congruent modulo the
integer s” if and only if p − q) is evenly divisible by s. Such a congruence is
written as p ≡ q (mod s). Using this compact notation, Gauss restated and
proved the famous quadratic reciprocity theorem, which was incompletely
proven several years earlier by French mathematician Adrien-Marie
Legendre (1752–1833). Consider two distinct odd prime numbers, p and q.
Consider the statements: (1) p is a square mod q, and (2) q is a square mod
p. According to the theorem: If both p and q are congruent to 3 (mod 4),
then exactly one of (1) and (2) is true; otherwise, either both (1) and (2) are
true, or neither of them is true. (A square is an integer that can be written as
the square of some other integer, such as 25, which is 52.)

Thus, this theorem connects the solvability of two related quadratic
equations in modular arithmetic. Gauss devoted an entire section of his
book to his proof of this theorem. He considered this beloved theorem of
quadratic reciprocity to be the “golden theorem” or the “gem of arithmetic,”
which so enthralled Gauss that he went on to provide eight separate proofs
over his lifetime.

Mathematician Leopold Kronecker said, “It is really astonishing to think
a single man of such young years was [able] to present such a profound and
well-organized treatment of an entirely new discipline.” In Disquisitiones,
Gauss’s approach to providing theorems, followed by proofs, corollaries,
and examples was used by subsequent authors. Disquisitiones was a seed
from which flowered the work of many leading nineteenth-century number
theorists.



SEE ALSO Cicada-Generated Prime Numbers (c. 1 Million B.C.), Sieve of Eratosthenes (c. 240
B.C.), Goldbach Conjecture (1742), Constructing a Regular Heptadecagon (1796), Riemann
Hypothesis (1859), Proof of the Prime Number Theorem (1896), Brun’s Constant (1919), Gilbreath’s
Conjecture (1958), Ulam Spiral (1963), Erdös and Extreme Collaboration (1971), Public-Key
Cryptography (1977), and Andrica’s Conjecture (1985).



Johann Carl Friedrich Gauss, painted by Danish artist Christian Albrecht
Jensen (1792–1870).



Three-Armed Protractor
1801

Joseph Huddart (1741–1816)

The common protractor of today is an instrument used to construct and
measure angles on a plane and to draw lines at various angles. This
protractor resembles a semicircular disk marked with degrees, from 0° to
180°. In the seventeenth century, protractors began to be used as stand-
alone instruments rather than as parts of other devices, when sailors used
them on ocean maps.

In 1801, Joseph Huddart, an English naval captain, invented the three-
armed protractor for plotting the position of a boat on navigation maps. This
kind of protractor makes use of two outer arms that may rotate with respect
to a fixed central arm. The two rotating arms may be clamped so that they
can be set at fixed angles.

In 1773, Huddart worked for the East India Company, sailing for St.
Helena Island in the South Atlantic Ocean and Bencooleen in Sumatra.
During his journey, he made detailed surveys of the west coast of Sumatra.
His 1778 chart of St. George’s Channel, connecting the Irish Sea to the
north and the Atlantic Ocean to the southwest, was a masterpiece of clarity
and accuracy. Aside from his later fame as inventor of the three-armed
protractor, he also suggested the use of high water marks at the London
docks, still in use until the 1960s. He invented steam-driven devices for
manufacturing rope that set the quality standard for rope making.

In 1916, the United States Hydrographic Office explained the use of his
protractor: “To plot a position, the two angles observed between the three
selected [known] objects are set on the instrument, which is then moved
over the chart until the three beveled edges pass respectively and
simultaneously through the three objects. The center of the instrument will
then mark the ship’s position, which may be pricked on the chart or marked
with a pencil point through the center hole.”

SEE ALSO Loxodrome (1537) and Mercator Projection (1569).



Joseph Huddart, English naval captain and inventor of the three-armed
protractor, useful for navigation.



Fourier Series
1807

Jean Baptiste Joseph Fourier (1768–1830)

Fourier series are useful in countless applications today, ranging from
vibration analysis to image processing—virtually any field in which a
frequency analysis is important. For example, Fourier series help scientists
characterize and better understand the chemical composition of stars or how
the vocal tract produces speech.

Before French mathematician Joseph Fourier discovered his famous
series, he accompanied Napoleon on his 1789 expedition of Egypt, where
Fourier spent several years studying Egyptian artifacts. Fourier’s research
on the mathematical theory of heat began around 1804 when he was back in
France, and in 1807 he had completed his important memoir On the
Propagation of Heat in Solid Bodies. One of his interests was heat diffusion
in different shapes. For these problems, researchers are usually given the
temperatures at points on the surface, as well as at its edges, at time t = 0.
Fourier introduced a series with sine and cosine terms in order to find
solutions to these kinds of problems. More generally, he found that any
differentiable function can be represented to arbitrary accuracy by a sum of
sine and cosine functions, no matter how bizarre the function may look
when graphed.

Biographers Jerome Ravetz and I. Grattan-Guiness note, “Fourier’s
achievement can be understood by [considering] the powerful mathematical
tools he invented for the solutions of the equations, which yielded a long
series of descendents and raised problems in mathematical analysis that
motivated much of the leading work in that field for the rest of the century
and beyond.” British physicist Sir James Jeans (1877–1946) remarked,
“Fourier’s theorem tells us that every curve, no matter what its nature may
be, or in what way it was originally obtained, can be exactly reproduced by
superposing a sufficient number of simple harmonic curves—in brief, every
curve can be built up by piling up waves.”

SEE ALSO Bessel Functions (1817), Harmonic Analyzer (1876), and Differential Analyzer (1927).



Molecular model of human growth hormone. Fourier series and corresponding
Fourier synthesis methods are used to determine molecular structures from X-
ray diffraction data.



Laplace’s Théorie Analytique des
Probabilités

1812

Pierre-Simon, Marquis de Laplace (1749–1827)

The first major treatise on probability that combines probability theory and
calculus was French mathematician and astronomer Pierre-Simon Laplace’s
Théorie Analytique des Probabilités (Analytical Theory of Probabilities).
Probability theorists focus on random phenomena. Although a single roll of
the dice may be considered a random event, after numerous repetitions,
certain statistical patterns become apparent, and these patterns can be
studied and used to make predictions.

The first edition of Laplace’s Théorie Analytique was dedicated to
Napoleon Bonaparte and discusses methods of finding probabilities of
compound events from component probabilities. The book also discusses
the method of least squares and Buffon’s Needle and considers many
practical applications.

Stephen Hawking calls Théorie Analytique a “masterpiece” and writes,
“Laplace held that because the world is determined, there can be no
probabilities in things. Probability results in our lack of knowledge.”
According to Laplace, nothing would be “uncertain” for a sufficiently
advanced being—a conceptual model that remained strong until the rise of
quantum mechanics and chaos theory in the twentieth century.

To explain how probabilistic processes can yield predictable results,
Laplace asks readers to imagine several urns arranged in a circle. One urn
contains only black balls, while another contains only white balls. The other
urns have various ball mixtures. If we withdraw a ball, place it in the
adjacent urn, and continue around the circle, eventually the ratio of black to
white balls will be approximately the same in all of the urns. Here, Laplace
shows how random “natural forces” can create results that have a
predictability and order. Laplace writes, “It is remarkable that this science,
which originated in the consideration of games of chance, should become
the most important object of human knowledge….The most important



questions in life are, for the most part, really only problems of probability.”
Other famous probabilists include Gerolamo Cardano (1501–1576), Pierre
de Fermat (1601–1665), Blaise Pascal (1623–1662), and Andrey
Nikolaevich Kolmogorov (1903–1987).

SEE ALSO Discovery of Calculus (c. 1665), Law of Large Numbers (1713), Normal Distribution
Curve (1733), Buffon’s Needle (1777), Least Squares (1795), Infinite Monkey Theorem (1913), and
Ball Triangle Picking (1982).



Pierre-Simon, Marquis de Laplace. This posthumous portrait is by Madame
Feytaud (1842).



Prince Rupert’s Problem
1816

Prince Rupert of the Rhine (1619–1682), Pieter Nieuwland (1764–1794)

Prince Rupert’s Problem has had a long and fascinating history. Prince
Rupert was an inventor, artist, and soldier. He was fluent in virtually all of
the major European languages and excelled in mathematics. Soldiers were
frightened of the large poodle he took with him during battles, believing
that it had supernatural powers.

In the 1600s, Prince Rupert asked a famous geometrical question: What
is the largest wooden cube that can pass through a given cube of side length
one inch? More precisely, what is the size R of the edge of the largest tunnel
(with a square cross section) that can be made through a cube without
breaking the cube?

Today, we know the answer to be R = 3√2 / 4 = 1.060660…. In other
words, a cube with side length R inches (or smaller) can pass through a
cube with a side length of 1 inch. Prince Rupert won a wager that a hole
could be made in one of two equally sized cubes large enough for the other
cube to slide through. Many thought this could not be accomplished.

Although the first publication of Prince Rupert’s Problem was by John
Wallis (1616–1703) in his 1685 De Algebra Tractatus, the 1.060660
solution was not readily known until Dutch mathematician Pieter
Nieuwland solved it over a century after Prince Rupert asked the question.
His solution was published posthumously in 1816 by his teacher Jan
Hendrik van Swinden, who had found Nieuwland’s solution among his
papers.

If you hold a cube so that one corner points toward you, you will see a
regular hexagon. The largest square that will squeeze through a cube has a
face that can be inscribed in this hexagon. As reported by mathematicians
Richard Guy and Richard Nowakowski, the largest cube that can fit through
a hypercube has an edge of 1.007434775…, which is the square root of
1.014924…, the smallest root of 4x4 − 28x3 − 7x2 + 16x + 16.

SEE ALSO Platonic Solids (c. 350 B.C.), Euler’s Formula for Polyhedra (1751), Tesseract (1888),
and Menger Sponge (1926).



Prince Rupert of the Rhine won a wager that a hole could be made in one of two
equal cubes large enough for the other cube to slide through. Many thought this
could not be accomplished.



Bessel Functions
1817

Friedrich Wilhelm Bessel (1784–1846)

German mathematician Friedrich Bessel, who had no formal education after
the age of 14, developed Bessel functions in 1817 for use in his studies of
the motion of planets moving under mutual gravitation. Bessel had
generalized the earlier findings of mathematician Daniel Bernoulli (1700–
1782).

Since the time of Bessel’s discoveries, his functions have become
indispensable tools in a vast range of mathematics and engineering. Author
Boris Korenev writes, “A large number of diverse problems concerning
practically all the most important areas of mathematical physics and various
technical problems is connected with Bessel functions.” Indeed, different
aspects of Bessel function theory are used when solving problems involving
heat conduction, hydrodynamics, diffusion, signal processing, acoustics,
radio and antenna physics, plate vibrations, oscillations in chains, stresses
that evolve near cracks in materials, wave propagation in general, and
atomic and nuclear physics. In elasticity theory, Bessel functions are useful
for solving numerous spatial problems that employ spherical or cylindrical
coordinates.

Bessel functions are solutions to specific differential equations, and when
graphed, the functions resemble rippling, decaying sinusoidal waves. For
example, in the case of a wave equation involving a circular membrane
such as a drumhead, one class of solutions involves Bessel functions, and
the standing wave solution can be expressed as a Bessel function that is a
function of the distance r from the center to the rim of the membrane.

In 2006, researchers at Japan’s Akishima Laboratories and Osaka
University relied on Bessel function theory to create a device that uses
waves to draw actual text and pictures on the surface of water. The device,
called AMOEBA (Advanced Multiple Organized Experimental Basin),
consists of 50 water wave generators encircling a cylindrical tank 1.6
meters in diameter and 30 cm deep. AMOEBA is capable of spelling out
the entire Roman alphabet. Each picture or letter remains on the water



surface only for a moment, but they can be produced in succession every
few seconds.

SEE ALSO Fourier Series (1807), Differential Analyzer (1927), and Ikeda Attractor (1979).



Bessel functions are useful in studying problems of wave propagation, as well as
modes of vibration of a thin circular membrane. (This rendering is by Paul
Nylander, who uses Bessel functions to study wave phenomena.)



Babbage Mechanical Computer
1822

Charles Babbage (1792–1871), Augusta Ada King, Countess of
Lovelace (1815–1852)

Charles Babbage was an English analyst, statistician, and inventor who was
also interested in the topic of religious miracles. He once wrote, “Miracles
are not a breach of established laws, but…indicate the existence of far
higher laws.” Babbage argued that miracles could occur in a mechanistic
world. Just as Babbage could imagine programming strange behaviors on
his calculating machines, God could program similar irregularities in
nature. While investigating biblical miracles, he suggested that the chance
of a man rising from the dead is one in 1012.

Babbage is often considered the most important mathematician-engineer
involved in the prehistory of computers. In particular, he is famous for
conceiving an enormous hand-cranked mechanical calculator, an early
progenitor of our modern computers. Babbage thought the device would be
most useful in producing mathematical tables, but he worried about
mistakes that would be made by humans who transcribed the results from
its 31 metal output wheels. Today, we realize that Babbage was around a
century ahead of his time and that the politics and technology of his era
were inadequate for his lofty dreams.

Babbage’s Difference Engine, begun in 1822 but never completed, was
designed to compute values of polynomial functions, using about 25,000
mechanical parts. He also had plans to create a more general-purpose
computer, the Analytical Engine, which could be programmed using punch
cards and had separate areas for number storage and computation. Estimates
suggest that an Analytical Engine capable of storing 1,000 50-digit numbers
would be more than 100 feet (about 30 meters) in length. Ada Lovelace, the
daughter of the English poet Lord Byron, gave specifications for a program
for the Analytical Engine. Although Babbage provided assistance to Ada,
many consider Ada to be the first computer programmer.

In 1990, novelists William Gibson and Bruce Sterling wrote The
Difference Engine, which asked readers to imagine the consequences of



Babbage’s mechanical computers becoming available to Victorian society.

SEE ALSO Abacus (c. 1200), Slide Rule (1621), Differential Analyzer (1927), ENIAC (1946),
Curta Calculator (1948), and HP-35: First Scientific Pocket Calculator (1972).



Working model of a portion of Charles Babbage’s Difference Engine, currently
located at the London Science Museum.



Cauchy’s Le Calcul Infinitésimal
1823

Augustin Louis Cauchy (1789–1857)

American mathematician William Waterhouse writes, “Calculus in 1800
was in a curious state. There was no doubt it was correct. Mathematicians
of sufficient skill and insight had been successful with it for a century. Yet
no one could explain clearly why it worked…. Then came Cauchy.” In his
1823 Résumé des leçons sur le calcul infinitésimal (Résumé of Lessons on
Infinitesimal Calculus), the prolific French mathematician Augustin Cauchy
provides a rigorous development of calculus and a modern proof of the
Fundamental Theorem of Calculus, which elegantly unites the two major
branches of calculus (differential and integral) into a single framework.

Cauchy begins his treatise with a clear definition of the derivative. His
mentor, French mathematician Joseph-Louis Lagrange (1736–1813),
thought in terms of graphs of curves and considered the derivative a tangent
to a curve. In order to determine a derivative, Lagrange would search for
derivative formulas as necessary. Stephen Hawking writes, “Cauchy went
far beyond Lagrange and defined the derivative of f at x as the limit of the
difference quotient y/ x = [f(x + i) − f(x)]/i” as i approaches zero, which is
our modern, nongeometric definition of the derivative.

Similarly, by clarifying the notion of the integral in calculus, Cauchy
demonstrated the Fundamental Theorem of Calculus, which establishes a
way in which we can compute the integral of f(x) from x = a to x = b for any
continuous function f. More particularly, the Fundamental Theorem of
Calculus states that if f is an integrable function in the interval [a, b], and if
H(x) is the integral of f(x) from a to x ≤ b, then the derivative of H(x) is
identical to f(x). In other words, H′(x) = f(x).

Waterhouse concludes, “Cauchy did not really establish new foundations;
he swept away all the dust to reveal the whole edifice of calculus already
standing on bedrock….”

SEE ALSO Zeno’s Paradoxes (c. 445 B.C.), Discovery of Calculus (c. 1665), L’Hôpital’s Analysis of
the Infinitely Small (1696), Agnesi’s Instituzioni Analitiche (1748), and Laplace’s Théorie Analytique
des Probabilités (1812).



Augustin Louis Cauchy, lithograph by Gregoire et Deneux.



Barycentric Calculus
1827

August Ferdinand Möbius (1790–1868)

German mathematician August Ferdinand Möbius, famous for his one-sided
loop called the Möbius strip, also made a major contribution to mathematics
with his barycentric calculus, a geometrical method for defining a point as
the center of gravity of certain other points to which coefficients or weights
are ascribed. We can think of Möbius’s barycentric coordinates (or
barycentrics) as coordinates with respect to a reference triangle. These
coordinates are usually written as triples of numbers, which can be
visualized as corresponding to masses placed at the vertices of the triangle.
In this way, these masses determine a point, which is the geometric centroid
of the three masses. The new algebraic tools, developed by Möbius in his
1827 book Der Barycentrische Calcul (The Barycentric Calculus), have
since turned out to have wide application. This classic book also discusses
related topics in analytical geometry such as projective transformations.

The word barycentric is derived from the Greek barys for “heavy” and
refers to the center of mass. Möbius understood that several weights
positioned along a straight stick can be replaced by a single weight at the
stick’s center of mass. From this simple principle, he constructed a
mathematics system in which numerical coefficients are assigned to every
point in space.

Today, barycentric coordinates are treated as a form of general
coordinates that are used in many branches of mathematics and in computer
graphics. Many of the advantages of barycentric coordinates occur in the
field of Projective Geometry, which is concerned with incidences—that is,
where elements such as lines, planes, and points either coincide or do not.
Projective geometry is also concerned with the relationships between
objects and the mappings that result from projecting the objects onto
another surface, which can be visualized as shadows of solid objects.

SEE ALSO Descartes’ La Géométrie (1637), Projective Geometry (1639), and The Möbius Strip
(1858).



Barycentric coordinates. Point P is the barycenter of A, B, and C, and we say
that the barycentric coordinates of P are [A, B, C]. Triangle ABC would balance
on a pin placed beneath the barycenter.



Non-Euclidean Geometry
1829

Nicolai Ivanovich Lobachevsky (1792–1856), János Bolyai (1802–1860),
Georg Friedrich Bernhard Riemann (1826–1866)

Since the time of Euclid (c. 325–270 B.C.), the so-called parallel postulate
seemed to reasonably describe how our three-dimensional world works.
According to this postulate, given a straight line and a point not on that line,
in their plane only one straight line through the point exists that never
intersects the original line.

Over time, the formulations of non-Euclidean geometry, in which this
postulate does not hold, have had dramatic consequences. Einstein said
about non-Euclidean geometry: “To this interpretation of geometry, I attach
great importance, for should I have not been acquainted with it, I never
would have been able to develop the theory of relativity.” In fact, Einstein’s
General Theory of Relativity represents space-time as a non-Euclidean
geometry in which space-time actually warps, or curves, near gravitating
bodies such as the sun and planets. This can be visualized by imagining a
bowling ball sinking into a rubber sheet. If you were to place a marble into
the depression formed by the stretched rubber sheet, and give the marble a
sideways push, it would orbit the bowling ball for a while, like a planet
orbiting the sun.

In 1829, Russian mathematician Nicolai Lobachevsky published On the
Principles of Geometry, in which he imagined a perfectly consistent
geometry that results from assuming that the parallel postulate is false.
Several years earlier, Hungarian mathematician János Bolyai had worked
on a similar non-Euclidean geometry, but his publication was delayed until
1932. In 1854, German mathematician Bernhard Riemann generalized the
findings of Bolyai and Lobachevsky by showing that various non-Euclidean
geometries are possible, given the appropriative number of dimensions.
Riemann once remarked, “The value of non-Euclidean geometry lies in its
ability to liberate us from preconceived ideas in preparation for the time
when exploration of physical laws might demand some geometry other than



the Euclidean.” His prediction was realized later with Einstein’s General
Theory of Relativity.

SEE ALSO Euclid’s Elements (300 B.C.), Omar Khayyam’s Treatise (1070), Descartes’ La
Géométrie (1637), Projective Geometry (1639), Riemann Hypothesis (1859), Beltrami’s
Pseudosphere (1868), and Weeks Manifold (1985).



One form of non-Euclidean geometry is exemplified by Jos Leys’s hyperbolic
tiling. Artist M. C. Escher also experimented with non-Euclidean geometries in
which the entire universe could be compressed and represented in a finite disk.



Möbius Function
1831

August Ferdinand Möbius (1790–1868)

In 1831, August Möbius introduced his exotic Möbius function, today
written as µ(n). To understand the function, imagine placing all the integers
into just one of three large mailboxes. The first mailbox is painted with a
big “0,” the second with “+1,” and a third with “−1.” In mailbox 0, Möbius
places multiples of square numbers (other than 1), including {4, 8, 9, 12,
16, 18,…}. A square number is a number such as 4, 9, or 16 that is the
square of another integer. For example, µ(12) = 0, because 12 is a multiple
of the square number 4 and is thus placed in mailbox “0.”

In the 21 mailbox, Möbius places any number that factors into an odd
number of distinct prime numbers. For example, 5 × 2 × 3 = 30, so 30 is in
this list because it has these three prime factors. All prime numbers are also
on this list because they only have one prime factor, themselves. Thus,
µ(29) = –1 and µ(30) = −1. The probability that a number falls in the −1
mailbox turns out to be 3/π2—the same probability as for falling in the +1
mailbox.

Let’s further consider the 11 mailbox, in which Möbius places all the
numbers, such as 6, that factor into an even number of distinct primes (2 × 3
= 6). For completeness, Möbius put 1 into this bin. Numbers in this mailbox
include {1, 6, 10, 14, 15, 21, 22,…}. The first 20 terms of the wonderful
Möbius function are µ(n) = {1, −1, −1, 0, −1, 1, −1, 0, 0, 1, −1, 0, −1, 1, 1,
0, −1, 0, −1, 0}.

Amazingly, scientists have found practical uses of the Möbius function in
various physical interpretations of subatomic particle theory. The Möbius
function is also fascinating because almost everything about its behavior is
unsolved and because numerous elegant mathematical identities exist that
involve µ(n).

SEE ALSO Cicada-Generated Prime Numbers (c. 1 Million B.C.), Sieve of Eratosthenes (c. 240
B.C.), and Andrica’s Conjecture (1985).



August Ferdinand Möbius, from the frontispiece in Möbius’s Werke.



Group Theory
1832

Évariste Galois (1811–1832)

French mathematician Évariste Galois was responsible for Galois theory, an
important branch of abstract algebra, and famous for his contributions to
group theory, which concerns the mathematical study of symmetry. In
particular, in 1832, he produced a method of determining when a general
equation could be solved by radicals, thereby, in essence, giving a kick start
to modern group theory.

Martin Gardner writes, “In 1832…he was killed by a pistol shot….He
was not yet 21. Some early, fragmentary work had been done on groups, but
it was Galois who laid the foundations of modern group theory and even
named it, all in a long, sad letter that he wrote to a friend the night before
his fatal duel.” One key aspect of a group is that it is a set of elements with
an operation that combines any two of its elements to form a third element
within that set. For example, consider the set of integers and the operation
of addition, which together form a group. Adding two integers always
yields an integer. A geometrical object can be characterized by a group
called a symmetry group that specifies the symmetry features of the object.
This group contains a set of transformations that leave the object unchanged
when applied. Today, important topics in group theory are often illustrated
to students using the Rubik’s Cube.

The circumstances that led to Galois’ death have never been fully
explained. Perhaps his death resulted from a quarrel over a woman or for
political reasons. In any case, preparing for the end, he spent the night
feverishly outlining his mathematical ideas and discoveries. The figure at
right shows a page from his last night’s writing on quintic equations
(equations with the term x5).

The next day, Galois was hit in the stomach. He lay helpless on the
ground. There was no physician to help him, and the victor casually walked
away, leaving Galois to writhe in agony. His mathematical reputation and
legacy rests on fewer than 100 pages of a posthumously published work of
genius.



SEE ALSO Wallpaper Groups (1891), Langlands Program (1967), Rubik’s Cube (1974), Monster
Group (1981), and The Quest for Lie Group E8 (2007).



The frantic mathematical scribbling Galois made during the night before his
fatal duel. On this page, on the left below the center, are the words Une femme,
with femme crossed out—a reference to the woman at the center of the duel.



Pigeonhole Principle
1834

Johann Peter Gustav Lejeune Dirichlet (1805–1859)

The first statement of the Pigeonhole Principle was made by German
mathematician Johann Dirichlet in 1834, although he referred to it as
Schubfachprinzip (“Drawer Principle”). The phrase “Pigeonhole Principle”
was first used in a serious mathematics journal by mathematician Raphael
M. Robinson in 1940. Simply stated, if we have m pigeon homes and n
pigeons, we can be sure that at least one home houses more than one pigeon
if n > m.

This simple assertion has been used in applications that range from
computer data compression to problems that involve infinite sets that
cannot be put into one-to-one correspondence. The Pigeonhole Principle
has also been generalized to probabilistic applications so that if n pigeons
are randomly placed in m pigeonholes with uniform probability of 1/m, then
at least one pigeonhole will hold more than one pigeon with probability 1 −
m!/[(m − n)!mn]. Let us consider some examples that may demonstrate
unintuitive results.

Because of the Pigeonhole Principle, there must be at least two people in
New York City with the same number of hairs on their heads. Let the hairs
be represented as pigeonholes and the people as pigeons. New York City
has more than 8 million people, and the human head has far less than a
million hairs; thus, at least two people must exist with the same number of
hairs on their heads.

A paper with the dimensions of a dollar bill is colored blue and red on
one surface. Is it always possible to find two points of the same color
exactly one inch apart on such a surface, no matter how intricately the
surface is colored? To solve, draw an equilateral triangle with one-inch
edges. Consider the colors as pigeonholes and the triangle vertices as
pigeons. At least two of its vertices must be of the same color. This proves
that two points of the same color must exist exactly one inch apart.

SEE ALSO Dice (c. 3000 B.C.), Laplace’s Théorie Analytique des Probabilités (1812), and Ramsey
Theory (1928).



Given m pigeon homes and n pigeons, at least one home must house more than
one pigeon if n > m.



Quaternions
1843

Sir William Rowan Hamilton (1805–1865)

Quaternions are four-dimensional numbers, conceived in 1843 by Irish
mathematician William Hamilton. Quaternions have since been used to
describe the dynamics of motion in three dimensions and applied in such
fields as computer graphics for virtual realities, video game programming,
signal processing, robotics, bioinformatics, and studies of the geometry of
space-time. The flight software of the Space Shuttle makes use of
quaternions for guidance computations, navigation, and flight control, for
reasons of speed, compactness, and reliability.

Despite the potential usefulness of quaternions, some mathematicians
were skeptical at first. Scottish physicist William Thomson (1824–1907)
wrote, “Quaternions came from Hamilton after his really good work had
been done, and though beautifully ingenious, have been an unmixed evil to
those who have touched them in any way.” On the other hand, engineer and
mathematician Oliver Heaviside wrote in 1892, “The invention of
quaternions must be regarded as a most remarkable feat of human
ingenuity. Vector analysis, without quaternions, could have been found by
any mathematician… but to find out quaternions required genius.”
Interestingly, Theodore Kaczynski (the “Unabomber”) wrote intricate
mathematical treatises on quaternions before he went on his killing spree.

Quaternions can be represented in four dimensions by Q = a0 + a1i + a2j
+ a3k where i, j, and k are (like the imaginary number i) unit vectors in three
orthogonal perpendicular) directions, and they are perpendicular to the real
number axis. To add or multiply two quaternions, we treat them as
polynomials in i, j, and k, but use the following rules to deal with products:
i2 = j2 = k2 = −1; ij = −ji = k; jk = −kj = i; and ki = −ik = j. Hamilton tells us
that he cut these formulas into a stone of Brougham Bridge in Dublin while
walking with his wife, after the ideas came to him in a flash.

SEE ALSO Imaginary Numbers (1572).



Physicist Leo Fink rendered this 3-D section of a 4-D quaternion fractal. The
intricate surface represents the complicated behavior of Qn+1 = Qn

2 + c, where
Q and c are quaternion numbers, and c = −0.35 + 0.7i + 0.15j + 0.3k.



Transcendental Numbers
1844

Joseph Liouville (1809–1882), Charles Hermite (1822–1901), Ferdinand
von Lindemann (1852–1939)

In 1844, French mathematician Joseph Liouville considered the following
interesting number:

0.110001000000000000000001000…,
known today as the Liouville constant. Can you guess its significance or
what rule he used to create it?

Liouville showed that his unusual number was transcendental, thus
making this number among the first to be proven transcendental. Notice that
the constant has 1 in each decimal place corresponding to a factorial, and
zeros elsewhere. This means that the 1s occur only in the 1st, 2nd, 6th, 24th,
120th, 720th, etc. places.

Transcendental numbers are so exotic that they were only “discovered”
relatively recently in history, and you may only be familiar with one of
them, π, and perhaps Euler’s Number, e. These numbers cannot be
expressed as the root of any algebraic equation with rational coefficients.
This means, for example, that π could not exactly satisfy equations like 2x4

− 3x2 + 7 = 0.
Proving that a number is transcendental is difficult. French

mathematician Charles Hermite proved e was transcendental in 1873, and
German mathematician Ferdinand von Lindemann proved π was
transcendental in 1882. In 1874, German mathematician Georg Cantor
surprised many mathematicians by demonstrating that “almost all” real
numbers are transcendental. Thus, if you could somehow put all the
numbers in a big jar, shake the jar, and pull one out, it would be virtually
certain to be transcendental. Yet despite the fact that transcendental
numbers are “everywhere,” only a few are known and named. There are lots
of stars in the sky, but how many can you name?

Aside from his mathematical pursuits, Liouville was interested in politics
and was elected to the French Constituting Assembly in 1848. After a later
election defeat, Liouville became depressed. His mathematical ramblings



became interspersed with poetical quotes. Nonetheless, during the course of
his life, Liouville wrote more than 400 serious mathematical papers.

SEE ALSO Quadrature of the Lune (c. 440 B.C.), π (c. 250 B.C.), Euler’s Number, e (1727),
Stirling’s Formula (1730), Cantor’s Transfinite Numbers (1874), Normal Number (1909), and
Champernowne’s Number (1933).



French mathematician Charles Hermite, c. 1887. Hermite proved in 1873 that
Euler’s number e was transcendental.



Catalan Conjecture
1844

Eugène Charles Catalan (1814–1894), Preda Mihailescu (b. 1955)

Deceptively simple-looking challenges involving whole numbers can
confound even the most brilliant mathematicians. As in the case of Fermat’s
Last Theorem, centuries may pass before simple conjectures concerning
integers are proved or refuted. Some problems may never be solved, even
with the combined efforts of humans and computers.

To set the stage for understanding the Catalan conjecture, consider the
squares of whole numbers (integers) greater than 1, that is, 4, 9, 16, 25, …
and also consider the sequence of cubes, 8, 27, 64, 125….If we merge the
two lists and place them in order, we obtain 4, 8, 9, 16, 25, 27, 36,….Notice
that 8 (the cube of 2) and 9 (the square of 3) are consecutive integers. In
1844, Belgian mathematician Eugène Catalan conjectured that 8 and 9 are
the only powers of integers that are consecutive! If other such pairs had
existed, they might have been found by searching for integer values for
which xp − yq = 1 is true and for values of x, y, p, and q greater than 1.
Catalan believed that only one solution exists: 32 − 23 = 1.

This history of the Catalan conjecture has a colorful cast of characters.
Hundreds of years before Catalan, Frenchman Levi ben Gerson (1288–
1344)—better known as Gersonides or the Ralbag—had already
demonstrated a more restricted version of the conjecture, namely that the
only powers of 2 and 3 that differ by 1 are 32 and 23. The Ralbag was a
famous rabbi, philosopher, mathematician, and Talmudist.

Let’s skip forward to 1976 when Robert Tijdeman of the University of
Leiden in the Netherlands showed that if examples of other consecutive
powers existed, then they would have to be finite in number. Finally, in
2002, Preda Mihailescu of the University of Paderborn in Germany proved
Catalan’s conjecture.

SEE ALSO Fermat’s Last Theorem (1637) and Euler’s Polygon Division Problem (1751).



Belgian mathematician Eugène Charles Catalan. In 1844, Catalan conjectured
that 8 and 9 are the only powers of integers that are consecutive.



The Matrices of Sylvester
1850

James Joseph Sylvester (1814–1897), Arthur Cayley (1821–1895)

In 1850, in his paper “On a New Class of Theorems,” British
mathematician James Sylvester was the first to use the word matrix when
referring to a rectangular arrangement, or array, of elements that can be
added and multiplied. Matrices are often used to describe a system of linear
equations or simply to represent information that depends on two or more
parameters.

Credit for understating and identifying the complete significance of the
algebraic properties of matrices is given to the English mathematician
Arthur Cayley for his later work on matrices in 1855. Because Cayley and
Sylvester enjoyed many years of close collaboration, they are often
considered the joint founders of matrix theory.

Although matrix theory flourished in the mid-1800s, simple concepts of
matrices date back to before the birth of Christ, when the Chinese knew of
Magic Squares and also began to apply matrix methods to solve
simultaneous equations. In the 1600s, Japanese mathematician Seki Kowa
(in 1683) and German mathematician Gottfried Leibniz (in 1693) also
explored the early use of matrices.

Both Sylvester and Cayley studied at Cambridge, but Sylvester was
ineligible for a degree because he was Jew, although he was ranked second
in Cambridge’s mathematical examinations. Before Cambridge, Sylvester
had attended the Royal Institution in Liverpool, where students tormented
him for his religion, thus causing him to escape to Dublin.

Cayley worked as a lawyer for more than a decade, while publishing
about 250 mathematics papers. During his time at Cambridge, he published
another 650 papers. Cayley was first to introduce matrix multiplication.

Today, matrices are used in numerous areas, including data encryption
and decryption, object manipulation in computer graphics (including video
games and medical imaging), solving systems of simultaneous linear
equations, quantum mechanical studies of atomic structure, equilibrium of



rigid bodies in physics, graph theory, game theory, economics models, and
electrical networks.

SEE ALSO Magic Squares (c. 2200 B.C.), Thirty-Six Officers Problem (1779), and Sylvester’s Line
Problem (1893).



Portrait of James Joseph Sylvester, the frontispiece to Volume 4 of The Collected
Mathematical Papers of James Joseph Sylvester, edited by H. F. Baker
(Cambridge University Press, 1912).



Four-Color Theorem
1852

Francis Guthrie (1831–1899), Kenneth Appel (b. 1932), Wolfgang
Haken (b. 1928)

Mapmakers have believed for centuries that just four colors were sufficient
for coloring any map drawn on a plane, so that no two distinct regions
sharing a common edge are the same color, although two regions can share
a common vertex and have the same color. Today, we know for certain that
while some planar maps require fewer colors, no map requires more than
four. Four colors are sufficient for maps drawn on spheres and cylinders.
Seven colors are sufficient to paint any map on a torus (the surface of a
doughnut shape).

In 1852, mathematician and botanist Francis Guthrie was the first to
conjecture that four colors must be sufficient when he attempted to color a
map of counties of England. Since the time of Guthrie, mathematicians had
tried in vain to prove the consequences of this seemingly simple four-color
observation, and it remained one of the most famous unsolved problems in
topology.

Finally, in 1976, mathematicians Kenneth Appel and Wolfgang Haken
succeeded in proving the four-color theorem with the help of a computer
testing thousands of cases, making it the first problem in pure mathematics
to make use of a computer to produce an essential component for the proof.
Today, computers are playing increasing roles in mathematics, helping
mathematicians verify proofs so complex that they sometimes defy human
comprehension. The four-color theorem is one example. Another is the
classification of finite simple groups, embodied in a 10,000-page multi-
author project. Alas, the traditional people-centered methods for ensuring
that a proof is correct breaks down when a paper reaches thousands of
pages.

Surprisingly, the four-color theorem has been of little practical
importance for mapmakers and cartographers. For example, a study of
atlases through time reveals no pressing desire to try to minimize the



number of colors used, and books on cartography and mapmaking history
often use more colors than needed.

SEE ALSO Kepler Conjecture (1611), Riemann Hypothesis (1859), Klein Bottle (1882), and The
Quest for Lie Group E8 (2007).



This map of the state of Ohio, scanned from an 1881 original, makes use of four
colors. Note that no two distinct regions sharing a common edge are the same
color.



Boolean Algebra
1854

George Boole (1815–1864)

English mathematician George Boole’s most important work was his 1854
An Investigation into the Laws of Thought, on Which Are Founded the
Mathematical Theories of Logic and Probabilities. Boole was interested in
reducing logic to a simple algebra involving just two quantities, 0 and 1,
and three basic operations: and, or, and not. In modern times, Boolean
algebra has had vast applications in telephone switching and the design of
modern computers. Boole looked upon this work as “the most valuable…
contribution that I have made or am likely to make to Science and the thing
by which I would desire if at all to be remembered hereafter….”

Alas, Boole died at the age of 49 after he developed a bad fever.
Unfortunately, his wife believed that a remedy should resemble the cause,
and she dumped buckets of water over him while he was in his bed, because
his illness had been precipitated by being out in the cold rain.

Mathematician Augustus De Morgan (1806–1871) praised his work,
saying “Boole’s system of logic is but one of many proofs of genius and
patience combined…. That the symbolic processes of algebra, invented as
tools of numerical calculation, should be competent to express every act of
thought, and to furnish the grammar and dictionary of an all-containing
system of logic, would not have been believed until it was proved….”

Approximately seventy years after Boole’s death, American
mathematician Claude Shannon (1916–2001) was introduced to Boolean
algebra while still a student, and he showed how Boolean algebra could be
used to optimize the design of systems of telephone routing switches. He
also demonstrated that circuits with relays could solve Boolean algebra
problems. Thus, Boole, with Shannon’s help, provided one of the
foundations for our Digital Age.

SEE ALSO Aristotle’s Organon (c. 350 B.C.), Gros’s Théorie du Baguenodier (1872), Venn
Diagrams (1880), Boole’s Philosophy and Fun of Algebra (1909), Principia Mathematica (1910–
1913), Gödel’s Theorem (1931), Gray Code (1947), Information Theory (1948), and Fuzzy Logic
(1965).



Ukrainian artist and photographer Mikhail Tolstoy illustrates his creative
conception of a binary stream composed of ones and zeros. The artwork reminds
him of the binary information flowing through digital networks such as the
Internet.



Icosian Game
1857

Sir William Rowan Hamilton (1805–1865)

In 1857, Irish mathematician, physicist, and astronomer William Hamilton
described the Icosian Game, the objective of which is to find a path along
the edges of a dodecahedron (a polyhedron with 12 faces) so that every
vertex (corner) is visited only once. Today, in the field of graph theory,
mathematicians refer to a Hamiltonian path as one in which a path visits
each graph vertex exactly once. A Hamiltonian cycle (or Hamiltonian
circuit)—required for the Icosian Game—implies that the path returns to
the starting point. British mathematician Thomas Kirkman (1806–1895)
posed the Icosian Game problem more generally: Given a graph of a
polyhedron, does a cycle exist that passes through every vertex?

The term Icosian comes from Hamilton’s invention of a kind of algebra
called Icosian calculus, based on the symmetry properties of the
icosahedron. He solved his puzzle using this algebra and its associated
icosians (special kinds of vectors). All Platonic solids are Hamiltonian. In
1974, mathematician Frank Rubin described an efficient search procedure
that can find some or all Hamilton paths and circuits in graphs.

A London toy manufacturer bought the rights to the Icosian Game and
created a puzzle that had nails at each vertex of the dodecahedron. Each nail
stood for a major city. The player traced out his path by wrapping a string
around each nail as he traveled. The toy was also sold in other forms—for
example, as a flat pegboard with holes at the nodes of the dodecahedron. (A
flat model of a dodecahedron can be created by puncturing one of its faces
and stretching the object flat so that it lies on a plane.) Alas, the game did
not sell well, partly because it was fairly easy to solve. Perhaps Hamilton’s
focus on deep theories made him overlook the fact that trial and error would
soon lead to a solution!

SEE ALSO Platonic Solids (c. 350 B.C.), Archimedean Semi-Regular Polyhedra (c. 240 B.C.),
Königsberg Bridges (1736), Euler’s Formula for Polyhedra (1751), Pick’s Theorem (1899), Geodesic
Dome (1922), Császár Polyhedron (1949), Szilassi Polyhedron (1977), Spidrons (1979), and Solving
of the Holyhedron (1999).



Teja Krašek’s creative rendition of the Icosian Game. The objective is to find a
path along the edges of this dodecahedron so that every corner is visited only
once. In 1859, a London toy manufacturer bought the rights to the game.



Harmonograph
1857

Jules Antoine Lissajous (1822–1880), Hugh Blackburn (1823–1909)

The harmonograph is a Victorian art device that usually employs just two
pendulums to trace out paths that can be studied from both an artistic and
mathematical perspective. In one version, a pendulum moves a pen. The
other pendulum moves a table with a sheet of paper. The combined effect of
the two pendulums produces a complicated motion that steadily decays to a
single point due to friction. Each path of the pen, upon each revolution, is a
short distance away from the path on the previous revolution, giving the
patterns a wavy, spider-web-like appearance. By varying the frequency and
phases of the pendulums relative to one another, a wide range of patterns is
generated.

In the simplest version, the patterns may be characterized as Lissajous
curves that describe complex harmonic motion and can be represented
(assuming no friction) by the curves produced by x(t) = Asin(at + d), y(t) =
Bsin(bt), where t is time, and A and B are amplitudes. The ratio of a to b
controls the relative frequencies, and d is a phase difference. From
relatively few parameters, a huge panoply of ornamental curves is
produced.

The first harmonographs were constructed in 1857, when French
mathematician and physicist Jules Antoine Lissajous demonstrated patterns
produced by two tuning forks, attached to small mirrors that vibrated at
different frequencies. A beam of light reflected off the mirrors to produce
the intricate curves that delighted a general public.

British mathematician and physicist Hugh Blackburn is credited with
making the first more traditional pendulum versions of the harmonograph,
and many variations of Blackburn’s harmonograph have been created up to
the present day. More complex harmonographs may employ additional
pendulums that hang off one another. In my novel The Heaven Virus, we
encounter a zany alien harmonograph with “a pen that oscillates on a
platform that oscillated on another platform, which oscillated on another
platform, and so on for ten different platforms.”



SEE ALSO Differential Analyzer (1927), Chaos and the Butterfly Effect (1963), Ikeda Attractor
(1979), and Butterfly Curve (1989).



A harmonograph rendition produced by Ivan Moscovich. In the 1960s,
Moscovich created mechanically efficient, large harmonographs by linking
pendulums to a vertical surface. Moscovich, a famous puzzle designer, was in the
Auschwitz concentration camp, and liberated by British troops in 1945.



The Möbius Strip
1858

August Ferdinand Möbius (1790–1868)

German mathematician August Ferdinand Möbius was a shy, unsociable,
absentminded professor whose most famous discovery, the Möbius strip,
was made when he was almost seventy years old. To create the strip
yourself, simply join the two ends of a ribbon after giving one end a 180-
degree twist with respect to the other end. The result is a one-sided surface
—a bug can crawl from any point on such a surface to any other point
without ever crossing an edge. Try coloring a Möbius strip with a crayon.
It’s impossible to color one side red and the other green because the strip
has only one side.

Years after Möbius’s death, the popularity and applications of the strip
grew, and it has become an integral part of mathematics, magic, science, art,
engineering, literature, and music. The Möbius strip is the ubiquitous
symbol for recycling where it represents the process of transforming waste
materials into useful resources. Today, the Möbius strip is everywhere, from
molecules and metal sculptures to postage stamps, literature, technology
patents, architectural structures, and models of our entire universe.

August Möbius had simultaneously discovered his famous strip with a
contemporary scholar, the German mathematician Johann Benedict Listing
(1808–1882). However, Möbius seems to have taken the concept a little
further than Listing, as Möbius more closely explored some of the
remarkable properties of this strip.

The Möbius strip is the first one-sided surface discovered and
investigated by humans. It seems far-fetched that no one had described the
properties of one-sided surfaces until the mid-1800s, but history has
recorded no such observations. Given that the Möbius strip is often the first
and only exposure of a wide audience to the study of topology—the science
of geometrical shapes and their relationships to one another—this elegant
discovery deserves a place in this book.

SEE ALSO Königsberg Bridges (1736), Euler’s Formula for Polyhedra (1751), Knight’s Tours
(1759), Barycentric Calculus (1827), Reuleaux Triangle (1875), Klein Bottle (1882), and Boy’s



Surface (1901).



Multiple Möbius strips, an artwork created by Teja Krašek and Cliff Pickover.
The Möbius strip is the first one-sided surface discovered and investigated by
humans.



Holditch’s Theorem
1858

Hamnet Holditch (1800–1867)

Draw a smooth, closed, convex curve C1. Place a chord of constant length
inside curve C1, and let the chord slide around inside the curve so that the
two ends of the chord touch C1 at all times. (You can visualize this as
moving a stick around on the surface of a puddle that has the shape of curve
C1.) Label a point on the stick so that it divides the stick into two parts of
length p and q. As you move the stick, the point traces out a new closed
curve C2 within the original curve. Assuming that C1 is shaped in such a
way that the stick can actually pass around C1 once, Holditch’s theorem
states that the area between the curves C1 and C2 will be πpq. Interestingly,
this area is totally independent of the shape of C1.

Mathematicians have marveled at Holditch’s theorem for more than a
century. For example, in 1988, British mathematician Mark Cooker wrote,
“Two things immediately struck me as astonishing. First, the formula for
the area is independent of the size of the given curve C1. Second, [the
equation for the area] is the area of an ellipse of semi-axes p and q, but
there are no ellipses in the theorem!”

The theorem was published by Rev. Hamnet Holditch in 1858. Holditch
was president of Caius College in Cambridge during the middle part of the
1800s. The Holditch curve C2 for a circle C1 of radius R is another circle,
which has radius r = (R2 − pq)1/2.

SEE ALSO π (c. 250 B.C.) and Jordan Curve Theorem (1905).



As the stick slides around the outer curve, a point on the stick traces out the
inner curve. Holditch’s theorem states that the area between the curves will be
πpq and is independent of the shape of the outer curve. (Figure by Brian
Mansfield.)



Riemann Hypothesis
1859

Georg Freidrich Bernhard Riemann (1826–1866)

Many mathematical surveys indicate that the “proof of the Riemann
hypothesis” is the most important open question in mathematics. The proof
involves the zeta function, which can be represented by a complicated-
looking curve that is useful in number theory for investigating properties of
prime numbers. Written as ς(x), the function was originally defined as the
infinite sum ς(x) = 1 + (1/2)x + (1/3)x + (1/4)x + …etc. When x = 1, this
series has no finite sum. For values of x larger than 1, the series adds up to a
finite number. If x is less than 1, the sum is again infinite. The complete
zeta function, studied and discussed in the literature, is a more complicated
function that is equivalent to this series for values of x greater than 1, but
has finite values for any real or complex number, except for when the real
part is equal to 1. We know that the function equals zero when x is −2, −4,
−6,… and that the function has an infinite number of zero values for the set
of complex numbers, the real part of which is between zero and one—but
we do not know exactly for what complex numbers these zeros occur.
Mathematician Georg Bernhard Riemann conjectured that these zeros occur
for those complex numbers the real part of which equals 1/2. Although vast
numerical evidence exists that favors this conjecture, it is still unproven.
The proof of Riemann’s hypothesis would have profound consequences for
the theory of prime numbers and in our understanding of the properties of
complex numbers. Amazingly, physicists may have found a mysterious
connection between quantum physics and number theory through
investigations of the Riemann Hypothesis.

Today, more than 11,000 volunteers around the world are working on the
Riemann hypothesis, using a distributed computer software package at
Zetagrid.net to search for the zeros of the Riemann zeta function. More than
1 billion zeros for the zeta function are calculated every day.

SEE ALSO Cicada-Generated Prime Numbers (c. 1 Million B.C.), Sieve of Eratosthenes (c. 240
B.C.), Harmonic Series Diverges (c. 1350), Imaginary Numbers (1572), Four-Color Theorem (1852),
and Hilbert’s 23 Problems (1900).

http://zetagrid.net/


Tibor Majlath’s rendition of the Riemann zeta function ς(s) in the complex plane.
The four small bulls-eye patterns at top and bottom correspond to zeros at Re(s)
= 1/2. The plot extends from −32 to ~0 in the real direction and from −32 to +32
in the imaginary direction.



Beltrami’s Pseudosphere
1868

Eugenio Beltrami (1835–1899)

The pseudosphere is a geometrical object that resembles two musical horns
glued together at their rims. The “mouthpieces” of the two horns are located
at the ends of two infinitely long tails, as if to be blown only by the
omnipotent gods. The peculiar shape was first discussed in depth in the
1868 paper “Essay on an Interpretation of Non-Euclidean Geometry” by
Italian mathematician Eugenio Beltrami, famous for his work in geometry
and physics. To produce the surface, a curve called a tractrix is rotated
about its asymptote.

Whereas an ordinary sphere has a property called positive curvature
everywhere on its surface, a pseudosphere has a constant negative
curvature, which means that it can be thought of as maintaining a constant
concavity over its entire surface (except at its central cusp). Thus, a sphere
is a closed surface with a finite area, while a pseudosphere is an open
surface with infinite area. British science writer David Darling writes, “In
fact, although both the two-dimensional plane and a pseudosphere are
infinite, the pseudosphere manages to have more room! One way to think of
this is that a pseudosphere is more intensely infinite than the plane.” The
negative curvature of a pseudosphere requires that the angles of a triangle
drawn on its surface add up to less than 180°. The geometry of the
pseudosphere is called hyperbolic, and some astronomers in the past have
suggested that our entire universe might be described by hyperbolic
geometry with properties of a pseudosphere. The pseudosphere is of
historical importance because it was one of the first models for a Non-
Euclidean space.

Beltrami’s interests ranged far beyond mathematics. His four-volume
work, Opere Matematiche, discusses optics, thermodynamics, elasticity,
magnetism, and electricity. Beltrami was a member of the Accademia dei
Lincei, serving as president of this scientific academy in 1898. He was
elected to the Italian Senate a year before his death.



SEE ALSO Torricelli’s Trumpet (1641), Minimal Surface (1774), and Non-Euclidean Geometry
(1829).



A variant of the classic Beltrami pseudosphere, this depiction of a breather
pseudosphere, rendered by Paul Nylander, also has a constant negative
curvature.



Weierstrass Function
1872

Karl Theodor Wilhelm Weierstrass (1815–1897)

In the early 1800s, mathematicians often thought of a continuous function
f(x) as having a derivative (a unique tangent line) that could be specified
along most points in the curve. In 1872, German mathematician Karl
Weierstrass stunned mathematical colleagues at the Berlin Academy by
proving this thinking to be false. His function, which was continuous
everywhere but differentiable (possessing a derivative) nowhere, was
defined by f(x) = Σakcos(bkπx), where the sum is from k = 0 to ∞. Here, a is
a real number with 0 < a < 1, b is an odd positive integer, and ab > (1 +
3π/2). The summation symbol Σ indicates that the function is constructed
from an infinite number of trigonometric functions to produce a densely
nested oscillating structure.

Of course, mathematicians were well aware that functions might not be
differentiable at a few troublesome points, such as the bottom of the
inverted wedge shape specified by f(x) = |x|, which has no derivative at x =
0. However, after Weierstrass’s demonstration of a nowhere-differentiable
curve, mathematicians were in a quandary. Mathematician Charles Hermite
wrote to Thomas Stieltjes in 1893, “I turn away with fear and horror from
the lamentable plague of continuous functions that do not have
derivatives….”

In 1875, Paul du Bois-Reymond published the Weierstrass function,
making it the first published function of its kind. Two years earlier, he had
given a draft of the paper to Weierstrass to read. (The draft contained a
different function f(x) = Σsin(anx)/bn, with (a/b) > 1 for k = 0 to ∞, which
was changed before the paper was published.)

Like other fractal shapes, the Weierstrass function displays increasing
detail with progressive magnification. Other mathematicians, such as Czech
mathematician Bernard Bolzano and German mathematician Bernhard
Riemann, had worked on similar (unpublished) constructions in 1830 and
1861, respectively. Another example of an everywhere-continuous but
nowhere-differentiable curve is the fractal Koch curve.



SEE ALSO Peano Curve (1890), Koch Snowflake (1904), Hausdorff Dimension (1918), Coastline
Paradox (c. 1950), and Fractals (1975).



This Weierstrass surface, assembled from numerous related Weierstrass curves,
was approximated and rendered by Paul Nylander using fa(x) = Σ[sin(πkax)/

πka] (0 < x < 1; 2 < a < 3; and the sum was from k = 1 to 15).



Gros’s Théorie du Baguenodier
1872

Louis Gros (c. 1837–c. 1907)

Baguenaudier is one of the oldest-known mechanical puzzles. In 1901,
English mathematician Henry E. Dudeney remarked, “Certainly no home
should be without this fascinating, historic, and instructive puzzle.”

The objective of Baguenaudier is to remove all of the rings from a stiff
horizontal loop. On the first move, it is possible to remove one or two rings
from one end of the wire. The entire procedure is complicated because rings
must be put back onto the wire loop in order to remove other rings, and the
procedure is repeated many times. It turns out that the minimum number of
moves needed is (2n+1 − 2)/3 if the number of rings n is even and (2n+1 −
1)/3 if n is odd. Martin Gardner writes, “Twenty-five rings require
22,369,621 steps. Assuming that a skilled operator can do 50 steps a
minute, he could solve the puzzle…in a little more than two years.”

According to legend, the puzzle was invented by the Chinese general
Chu-ko Liang A.D. 181–234) to keep his wife busy when he was away at
the wars. In 1872, Louis Gros, a French magistrate, demonstrated an
explicit connection between these rings and binary numbers in his booklet
Théorie du Baguenodier (a spelling he preferred). Each ring can be
represented by a binary digit: 1 for on, and 0 for off. Specifically, Gros
showed that if the rings were in a set of known states, it was possible to
compute a binary number that indicated exactly how many more steps were
necessary and sufficient to solve the puzzle. Gros’s work involved one of
the first examples of what is now called the Gray Code, in which two
successive binary numbers differ in only one digit. In fact, computer
scientist Donald Knuth wrote that Gros was the “true inventor of the Gray
binary code,” which is today widely used to facilitate error correction in
digital communications.

SEE ALSO Boolean Algebra (1854), Fifteen Puzzle (1874), Tower of Hanoi (1883), Gray Code
(1947), and Instant Insanity (1966).



The ancient Baguenaudier puzzle had led to various U.S. patents from the 1970s
that describe similar puzzles. For example, one version can be easily
disassembled even if not solved. Another allows the number of rings to be varied
to change the difficulty level. (Figures are from U.S. patents 4,000,901 and
3,706,458.)



The Doctorate of Kovalevskaya
1874

Sofia Kovalevskaya (1850–1891)

The Russian mathematician Sofia Kovalevskaya made valuable
contributions to the theory of differential equations and was the first woman
in history to receive a doctorate in mathematics. Like most other
mathematical geniuses, Sofia fell in love with mathematics at a very young
age. She wrote in her autobiography: “The meaning of these concepts I
naturally could not yet grasp, but they acted on my imagination, instilling in
me a reverence for mathematics as an exalted and mysterious science which
opens up to its initiates a new world of wonders, inaccessible to ordinary
mortals.” When Sofia was 11 years old, the walls of her bedroom were
papered with mathematician Mikhail Ostrogradski’s lecture notes on
differential and integral analysis.

In 1874, Kovalevskaya received her doctorate, summa cum laude, from
Göttingen University for her work on partial differential equations, Abelian
integrals, and the structure of the rings of Saturn. However, despite this
doctorate and enthusiastic letters of recommendation from mathematician
Karl Weierstrass, for years Kovalevskaya was unable to obtain an academic
position because she was a woman. However, she finally began to lecture at
the University of Stockholm in Sweden in 1884, and she was appointed to a
five-year professorship the same year. In 1888, the Paris Academy of
Science awarded her a special prize for her theoretical treatments of rotating
solids.

Kovalevskaya also deserves a place in the history of mathematics as she
was the first Russian female mathematician of extreme notability, the third
woman in history to become a professor in Europe—behind Laura Bassi
(1711–1778) and Maria Agnesi (1718–1799)—and the first woman to hold
a university chair in mathematics anywhere. She achieved these triumphs
despite harsh resistance. For example, her father forbade her to study
mathematics, but she secretly studied at night when the family slept.
Russian women could not live apart from their families without written
permission of the father; thus, she was forced to marry so that she could go



abroad to further her education. Later in life, she wrote, “It is impossible to
be a mathematician without being a poet in soul.”

SEE ALSO The Death of Hypatia (415), Agnesi’s Instituzioni Analitiche (1748), Boole’s Philosophy
and Fun of Algebra (1909), and Noether’s Idealtheorie (1921).



Sofia Kovalevskaya was the first woman to earn a doctorate in mathematics in
Europe.



Fifteen Puzzle
1874

Noyes Palmer Chapman (1811–1889)

Although not a serious mathematical milestone like many of the entries in
this book, the Fifteen Puzzle caused such a stir among the public that it is
worthy of mention for historical reasons. Today, you can purchase a variant
of the puzzle with 15 squares (tiles) and one vacant spot in a 4 × 4 frame or
box. At the start, the squares sequentially contain the numbers 1 through 15
and then a gap. In a version of the puzzle in Sam Loyd’s 1914 Cyclopedia,
the starting configuration had the 14 and 15 reversed.

For Loyd, the goal was to “slide” the squares up, down, right, and left to
arrive at the sequence 1 through 15 (with the 14 and 15 having swapped
positions). In Cyclopedia, Loyd claims that a prize of $1,000 was offered
for the solution; alas, it is impossible to solve the puzzle from this starting
position.

The original version of the game, developed in 1874 by New York
postmaster Noyes Palmer Chapman, became an instant success in 1880
much like the Rubik’s cube 100 years later. Originally, the tiles were loose,
and the player placed them randomly, and then attempted to solve. Starting
with random configurations, the puzzle can only be solved 50 percent of the
time!

Mathematicians have since determined precisely which initial
arrangements of the tiles can lead to solutions. German mathematician W.
Ahrens noted, “The Fifteen Puzzle bobbed up in the United States; it spread
quickly, and owing to the uncountable number of devoted players it had
conquered, it became a plague.” Interestingly, the chess superstar Bobby
Fischer was an expert at solving the puzzle in less than 30 seconds if it
started with any solvable configuration.



Unsolvable Fifteen Puzzle (Starting Position)

SEE ALSO Instant Insanity (1966) and Rubik’s Cube (1974).



In the 1880s, the Fifteen Puzzle took the world by storm, much like the Rubik’s
Cube did in modern times. Mathematicians have since precisely determined
which initial arrangements of the tiles can lead to solutions.



Cantor’s Transfinite Numbers
1874

Georg Cantor (1845–1918)

German mathematician Georg Cantor founded modern set theory and
introduced the mind-boggling concept of transfinite numbers that can be
used to denote the relative “sizes” of an infinite collection of objects. The
smallest transfinite number is called aleph-nought, written as 0, which
counts the number of integers. If the number of integers is infinite (with 0
members), are there yet higher levels of infinity? It turns out that even
though there are an infinite number of integers, rational numbers (numbers
that can be expressed as fractions), and irrational numbers (like the square
root of 2 that cannot be expressed as a fraction), the infinite number of
irrationals is in some sense greater than the infinite number of rationals or
integers. Similarly, there are more real numbers (which include rational and
irrational numbers) than there are integers.

Cantor’s shocking concepts about infinity drew widespread criticism—
which likely contributed to Cantor’s bouts of severe depression and
multiple institutionalizations—before being accepted as a fundamental
theory. Cantor also equated his concept of the Absolute Infinite, which
transcended the transfinite numbers, with God. He wrote, “I entertain no
doubts as to the truths of the transfinites, which I recognized with God’s
help and which, in their diversity, I have studied for more than twenty
years.” In 1884, Cantor wrote to Swedish mathematician Gösta Mittag-
Leffler explaining that he was not the creator of his new work, but merely a
reporter. God had provided the inspiration, leaving Cantor only responsible
for the organization and style of his papers. Cantor said that he knew that
transfinites were real because “God had told me so,” and it would have
diminished God’s power had God only created finite numbers.
Mathematician David Hilbert described Cantor’s work as “the finest
product of mathematical genius and one of the supreme achievements of
purely intellectual human activity.”



SEE ALSO Aristotle’s Wheel Paradox (c. 320 B.C.), Transcendental Numbers (1844), Hilbert’s
Grand Hotel (1925), and Continuum Hypothesis Undecidability (1963).



Photo of Georg Cantor and his wife, taken around 1880. Cantor’s startling ideas
about infinity initially drew widespread criticism, which may have exacerbated
his severe and chronic battles with depression.



Reuleaux Triangle
1875

Franz Reuleaux (1829–1905)

The Reuleaux triangle (RT) is one example of a wide class of geometrical
discoveries like the Möbius Strip that did not find many practical
applications until relatively late in humankind’s intellectual development.
Not until around 1875, when the distinguished German mechanical
engineer Franz Reuleaux discussed the famous curvy triangle, did the RT
begin to find numerous uses. Although Reuleaux wasn’t the first to draw
and consider the shape formed from the intersection of three circles at the
corners of an equilateral triangle, he was the first to demonstrate its
constant-width properties and the first to use the triangle in numerous real-
world mechanisms. The construction of the triangle is so simple that
modern researchers have wondered why no one before Reuleaux had
exploited its use. The shape is a close relative of a circle because of its
constant width, meaning that the distance between two opposite points is
always the same.

Various technology patents have focused on drill bits that cut square
holes using the RT. At first, the notion of a drill that creates nearly square
holes defies common sense. How can a revolving drill bit cut anything but a
circular hole? But such drill bits exist. For example, the illustration shown
here is from the 1978 patent U.S. 4,074,778 for a “Square Hole Drill” and is
based on the RT. The RT also appears in patents for other drill bits as well
as for novel bottles, rollers, beverage cans, candles, rotatable shelves,
gearboxes, rotary engines, and cabinets.

Many mathematicians have studied the Reuleaux triangle, so we know a
lot about its properties. For example, its area is A = (1/2) × (π − √3)r2, and
the area drilled by a RT drill bit covers 0.9877003907… of the area of an
actual square. The small difference occurs because the Reuleaux drill bit
produces a square with very slightly rounded corners.

SEE ALSO Astroid (1674) and The Möbius Strip (1858).



A figure from a 1978 patent (U.S. patent 4,074,778) which describes a drill bit
for drilling a square hole based on the Reuleaux triangle.



Harmonic Analyzer
1876

Jean Baptiste Joseph Fourier (1768–1830), William Thomson, Baron
Kelvin of Largs (1824–1907)

In the early 1800s, French mathematician Joseph Fourier found that any
differentiable function can be represented to arbitrary accuracy by a sum of
sine and cosine functions, no matter how complicated the function. For
example, a periodic function f(x) can be represented by the sum of
An·sin(nx) + Bn·cos(nx) for amplitudes An and Bn.

A harmonic analyzer is a physical device for determining the coefficients
An and Bn. In 1876, Lord Kelvin, a British mathematical physicist, was first
to invent the harmonic analyzer, for the analysis of curve traces related to
ocean tidal observations. A paper with the curve of interest is wrapped
around a main cylinder. The device is made to follow the curve, and then
the positions of various subcomponents are determined to give the desired
coefficients. Kelvin writes that the “kinematic machine” predicts not merely
“the times and heights of high water, but the depths of water at any instant,
showing them by a continuous curve, for…years in advance.” Because the
tides depend on the positions of the sun, moon, rotation of the earth, shape
of the coastline, and sea floor profile, they can be quite complex.

In 1894, German mathematician Olaus Henrici (1840–1918) designed a
harmonic analyzer for determining the harmonic components of complex
sound waves such as those from musical instruments. The device employed
several pulleys and glass spheres connected to measuring dials that gave the
phase and amplitudes of 10 Fourier harmonic components.

In 1909, German engineer Otto Mader invented a harmonic analyzer that
used gears and a pointer to trace a curve; the different gears corresponded to
harmonics. The Montgomery harmonic analyzer of 1938 used optical and
photoelectric means for determining the harmonic content of a curve. H. C.
Montgomery of Bell Laboratories wrote that the device “is especially
adapted to the analysis of speech and music, since it operates directly from
a conventional type of sound track on film.”



Tidal record for two weeks (January 1–14, 1884) at Bombay. The tide was
recorded on a cylindrical sheet that turned once every 24 hours.

SEE ALSO Fourier Series (1807) and Differential Analyzer (1927).



Harmonic analyzer used circa 1916 by American physicist Dayton Miller (1866–
1941), designed by G. Coradi of Zurich.



Ritty Model I Cash Register
1879

James Ritty (1836–1918)

It is difficult to imagine how retail stores could operate efficiently before
cash registers existed. Through the decades, cash registers became
increasingly sophisticated and also functioned as theft deterrents. It is not
an exaggeration to say that they became one of the major transforming
mechanizations of the Industrial Age.

The first cash register was invented in 1879 by James Ritty. Ritty opened
his first saloon in Dayton, Ohio, in 1871, referring to himself as a “Dealer
in Pure Whiskies, Fine Wines, and Cigars.” Ritty’s biggest challenge came
from his employees who sometimes secretly pocketed money received from
customers.

While on a steamboat trip, Ritty studied a mechanism that counted the
number of revolutions of the ship’s propeller, and he began to imagine
similar mechanisms that might be used to record cash transactions. Ritty’s
early machines had two rows of keys, each key corresponding to a money
denomination from five cents through one dollar. Pressing the keys turned a
shaft that moved an internal counter. He patented his design in 1879 as
“Ritty’s Incorruptible Cashier.” Ritty soon sold his cash-register business to
a salesman named Jacob H. Eckert, and in 1884, Eckert sold the company
to John H. Patterson, who renamed the company the National Cash Register
Company.

From Ritty’s small seed, the modern cash register grew. Patterson added
paper rolls to record transactions using hole punchers. When a transaction
was finished, a bell rang on the cash register and the monetary amount was
represented on a large dial. In 1906, inventor Charles F. Kettering designed
a cash register with an electric motor. In 1974, the National Cash Register
Company became NCR Corp. Today, cash register functionality goes
beyond Ritty’s wildest dream, as these number-crunching machines time-
stamp transactions, retrieve prices from databases, and calculate appropriate
tax amounts, various rates for preferred customers, and deductions for sale
items.



SEE ALSO Curta Calculator (1948).



A 1904 replica of the Ritty Model 1 cash register.



Venn Diagrams
1880

John Venn (1834–1923)

In 1880, John Venn, a British philosopher and cleric in the Anglican
Church, devised a scheme for visualizing elements, sets, and logical
relationships. A Venn diagram usually contains circular areas representing
groups of items sharing common properties. For instance, within the
universe of all real and legendary creatures (the bounding rectangle in the
first illustration), region H represents the humans, region W the winged
creatures, and region A the angels. A glance at the diagram reveals that: (1)
All angels are winged creatures (region A lies entirely within region W); (2)
No humans are winged creatures regions H and W are nonintersecting); and
(3) No humans are angels (regions H and A are nonintersecting).

This is a depiction of a basic rule of logic—namely, that from the
statements “all A is W” and “no H is W,” it follows that “no H is A.” The
conclusion is evident when we look at the circles in the diagram.

The uses of these kinds of diagrams in logic were used before Venn—for
example, by mathematicians Gottfried Leibniz and Leonhard Euler—but
Venn was the first to comprehensively study them and formalize and
generalize their usage. In fact, Venn struggled with generalizing
symmetrical diagrams for visualizing more sets with intersecting areas, but
he only got as far as 4 sets using ellipses.

A century passed before Branko Grünbaum, a mathematician at the
University of Washington, showed that rotationally symmetric Venn
diagrams can be made from 5 congruent ellipses. The second illustration
shows one of many different symmetrical diagrams for 5 sets.



Mathematicians gradually realized that rotationally symmetric diagrams
can be drawn with prime numbers of petals only. However, symmetrical
diagrams with 7 petals were so hard to find that mathematicians initially
doubted their existence. In 2001, mathematician Peter Hamburger and artist
Edit Hepp constructed an example for 11 petals, shown on the opposite
page.

SEE ALSO Aristotle’s Organon (c. 350 B.C.), Boolean Algebra (1854), Principia Mathematica
(1910–1913), Gödel’s Theorem (1931), and Fuzzy Logic (1965).



Symmetric 11-Venn diagram, courtesy of Dr. Peter Hamburger and Edit
Hepp.



Benford’s Law
1881

Simon Newcomb (1835–1909), Frank Benford (1883–1948)

Benford’s law, also called the first-digit law or leading-digit phenomenon,
asserts that in various number lists, the digit 1 tends to occur in the leftmost
position with probability of roughly 30 percent, much greater than the
expected 11.1 percent that would result if each digit occurred with a 1 out
of 9 probability. Benford’s law can be observed, for instance, in tables that
list populations, death rates, stock prices, baseball statistics, and the area of
rivers and lakes. Explanations for this phenomenon are very recent.

Benford’s law is named after Dr. Frank Benford, a physicist at the
General Electric Company who publicized his work in 1938, although it
had been previously discovered by mathematician and astronomer Simon
Newcomb in 1881. Pages of logarithms with numbers starting with the
numeral 1 are said to be dirtier and more worn than other pages, because the
number 1 occurs as the first digit about 30 percent more often than any
other. In numerous kinds of data, Benford determined that the probability of
any number n from 1 through 9 being the first digit is log10(1 + 1/n). Even
the Fibonacci sequence—1, 1, 2, 3, 5, 8, 13…—follows Benford’s law.
Fibonacci numbers are far more likely to start with “1” than any other digit.
It appears that Benford’s law applies to any data that follows a “power law.”
For example, large lakes are rare, medium-size lakes are more common, and
small lakes are even more common. Similarly, 11 Fibonacci numbers exist
in the range 1–100, but only one in the next three ranges of 100 (101– 200,
201–300, 301–400).

Benford’s law has often been used to detect fraud. For example,
accounting consultants can sometimes use the law to detect fraudulent tax
returns in which the occurrence of digits does not follow what would
naturally be expected according to Benford’s law.

SEE ALSO Fibonacci’s Liber Abaci (1202) and Laplace’s Théorie Analytique des Probabilités
(1812).



Benford’s Law can be observed in stock prices and other financial data, as well
as in electricity bills and street addresses.



Klein Bottle
1882

Felix Klein (1849–1925)

The Klein bottle, first described in 1882 by German mathematician Felix
Klein, is an object in which the flexible neck of a bottle wraps back into the
bottle to form a shape with no inside and outside. This bottle is related to
the Möbius Strip, and can theoretically be created by gluing two Möbius
strips together along their edges. One way to build an imperfect physical
model of a Klein bottle in our 3-D universe is to have it meet itself in a
small, circular curve. Four dimensions are needed to create a true Klein
bottle without self-intersections.

Imagine your frustration if you tried to paint just the outside of a Klein
bottle. You start painting on what seems to be the bulbous “outside” surface
and work your way down the slim neck. The 4-D object does not self-
intersect, allowing you to continue to follow the neck, which is now
“inside” the bottle. As the neck opens up to rejoin the bulbous surface, you
find you are now painting inside the bottle. If our universe were shaped like
a Klein bottle, we could find paths that would cause our bodies to reverse
when we returned after a journey, so that, for example, our hearts would be
on the right sides of our bodies.

Together with Toronto’s Kingbridge Centre and Killdee Scientific Glass,
astronomer Cliff Stoll has created the world’s largest glass Klein bottle
model. The Kingbridge Klein Bottle is about 43 inches (1.1 meters) tall and
20 inches (50 centimeters) in diameter, and is made of 33 pounds (15
kilograms) of clear Pyrex glass.

Because of the peculiar properties of the Klein bottle, mathematicians
and puzzle enthusiasts study chess games and mazes played on Klein bottle
surfaces. If a map were drawn on a Klein bottle, six different colors would
be needed to ensure that no bordering areas would be colored the same.

SEE ALSO Minimal Surface (1774), Four-Color Theorem (1852), The Möbius Strip (1858), Boy’s
Surface (1901), and Turning a Sphere Inside Out (1958).



The Klein bottle has a flexible neck that wraps back into the bottle to form a
shape with no separate inside and outside. Four dimensions are needed to create
a true Klein bottle without self-intersections.



Tower of Hanoi
1883

François Édouard Anatole Lucas (1842–1891)

The Tower of Hanoi has intrigued the world since it was invented by French
mathematician Édouard Lucas in 1883 and sold as a toy. This mathematical
puzzle consists of several disks of different sizes that slide onto any of three
pegs. The disks are initially stacked on one peg in order of size, with the
smallest disk at the top. When playing the game, one can move one disk at a
time to another peg by removing the top disk in any stack and placing it on
the top of any other stack. A disk cannot be placed on top of a smaller disk.
The goal is to move the entire starting stack (often with eight disks) to
another peg. The minimum number of moves turns out to be 2n − 1, where n
is the number of disks.

The original game was said to be inspired by a legendary Indian Tower of
Brahma, which employed 64 golden disks. The priests of Brahma
continually moved these disks, using the same rules as in the Tower of
Hanoi. When the last move of the puzzle is completed, the world will end.
Note that if the priests were able to move disks at a rate of 1 per second,
then 264 − 1 or 18,446,744,073,709,551,615 moves would require roughly
585 billion years—many times the current estimated age of our universe.

Simple algorithms exist for solutions involving three pegs, and the game
is often used in computer programming classes to teach recursive
algorithms. However, the optimal solution for the Tower of Hanoi problem
with four or more pegs is still unknown. Mathematicians find the puzzle
intriguing due to its relationships to other areas of math, including Gray
Codes and finding Hamiltonian paths on an n-hypercube.

SEE ALSO Boolean Algebra (1854), Icosian Game (1857), Gros’s Théorie du Baguenodier (1872),
Tesseract (1888), Gray Code (1947), Instant Insanity (1966), and Rubik’s Cube (1974).



The Flag Tower of Hanoi, built in 1812, is located in Hanoi, Vietnam. It has a
height of about 109.5 feet (33.4 meters), or 134.5 feet (41 meters) with the flag,
and, according to some legends, was the likely inspiration for the name of the
puzzle.



Flatland
1884

Edwin Abbott Abbott (1838–1926)

More than a century ago, Edwin Abbott Abbott—a clergyman and the
headmaster of a school in Victorian England—wrote an influential book
describing interactions between creatures with access to different spatial
dimensions. The book is still popular among mathematics students and
considered useful reading for anyone studying relationships between such
dimensions.

Abbott encouraged readers to open their minds to new ways of
perceiving. Flatland described a race of two-dimensional creatures, living
in a flat plane, totally unaware of the existence of a higher dimension all
around them. If we were able to look down on a two-dimensional world, we
would be able to see inside every structure at once. A creature with access
to a fourth spatial dimension could see inside our own bodies and remove a
tumor without penetrating the skin. Flatlanders could be unaware that you
were poised inches above their planar world, recording all the events of
their lives. If you wanted to remove a Flatlander from jail, you could lift
him “up” and deposit him elsewhere in Flatland. This act would appear
miraculous to a Flatlander who would not even have the word up in his
vocabulary.

Today, computer graphic projections of 4-D objects bring us a step closer
to higher-dimensional phenomena, but even the most brilliant of
mathematicians are often unable to grasp the fourth dimension, just as the
square protagonist of Flatland had trouble understanding the third
dimension. In one of Flatland’s most emotional scenes, the two-
dimensional hero is confronted by the changing shapes of a three-
dimensional being as it passes through Flatland. The square can only see the
creature’s cross sections. Abbott believed that study of the fourth spatial
dimension is important in expanding our imagination, increasing our
reverence for the universe, and increasing our humility—perhaps the first
steps in any attempt to better understand the nature of reality or to glimpse
the divine.



SEE ALSO Euclid’s Elements (300 B.C.), Klein Bottle (1882), and Tesseract (1888).



The cover of Flatland, 6th Edition, by Edwin Abbott Abbott. Notice that “My
Wife” is portrayed as a line within the pentagonal house. In Flatland, women
could be particularly dangerous, due to their sharp ends.



Tesseract
1888

Charles Howard Hinton (1853–1907)

I know of no subject in mathematics that has intrigued both children and
adults as much as the idea of a fourth dimension, a spatial direction
different from all the directions of our everyday three-dimensional space.
Theologians have speculated that the afterlife, heaven, hell, angels, and our
souls could reside in a fourth dimension. Mathematicians and physicists
frequently use the fourth dimension in their calculations. It’s part of
important theories that describe the very fabric of our universe.

The tesseract is the four-dimensional analog of the ordinary cube. The
term hypercube is used more generally when referring to cube analogues in
other dimensions. Just as a cube can be visualized by dragging a square into
the third dimension and watching the shape that the square traces through
space, a tesseract is produced by the trail of a cube moving into the fourth
dimension. Although it is difficult to visualize a cube being shifted a
distance in a direction perpendicular to all three of its axes, computer
graphics often help mathematicians develop a better intuition for higher-
dimensional objects. Note that a cube is bounded by square faces and a
tesseract by cubical faces. We can write down the number of corners, edges,
faces, and solids for these kinds of higher-dimensional objects:

The word tesseract was coined and first used in 1888 by British
mathematician Charles Howard Hinton in his book A New Era of Thought.
Hinton, a bigamist, was also famous for his set of colored cubes that he
claimed could be used to help people visualize the fourth dimension. When



used at séances, the Hinton cubes were thought to help people glimpse
ghosts of dead family members.

SEE ALSO Euclid’s Elements (300 B.C.), Prince Rupert’s Problem (1816), Klein Bottle (1882),
Flatland (1884), Boole’s Philosophy and Fun of Algebra (1909), Rubik’s Cube (1974), and Perfect
Magic Tesseract (1999).



Rendering of a tesseract by Robert Webb using Stella4D software. The tesseract
is the four-dimensional analog of the ordinary cube.



Peano Axioms
1889

Giuseppe Peano (1858–1932)

Schoolchildren know the simple arithmetic rules of counting, addition, and
multiplication, but where do these simplest of rules come from, and how do
we know that they are correct? Italian mathematician Giuseppe Peano was
familiar with Euclid’s five axioms, or assumptions, that laid the foundation
for geometry, and Peano was interested in creating the same kind of
foundation for arithmetic and number theory. The five Peano axioms
involve non-negative integers and can be stated as: 1) 0 is a number; 2) The
successor of any number is a number; 3) If n and m are numbers and if their
successors are equal, then n and m are equal; 4) 0 is not the successor of any
number; and 5) If S is a set of numbers containing 0 and if the successor of
any number in S is also in S, then S contains all the numbers.

Peano’s fifth axiom allows mathematicians to determine whether a
property is true of all non-negative numbers. To accomplish this, we first
must show that 0 has the property. Next, we must show that, for any number
i, if i has the property, then this implies that i + 1 also has the property. A
metaphor helps. Imagine an infinite line of matches, nearly touching. If we
want them all to burn, the first match must light, and each match in the line
must be sufficiently close that it will catch fire. If one match along the line
has too great a separation, the fire stops. With Peano’s axioms, we can build
a system of arithmetic that involves an infinite set of numbers. The axioms
provide a foundation for our number system and help mathematicians
construct other number systems used in modern mathematics. Peano first
presented his axioms in his 1889 Arithmetices principia, nova methodo
exposita (The Principles of Arithmetic, Presented by a New Method).

SEE ALSO Euclid’s Elements (300 B.C.), Aristotle’s Organon (c. 350 B.C.), Boolean Algebra
(1854), Venn Diagrams (1880), Hilbert’s Grand Hotel (1925), Gödel’s Theorem (1931), and Fuzzy
Logic (1965).



The work of Italian mathematician Giuseppe Peano touches upon philosophy,
mathematical logic, and set theory. He taught mathematics at the University of
Turin until the day before he died from a heart attack.



Peano Curve
1890

Giuseppe Peano (1858–1932)

In 1890, Italian mathematician Giuseppe Peano presented one of the first
examples of a space-filling curve. British science writer David Darling calls
the discovery an “earthquake on the traditional structure of mathematics.”
When discussing this new class of curves, Russian mathematician Naum
Vilenkin wrote that “everything was in ruins, that all the basic mathematical
concepts had lost their meaning.”

The term Peano curve is often used synonymously with space-filling
curve, and such curves can often be created by an iterative process that
eventually builds a zigzagging line that covers the entire space in which it
resides. Martin Gardner writes, “Peano curves were a profound shock to
mathematicians. Their paths seem to be one-dimensional, yet at the limit
they occupy a two-dimensional area. Should they be called curves? To
make things worse, Peano curves can be drawn just as easily to fill cubes
and hypercubes….” Peano curves are continuous, yet like the boundary of a
Koch Snowflake or the Weierstrass Function, no point on the curve has a
unique tangent. Space-filling curves have a Hausdorff Dimension of 2.

Space-filling curves have had practical applications and have suggested
efficient routes to take when visiting a number of towns. For example, John
J. Bartholdi III, a professor in the School of Industrial and Systems
Engineering at the Georgia Institute of Technology, has used Peano curves
to build a routing system for an organization that delivers hundreds of meals
to the poor and to route blood delivery by the American Red Cross to
hospitals. Because delivery locations tend to be clustered around urban
areas, Bartholdi’s use of space-filling curves produces very good routing
suggestions because the curves tend to visit all the locations on a region of a
map before moving on to another region. Scientists have also experimented
with space-filling curves for weapons targeting because the mathematical
technique can be implemented so that it runs very efficiently on a computer
sent into orbit around the Earth.



SEE ALSO Knight’s Tours (1759), Weierstrass Function (1872), Tesseract (1888), Koch Snowflake
(1904), Hausdorff Dimension (1918), and Fractals (1975).



The Hilbert cube is a three-dimensional extension to a traditional two-
dimensional Peano curve. This 4-inch (10.2-centimeter) bronze and stainless-
steel sculpture was designed by Carlo H. Sequin at the University of California
at Berkeley.



Wallpaper Groups
1891

Evgraf Stepanovich Fedorov (1853–1919), Arthur Moritz Schönflies
(1853–1928), William Barlow (1845–1934)

The phrase “wallpaper groups” refers to ways in which a plane may be tiled
so that the resulting pattern repeats indefinitely in two dimensions.
Seventeen wallpaper patterns exist, each identified by symmetries such as
those involving translations (for example, shifting or sliding) and rotations.

The eminent Russian crystallographer E. S. Fedorov discovered and
classified these patterns in 1891, and these patterns were also studied,
independently, by the German mathematician A. M. Schönflies and the
English crystallographer William Barlow. Thirteen of these patterns
(formally known as isometries) include some kind of rotational symmetry,
while four do not. Five show hexagonal symmetries. Twelve show
rectangular symmetries. Martin Gardner writes, “Seventeen different
symmetry groups [exist] that exhibit all the fundamentally different ways in
which patterns can be repeated endlessly in two dimensions. The elements
of these groups are simply operations performed on one basic pattern:
sliding along the plane, rotating it, or giving it a mirror reversal. The
seventeen symmetry groups are of great importance in the study of crystal
structure.”

The geometer H. S. M. Coxeter has noted that the art of filling a plane
with a repeated pattern reached its peak in thirteenth-century Spain, where
the Islamic Moors used all 17 groups in their beautiful decorations of the
Alhambra, a palace and fortress. Because some Islamic traditions
discouraged the use of images of people in artworks, symmetrical wallpaper
patterns became particularly attractive as decorations. The Alhambra palace
in Granada contains intricate arabesque designs that decorate the tiles,
plasterwork, and woodcarvings.

Dutch artist M. C. Escher’s (1898–1972) visit to the Alhambra palace
influenced his own art, which is often replete with symmetries. Escher once
said his trips to the Alhambra were “the richest source of inspiration I have
ever tapped.” Escher tried to “enhance” the artworks of the Moors by using



geometric grids as the basis for his sketches, which he then superimposed
with animal designs.

SEE ALSO Group Theory (1832), Squaring a Rectangle (1925), Voderberg Tilings (1936), Penrose
Tiles (1973), Monster Group (1981), and The Quest for Lie Group E8 (2007).



The Alhambra palace and fortress complex. The Islamic Moors used numerous
different wallpaper groups in their beautiful decorations of the Alhambra.



Sylvester’s Line Problem
1893

James Joseph Sylvester (1814–1897), Tibor Gallai (1912–1992)

Sylvester’s line problem—also known as Sylvester’s problem of collinear
points or the Sylvester-Gallai theorem—stumped the entire mathematical
community for forty years. It states that given a finite number of points in
the plane, either: 1) A line exists that passes through exactly two of the
points, or 2) All the points are collinear, or lying in the same straight line.
English mathematician James Sylvester made the conjecture in 1893 but
could not provide a proof. The Hungarian-born mathematician Paul Erdös
studied the problem in 1943, and it was correctly solved by Hungarian
mathematician Tibor Gallai in 1944.

Sylvester had actually asked readers to “Prove that it is not possible to
arrange any finite number of real points so that a right line through every
two of them shall pass through a third, unless they all lie in the same right
line.” (Sylvester used the term right line to indicate a straight line.)

Stimulated by Sylvester’s conjecture, in 1951 mathematician Gabriel
Andrew Dirac (1925–1984)—stepson of Paul Dirac and nephew of Eugene
Wigner—conjectured that for any collection of n points, not all collinear,
there exist at least n/2 lines containing exactly two points. Today, only two
counterexamples to Dirac’s conjecture are known.

Mathematician Joseph Malkevitch writes about Sylvester’s problem,
“Some easy-to-state problems in mathematics stand out, despite their
seeming simplicity, because initially they eluded solution….Erdös
expressed his surprise that the Sylvester problem went unanswered for so
many years….One seminal problem can open up many avenues of ideas,
which even to this day are still being explored.” Sylvester said in his 1877
address to Johns Hopkins University, “Mathematics is not a book confined
within a cover….It is not a mine, whose treasures…fill only a limited
number of veins….It is limitless….Its possibilities are as infinite as the
worlds which are forever crowding in and multiplying upon the
astronomer’s gaze.”



SEE ALSO Euclid’s Elements (300 B.C.), Pappus’s Hexagon Theorem (c. 340), The Matrices of
Sylvester (1850), and Jung’s Theorem (1901).



Given a scattering of a finite number of points—not all along a single line (and
represented here by colored spheres)—the Sylvester-Gallai theorem tells us that
there must exist at least one line containing exactly two points.



Proof of the Prime Number Theorem
1896

Johann Carl Friedrich Gauss (1777–1855), Jacques Salomon
Hadamard (1865–1963), Charles-Jean de la Vallée-Poussin (1866–
1962), John Edensor Littlewood (1885–1977)

Mathematician Don Zagier has commented that “despite their simple
definition and role as the building blocks of the natural numbers, the prime
numbers grow like weeds among the natural numbers…and nobody can
predict where the next one will sprout…. Even more astonishing…the
prime numbers exhibit stunning regularity, there are laws governing their
behavior, and they obey these laws with almost military precision.”

Consider π(n), which is the number of primes less than or equal to a
given number n. In 1792, when only 15 years old, Carl Gauss became
fascinated by the occurrence of prime numbers, and he proposed that π(n)
was approximately equal to n/ln(n), where ln is the natural logarithm. One
consequence of the prime number theorem is that the nth prime number is
approximately equal to nln(n), with the relative error of this approximation
approaching 0 as n approaches infinity. Gauss later refined his estimate to
π(n)~ Li(n) where Li(n) is the integral from 2 to n of dx/ln(x).

Finally, in 1896, French mathematician Jacques Hadamard and Belgian
mathematician Charles-Jean de la Vallée-Poussin independently proved
Gauss’s theorem. Based on numerical experiments, mathematicians had
conjectured that π(n) was always somewhat less than Li(n). However, in
1914, Littlewood proved that π(n) < Li(n) reverses infinitely often if one
were able to search though huge values of n. In 1933, South African
mathematician Stanley Skewes showed that the first crossing of π(n) − Li(n)
= 0 occurs before 10^10^10^34, a number referred to as Skewes’ number,
where ^ indicates the raising to a power. Since 1933, this value has been
reduced to around 10316.

English mathematician G. H. Hardy (1877–1947) once described
Skewes’ number as “the largest number which has ever served any definite
purpose in mathematics,” although the Skewes’ number has since lost this
lofty accolade. Around 1950, Paul Erdös and Atle Selberg discovered an



elementary proof of the prime number theorem—that is, a proof that uses
only real numbers.

SEE ALSO Cicada-Generated Prime Numbers (c. 1 Million B.C.), Sieve of Eratosthenes (240 B.C.),
Goldbach Conjecture (1742), Constructing a Regular Heptadecagon (1796), Gauss’s Disquisitiones
Arithmeticae (1801), Riemann Hypothesis (1859), Brun’s Constant (1919), Gilbreath’s Conjecture
(1958), Ulam Spiral (1963), Erdös and Extreme Collaboration (1971), Public-Key Cryptography
(1977), and Andrica’s Conjecture (1985).



Prime numbers, represented in boldface, “grow like weeds among the natural
numbers…and nobody can predict where the next one will sprout….” Although
the number 1 used to be considered a prime, today mathematicians generally
consider 2 to be the first prime.



Pick’s Theorem
1899

Georg Alexander Pick (1859–1942)

Pick’s theorem is delightful for its simplicity, and it can be experimented
with using a pencil and graph paper. Draw a simple polygon on an equally
spaced grid so that all of the vertices (corners) of the polygon fall on grid
points. Pick’s theorem tells us that the area A of this polygon, in units
squared, can be determined by counting the number i of points located
within the polygon and the number b of boundary points located on the
boundary of the polygon, according to A = i + b/2 − 1. Pick’s theorem does
not apply to polygons that have holes in them.

Austrian mathematician Georg Pick presented his theorem in 1899. In
1911, Pick introduced Albert Einstein to the work of relevant and key
mathematicians, which helped Einstein to develop his general theory of
relativity. When Hitler’s troops invaded Austria in 1938, Pick, a Jew, fled to
Prague. Sadly, his flight was not sufficient to save his life. The Nazis
invaded Czechoslovakia and sent him to the Theresienstadt concentration
camp in 1942, where he died. Of the approximately 144,000 Jews sent to
Theresienstadt, about a quarter died on site and around 60 percent were
shipped to Auschwitz or other death camps.

Mathematicians have since discovered that no direct analogue of Pick’s
theorem exists in three dimensions that allows us to calculate the volume of
a polytope (for example, a polyhedron) by counting its interior and
boundary points.

Using tracing paper that has a grid, we can use Pick’s theorem to estimate
the areas of regions on a map, if we approximate the region with a polygon.
British science writer David Darling writes: “Over the past few decades,…
various generalizations of Pick’s theorem have been made to more general
polygons, to higher-dimensional polyhedra, and to lattices other than square
lattices….The theorem provides a link between traditional Euclidean
geometry and the modern subject of digital (discrete) geometry.”

SEE ALSO Platonic Solids (350 B.C.), Euclid’s Elements (300 B.C.), and Archimedean Semi-
Regular Polyhedra (c. 240 B.C.).



According to Pick’s theorem, the area of this polygon is i + b/2 − 1, where i is the
number of points located within the polygon and b is the number of boundary
points located on the boundary of the polygon.



Morley’s Trisector Theorem
1899

Frank Morley (1860–1937)

In 1899, Anglo-American mathematician and accomplished chess player
Frank Morley proposed Morley’s theorem that states that in any triangle,
the three points of intersection of adjacent angle trisectors always form an
equilateral triangle. Trisectors refers to the straight lines that divide the
interior angles into three equal parts, and these lines intersect in six points,
of which three are vertices of an equilateral triangle. Various proofs exist,
and some of the earliest proofs were quite complicated.

Morley’s colleagues found the result so beautiful and surprising that it
came to be known as “Morley’s Miracle.” Richard Francis writes,
“Apparently overlooked by ancient geometers or hastily abandoned because
of trisection and constructability uncertainties, the problem came to light
only a century ago. Though conjectured around 1900 by Frank Morley,
resolution or rigorous proof was to await even more recent advances. This
beautiful and elegant Euclidean theorem, mysteriously unnoticed across the
ages, thus belongs to the twentieth century.”

Morley taught at both the Quaker College in Haverford, Pennsylvania,
and at Johns Hopkins University. In 1933, he published Inversive Geometry
co-written with his son, the mathematician Frank V. Morley. The son wrote
about his father in One Contribution to Chess: “He would begin to fiddle in
his waistcoat pocket for a stub of pencil perhaps two inches long, and there
would be a certain amount of scrabbling in a side pocket for an old
envelope…until he would get up a little stealthily and make his way toward
his study…and my mother would call out, ‘Frank, you’re not going to
work!’—and the answer would always be, ‘A little, not much!’—and the
study door would close.”

Morley’s theorem continues to fascinate mathematicians. In 1998, Alain
Connes, a French Fields Medalist, presented a new proof of Morley’s
theorem.

SEE ALSO Euclid’s Elements (300 B.C.), Law of Cosines (c. 1427), Viviani’s Theorem (1659),
Euler’s Polygon Division Problem (1751), and Ball Triangle Picking (1982).



According to Morley’s theorem—also known as Morley’s Miracle—for any
triangle, the three points of intersection of adjacent angle trisectors always form
an equilateral triangle.



Hilbert’s 23 Problems
1900

David Hilbert (1862–1943)

German mathematician David Hilbert wrote, “A branch of science is full of
life as long as it offers an abundance of problems; a lack of problems is a
sign of death.” In 1900, he presented 23 important mathematical problems
to be targeted for solution in the twentieth century. Because of Hilbert’s
prestige, mathematicians spent a great deal of time tackling the problems
through the years. His extremely influential speech on the subject started,
“Who of us would not be glad to lift the veil behind which the future lies
hidden; to cast a glance at the next advances of our science and at the
secrets of its development during future centuries? What particular goals
will there be toward which the leading mathematical spirits of coming
generations will strive?”

About ten of the problems have since been cleanly solved, and many
others have solutions that are accepted by some mathematicians but for
which some controversy still remains. For example, the Kepler Conjecture
(part of Problem 18), which raised questions about the efficiency of sphere
packing, involved a computer-assisted proof, which may be difficult for
people to verify.

One of the most famous problems still unresolved today is the Riemann
Hypothesis, which concerns the distribution of the zeros of the Riemann
zeta function (a very wiggly function). David Hilbert remarked, “If I were
to awaken after having slept for a thousand years, my first question would
be: Has the Riemann hypothesis been proven?”

Ben Yandell writes, “Solving one of Hilbert’s Problems has been the
romantic dream of many a mathematician…. In the last hundred years,
solutions and significant partial results have come from all over the world.
Hilbert’s list is a thing of beauty, and aided by their romantic and historical
appeal, these well-chosen problems have been an organizing force in
mathematics.”

SEE ALSO Kepler Conjecture (1611), Riemann Hypothesis (1859), and Hilbert’s Grand Hotel
(1925).



Photograph of David Hilbert (1912), which appeared on postcards of faculty
members at the University of Göttingen. Students often purchased such
postcards.



Chi-Square
1900

Karl Pearson (1857–1936)

Scientists often obtain experimental results that do not agree with those
anticipated according to the rules of probability. For example, when tossing
a die, if the deviation from expectation is very large, we would say that the
die is probably biased, such as would be the case for a die with unequally
weighted sides.

The chi-square test was first published in 1900 by British mathematician
Karl Pearson, and his method has since been used in countless fields
ranging from cryptography and reliability engineering to the analysis of
hitting records in baseball. When applying the test, events are assumed to
be independent (as in our die-tossing example). The chi-square value can be
calculated once we know each observed frequency, Oi, and each theoretical
(i.e., expected) frequency, Ei. The formula can be expressed as χ2 = Σ(Oi −
Ei)2/Ei. If the frequency of expected and observed events agrees exactly,
then χ2 = 0. The greater the differences, the larger the value for χ2. In
practice, the significance of this difference is determined with reference to a
chi-square table that helps researchers determine the degree of significance
of the difference. Of course, researchers may also be suspicious if χ2 is too
close to zero, and thus may look for values of χ2 that are either too low or
too high.

As an example, let us test the hypothesis that a random sample of 100
insects has been drawn from a population in which butterflies and beetles
are equal in frequency. If we observe 10 beetles and 90 butterflies, we
obtain a χ2 value of (10 − 50)2/50 + (90 − 50)2/50 = 64, a huge value that
suggests that our initial hypothesis—that we have randomly drawn from a
population with the same number of butterflies as beetles—is probably
incorrect.

Pearson received many awards for his work, although outside the field of
mathematics he was a racist and advocated a “war” against “inferior races.”



SEE ALSO Dice (3000 B.C.), Law of Large Numbers (1713), Normal Distribution Curve (1733),
Least Squares (1795), and Laplace’s Théorie Analytique des Probabilités (1812).



Chi-square values help us test the hypothesis that a random sample of 100
insects has been drawn from a population in which butterflies and beetles are
equal in frequency. For this figure, a value of 64 suggests that our hypothesis is
probably incorrect.



Boy’s Surface
1901

Werner Boy (1879–1914), Bernard Morin (b. 1931)

Boy’s surface was discovered in 1901 by German mathematician Werner
Boy. Like the Klein Bottle, this object is a single-sided surface with no
edges. Boy’s surface is also a non-orientable surface, which means that a
two-dimensional creature can travel within the surface and find paths that
will reverse the creature’s handedness when it returns to its starting point.
The Möbius Strip and Klein bottle also have non-orientable surfaces.

Formally speaking, Boy’s surface is an immersion of a projective plane
in three-dimensional space with no singularities (pinch points). Geometric
recipes exist for its creation, and some of them involve the stretching of a
disk and the gluing of the disk edge to the edge of a Möbius strip. During
the process, the surface is allowed to pass through itself, but it may not be
torn or have any pinch points. The Boy’s surface is very difficult to
visualize, although computer graphics help researchers have a better feel for
the shape.

Boy’s surface has three-fold symmetry. In other words, there exists an
axis about which the shape can be rotated by 120° and look identical.
Interestingly, Boy was able to sketch several models of the surface, but he
could not determine the equations (that is, a parametric model) to describe
the surface. Finally, in 1978, French mathematician Bernard Morin used
computers to find the first parameterization. Morin, who was blind since
childhood, had a successful career in mathematics.

Mathematics journalist Allyn Jackson writes, “Far from detracting from
his extraordinary visualization ability, Morin’s blindness may have
enhanced it….One thing that is difficult about visualizing geometric objects
is that one tends to see only the outside of the objects, not the inside, which
might be very complicated….Morin has developed the ability to pass from
outside to inside….Because he is so accustomed to tactile information,
Morin can, after manipulating a hand-held model for a couple of hours,
retain the memory of its shape for years afterward.”



SEE ALSO Minimal Surface (1774), The Möbius Strip (1858), Klein Bottle (1882), Turning a
Sphere Inside Out (1958), and Weeks Manifold (1985).



Boy’s surface, rendered by Paul Nylander. This object is a single-sided surface
with no edges.



Barber Paradox
1901

Bertrand Russell (1872–1970)

In 1901, British philosopher and mathematician Bertrand Russell uncovered
a possible paradox or apparent contradiction that forced a modification to
set theory. One version of Russell’s paradox, also known as the Barber
paradox, involves a town with one male barber who, every day, shaves
every man who doesn’t shave himself, and no one else. Does the barber
shave himself?

The scenario seemed to demand that the barber shave himself if and only
if he does not shave himself! Helen Joyce writes, “The paradox raises the
frightening prospect that the whole of mathematics is based on shaky
foundations, and that no proof can be trusted.”

Russell’s paradox, in its original form, involves the set of all sets that
aren’t members of themselves. Many sets R are not members of themselves
—for example, the set of cubes is not a cube. Examples of sets T that do
contain themselves as members are the set of all sets, or the set of all things
except cubes. Every set would seem to be either of type R or of type T, and
no set can be both. However, Russell wondered about the set S of all sets
that aren’t members of themselves. Somehow, S is neither a member of
itself nor not a member of itself. Russell realized that he had to alter set
theory in a way to avoid such confusions and possible contradictions.

One possible refutation of the Barber paradox seems to be that we can
simply say that such a barber does not exist. Nevertheless, Russell’s
paradox led to a cleaner form of set theory. German mathematician Kurt
Gödel made use of similar observations when forming his incompleteness
theorem. British mathematician Alan Turing also found Russell’s work
useful when studying the undecidability of the halting problem, which
concerns the assessment of whether or not a computer program will finish
in a finite number of steps.

SEE ALSO Zeno’s Paradoxes (c. 445 B.C.), Aristotle’s Wheel Paradox (c. 320 B.C.), St. Petersburg
Paradox (1738), Zermelo’s Axiom of Choice (1904), Principia Mathematica (1910–1913), Banach-
Tarski Paradox (1924), Hilbert’s Grand Hotel (1925), Gödel’s Theorem (1931), Turing Machines



(1936), Birthday Paradox (1939), Newcomb’s Paradox (1960), Chaitin’s Omega (1974), and
Parrondo’s Paradox (1999).



The Barber paradox involves a town with one male barber who, every day,
shaves every man who doesn’t shave himself, and no one else. Does the barber
shave himself?



Jung’s Theorem
1901

Heinrich Wilhelm Ewald Jung (1876–1953)

Imagine a finite set of scattered points, as you might see in a map of a
constellation of stars or randomly placed drops of ink on a page. Draw a
line between the two points that have the greatest separation. This largest
possible distance d between two points is called the geometric span of the
set of points. Jung’s theorem says that no matter how strangely scattered the
points are, they are guaranteed to be enclosed by a circle with a radius no
greater than d/√3. In the case of points arranged along the sides of an
equilateral triangle with a side length of 1 unit, the enclosing circle touches
all three vertices (corners) of the triangle and has a radius of 1/√3.

Jung’s theorem may be generalized to three dimensions in which the set
of points can be enclosed by a sphere with a radius no greater than (√6) ×
d/4. This means, for example, that if we have a collection of point-like
objects in space, such as a flock of birds or a school of fish, then these
objects are guaranteed to be enclosable by such a sphere. Jung’s theorem
has since been extended to various Non-Euclidean Geometries and spaces.

If we want to move the theorem into more mind-boggling territories,
such as encapsulating birds in higher-dimensional hyperspheres of
dimension n, we can resort to the wonderfully compact formula

which means that a four-dimensional hypersphere of radius d√(2/5) is
guaranteed to trap a flock of starlings that are flying with access to the
fourth dimension. German mathematician Heinrich Jung studied
mathematics, physics, and chemistry at the University of Marburg and at
the University of Berlin from 1895 to 1899, and he published his theorem in
1901.

SEE ALSO Euclid’s Elements (300 B.C.), Non-Euclidean Geometry (1829), and Sylvester’s Line
Problem (1893).



A flock of birds, no matter how complicated, can be enclosed by a sphere with a
radius no greater than (√6) × d/4 if we consider each bird to be a point in space.
What can we say about a flock of starlings in a four-dimensional space?



Poincaré Conjecture
1904

Henri Poincaré (1854–1912), Grigori Perelman (b. 1966)

The Poincaré conjecture, posed in 1904 by French mathematician Henri
Poincaré, concerns topology, the branch of mathematics involving the study
of shapes and their interrelations. In 2000, the Clay Mathematics Institute
offered $1 million for a proof of this conjecture, which can be conceptually
visualized at a high level in terms of oranges and doughnuts. Imagine a loop
of string wrapped around an orange. In theory, we can slowly shrink the
loop to a point without tearing the string or the orange, and without the
string leaving the surface of the orange. However, if a string is wrapped
around a doughnut through its hole, the string can’t be shrunk to a point
without breaking the string or the doughnut. The surface of the orange is
called simply connected, and the doughnut surface is not. Poincaré
understood that a two-dimensional spherical shell (for example, modeled by
the orange surface) is simply connected, and he asked if a three-
dimensional sphere (the set of points in four-dimensional space that are the
same distance away from a single point) has the same properties.

Finally, in 2002 and 2003, Russian mathematician Grigori Perelman
proved the conjecture. Oddly enough, Perelman showed little interest in
collecting the prize and simply placed his solution on the Internet rather
than publishing it in a mainstream journal. In 2006, Perelman was awarded
the prestigious Fields Medal for his solution, but he rejected the award,
saying that it was “completely irrelevant” for him. For Perelman, if the
proof was correct “then no other recognition is needed.”

Science magazine reported in 2006, “Perelman’s proof has fundamentally
altered two distinct branches of mathematics. First, it solved a problem that
for more than a century was the indigestible seed at the core of topology….
[Second], the work will lead to a much broader result…a ‘periodic table’
that brings clarity to the study of three-dimensional spaces, much as
Mendeleev’s table did for chemistry.”

SEE ALSO Königsberg Bridges (1736), Klein Bottle (1882), Fields Medal (1936), and Weeks
Manifold (1985).



French mathematician Henri Poincaré, who posed the Poincaré conjecture in
1904. The conjecture remained unproven until 2002 and 2003 when Russian
mathematician Grigori Perelman finally offered a valid proof.



Koch Snowflake
1904

Niels Fabian Helge von Koch (1870–1924)

The Koch snowflake is often one of the first fractal objects to which
students are exposed, and it is also among the earliest fractal objects
described in the history of mathematics. The intricate shape appears in
Swedish mathematician Helge von Koch’s 1904 paper “On a Continuous
Curve without Tangents, Constructible from Elementary Geometry.” A
related object, the Koch curve, starts with a line segment instead of an
equilateral triangle for the process used to generate the curve.

To create the crinkly Koch curve, we may recursively alter a line
segment, watching it sprout an infinite amount of edges in the process.
Imagine splitting a line into three equal parts. Next, replace the middle
portion with two lines, both of the same length as the first three, so that they
form a V-shaped wedge (the top edges of an equilateral triangle). The shape
now consists of four straight lines. For each of these lines, repeat the
process of splitting and forming wedges.

Starting with a line 1 inch in length, the length of the growing curve at
step n in the procedure is (4/3)n inches. After a few hundred iterations, the
length of the curve becomes longer than the diameter of the visible
universe. In fact, the “final” Koch curve has infinite length and a fractal
dimension of about 1.26, because it partially fills the 2-D plane in which it
is drawn.

Even though the edge of a Koch snowflake has an infinite length, it
encloses a finite area (2s2√3)/5, where s is the original side length, or
equivalently, the area is simply 8/5 times the area of the original triangle.
Note that a function has no definite tangent at a corner, which means that a
function is not differentiable (has no unique derivatives) at corners. The
Koch curve is non-differentiable everywhere (because it is so pointy!), even
though the curve is continuous.

SEE ALSO Weierstrass Function (1872), Peano Curve (1890), Hausdorff Dimension (1918), Menger
Sponge (1926), Coastline Paradox (c. 1950), and Fractals (1975).



Koch snowflake tiling. To create this pattern, mathematician and artist Robert
Fathauer uses different snowflake sizes.



Zermelo’s Axiom of Choice
1904

Ernst Friedrich Ferdinand Zermelo (1871–1953)

David Darling calls this axiom in set theory “one of the most controversial
axioms in mathematics.” The axiom was formulated in 1904 by the German
mathematician Ernst Zermelo, who was later appointed to an honorary chair
at the University of Freiburg, which he renounced in protest of Hitler’s
regime.

While complex to write mathematically, the axiom can be visualized
using a long shelf of goldfish bowls. Each bowl must contain at least one
goldfish. The axiom of choice (AC) simply says that you can always
choose, in theory, one goldfish from each bowl, even if there are infinitely
many bowls, even if we have no “rule” for which goldfish to pluck from
each bowl, and even if the goldfish are indistinguishable.

Using mathematical language, if S is a collection of non-empty sets
having no element in common, then a set must exist that has exactly one
element in common with every set s of S. Looking at this another way, there
exists a choice function f with the property that, for each set s in the
collection, f(s) is a member of s.

Before the AC, there was no reason to believe that we could always find
a mathematical rationale for which fish to pick from the bowls if some of
the bowls had infinitely many fish, or at least no reason to think that we
could always find a rationale that would take less than an infinite amount of
time to use. It turns out that the AC is at the core of many important
mathematical theorems in algebra and topology, and most mathematicians
today accept AC because it is so useful. Eric Schecter writes, “When we
accept AC, this means we are agreeing to the convention that we shall
permit ourselves to use a hypothetical choice function f in proofs, as though
it ‘exists’ in some sense, even in cases where we cannot give an explicit
example of it or an explicit algorithm for it.”

SEE ALSO Peano Axioms (1889), Barber Paradox (1901), and Hilbert’s Grand Hotel (1925).



In theory, even if we have infinitely many goldfish bowls, we can always choose
one goldfish from each bowl, even if we have no “rule” for which goldfish to
pluck from each bowl, and even if the goldfish are indistinguishable.



Jordan Curve Theorem
1905

Marie Ennemond Camille Jordan (1838–1922), Oswald Veblen (1880–
1960)

Find a loop of wire, twist it in a very convoluted fashion that does not
include any self-intersections, and lay it flat on a table to create a maze of
sorts. You place an ant in the structure. If the maze is sufficiently complex,
it is visually difficult to determine if the ant is inside or outside the loop.
One way to determine if the ant is within the loop is to count the number of
times an imaginary straight line drawn from the ant to the outside world
crosses the wire. If the line crosses the curve an even number of times, the
ant is outside the maze; if an odd number of times, the ant is inside.

French mathematician Camille Jordan researched these kinds of rules for
deter mining the inside and outside of curves, and he is most famous for his
theorem showing that a simply closed curve divides a plane into an inside
and outside, now called the Jordan curve theorem (JCT). Although this may
seem obvious, Jordan realized that a rigorous proof was necessary and
difficult. Jordan’s work with curves appeared in his Cours d’analyse de
l’École Polytechnique (Analysis Course from the École Polytechnique), first
published in three volumes between 1882 and 1887. The JCT appeared in
the third edition of the text, published between 1909 and 1915. American
mathematician Oswald Veblen is usually credited with being the first to
provide a precise proof of the JCT, in 1905.

Note that a Jordan curve is a plane curve that is a deformed circle, and it
must be simple (the curve cannot cross itself) and closed (has no endpoints
and also completely encloses an area). On a plane or sphere, Jordan curves
have an inside and outside—and to get from one to the other, at least one
line must be crossed. However, on a torus (the surface of a doughnut
shape), Jordan curves do not necessarily exhibit this property.

SEE ALSO Königsberg Bridges (1736), Holditch’s Theorem (1858), Poincaré Conjecture (1904),
Alexander’s Horned Sphere (1924), and Sprouts (1967).



Jordan curves by mathematician and artist Robert Bosch. TOP: Is the red dot
inside or outside of the Jordan curve? BOTTOM: The white line is a Jordan
curve; the green and blue regions are its interior and exterior, respectively.



Thue-Morse Sequence
1906

Axel Thue (1863–1922), Marston Morse (1892–1977)

The Thue-Morse (TM) sequence is a binary sequence that begins
01101001…. In my book Mazes for the Mind, when the sequence is
converted to sounds, one character remarks, “It’s the strangest thing ye ever
heard. It ain’t exactly irregular and it ain’t exactly regular, either.” The
sequence is named in honor of the Norwegian mathemati cian Axel Thue
and American mathematician Marston Morse. In 1906, Thue introduced the
sequence as an example of an aperiodic, recursively computable string of
symbols. In 1921, Morse applied it to his studies of differential geometry,
and numerous fascinating properties and applications have since been
discovered.

One way to generate the sequence is to start with a zero and then
repeatedly do the following replacements: 0 → 01 and 1 → 10 to produce
the following successive generations: 0, 01, 0110, 01101001,
0110100110010110….Notice that some terms, such as the third term 0110,
are palindromes (sequences that read the same backward or forward).

You can generate the sequence in another way: Each generation is
obtained from the preceding one by appending its complement. For
example, if you see a 0110, you append to it a 1001. You can also generate
the sequence by starting with the numbers 0, 1, 2, 3,…and writing them in
binary notation: 0, 1, 10, 11, 100, 101, 110, 111,….Next, calculate the sum
of the digits modulo 2 for each binary number—that is, divide the sum by 2
and use the remainder. This also yields the TM sequence: 0, 1, 1, 0, 1, 0, 0,
1,…

The sequence is self-similar. For example, retaining every other term of
the infinite sequence reproduces the sequence. Retaining every other pair
also reproduces the sequence. In other words, you take the first two
numbers, skip the next two numbers, and so forth. Although aperiodic, the
sequence is anything but random. It has strong short-range and long-range
structures. For example, there can never be more than two adjacent terms
that are identical.



SEE ALSO Boolean Algebra (1854), Penrose Tiles (1973), Fractals (1975), and Audioactive
Sequence (1986).



Mark Dow’s artwork composed of square tiles that contain a set of symmetrical
spirals. The 1s and 0s of the Thue-Morse sequence control the two orientations
of the tiles as they fill a checkerboard array.



Brouwer Fixed-Point Theorem
1909

Luitzen Egbertus Jan Brouwer (1881–1966)

David Darling refers to the Brouwer fixed-point theorem as “an amazing
result in topology and one of the most useful theorems in mathematics.”
Max Beran says the theorem “takes his breath away.” In order to help
visualize the theorem, imagine we have two sheets of graph paper of the
same size, one atop the other. Your messy roommate takes one piece,
crumples it into a messy blob, and tosses it onto the other sheet so that no
piece of the blob extends beyond the edge of the bottom paper. The theorem
states that at least one point exists in the blob that lies exactly above the
same position on the bottom sheet where it was originally. (We assume that
the roommate does not tear the paper.)

The same theorem works in other dimensions. Imagine a ball-shaped
lemonade bowl with an opening on top. Your messy roommate stirs the
lemonade. Even if all the points in the liquid move, Brouwer’s theorem
insists that there must be some point in the lemonade that is in exactly the
same spot as it was before your roommate started stirring.

In the more precise language of mathematics, the theorem states that a
continuous function from an n-ball into an n-ball (where n > 0 is the
dimension) must have a fixed point.

Dutch mathematician Luitzen Brouwer proved the theorem for the case
for n = 3 in 1909. French mathematician Jacques Hadamard proved the
general case in 1910. According to Martin Davis, Brouwer was often
combative, and toward the end of his life Brouwer became isolated and
“under the spell of totally unfounded financial worries and a paranoid fear
of bankruptcy, persecution, and illness.” He was hit by a car and killed in
1966 while crossing the street.

SEE ALSO Projective Geometry (1639), Königsberg Bridges (1736), Hairy Ball Theorem (1912),
Hex (1942), and Ikeda Attractor (1979).



Randomly tossed crumpled papers help visualize Dutch mathematician Luitzen
Brouwer’s fixed-point theorem— “an amazing result in topology and one of the
most useful theorems in mathematics.”



Normal Number
1909

Félix Édouard Justin Émile Borel (1871–1956)

The search for patterns in the endless stream of digits in numbers like π is
an ongoing quest for mathematicians. Mathematicians conjecture that π is
“normal,” which means that any finite pattern of digits occurs with the same
frequency as would be found for a completely random sequence.

The quest for possible patterns in π played a key role in Carl Sagan’s
novel Contact, in which aliens coded a picture of a circle in the digits of π.
The theological implications are intriguing, making the reader wonder if the
universe could have been carefully constructed to reveal messages in the
constants of nature. In fact, if π is a normal number, somewhere inside its
endless digits is almost surely a very close representation for all of us—the
atomic coordinates of all our atoms, our genetic code, all our thoughts, all
our memories. Be happy: π makes us immortal!

Sometimes mathematicians use the phrase “absolutely normal” to denote
normality in every base and “simply normal” if the number is normal in a
particular base. (For example, our decimal system is “base 10” because it
uses the 10 digits, 0 through 9.) Normality means that all digits are equally
likely, all pairs of digits equally likely, all triplets of digits equally likely,
and so forth. For example, for π, the digit 7 is expected to appear roughly 1
million times among the first 10 million digits of its decimal expansion. It
actually occurs 1,000,207 times, which is very close to the expected value.

French mathematician and politician Émile Borel introduced the concept
of normal numbers in 1909 as a way to characterize the digits of π, which
seemed to have the properties of a random string of digits. In 1933, the
artificially constructed Champernowne’s Number was one of the first
numbers found to be normal in base 10. The first absolutely normal number
was constructed by Wacław Sierpinski in 1916. As is the case for π, it is
conjectured, but not yet proved, that the numbers √2, e, and ln(2) are also
normal.

SEE ALSO π (c. 250 B.C.), Euler’s Number, e (1727), Transcendental Numbers (1844), and
Champernowne’s Number (1933).



Piece of π, an artwork created by considering a portion of the endless digits of π
and representing each digit by a color. The number π is conjectured to be
“normal” and to have characteristics of a completely random sequence.



Boole’s Philosophy and Fun of Algebra
1909

Mary Everest Boole (1832–1916)

Mary Everest Boole was a self-taught mathematician, known for her
intriguing 1909 book Philosophy and Fun of Algebra. She was the wife of
George Boole (1815–1864), the British mathematician and philosopher who
invented Boolean Algebra, which became the foundation for modern
computer arithmetic. She was also responsible for editing his monumental
1854 book Laws of Thought. Her Philosophy and Fun of Algebra gives
modern historians a glimpse of math education during the early 1900s.

At one point in her life, Mary worked at Queens College, the first
women’s college in England. Alas, she lived in an era when women were
not allowed to receive degrees or teach at the college. Although she
desperately wanted to teach, she accepted a job working at a library, where
she advised many students. Her perseverance and zeal for mathematics and
education make her a hero in the eyes of some modern-day feminists.

Toward the end of her book, she discusses imaginary numbers, like √−1,
which she treats with mystic reverence: “[A top Cambridge mathematics
student] got thinking about the square root of minus one as if it were a
reality, till he lost his sleep and dreamed that he was the square root of
minus one and could not extract himself; and he became so ill that he could
not go to his examination at all.” She also writes that “Angels, and the
square roots of negative quantities…are messengers from the As-Yet-
Unknown; and come to tell us where we are to go next; and the shortest
road to get there; and where we ought not to go just at present.”

Mathematics seemed to be in the Boole blood. Mary’s oldest daughter
married Charles Howard Hinton (1853–1907), who also provided mystical
interpretations of tesseracts and tools for visualizing the fourth dimension.
Another daughter, Alicia, is famous for work with polytopes, a term that she
coined and that refers to generalizations of polygons to higher dimensions.

SEE ALSO Imaginary Numbers (1572), Boolean Algebra (1854), Tesseract (1888), and The
Doctorate of Kovalevskaya (1874).



Mary Everest Boole, author of Philosophy and Fun of Algebra and wife of
mathematician George Boole, who invented Boolean algebra.



Principia Mathematica
1910–1913

Alfred North Whitehead (1861–1947), Bertrand Russell (1872–1970)

British philosophers and mathematicians Bertrand Russell and Alfred North
Whitehead collaborated for eight years to produce their landmark work
Principia Mathematica three volumes, nearly 2,000 pages, 1910–1913),
which aimed to demonstrate that mathematics can be stated using concepts
of logic such as class and membership in a class. The Principia attempted
to derive mathematical truths from axioms and inference rules in symbolic
logic.

The Modern Library ranks Principia as the twenty-third most important
nonfiction book of the twentieth century, in a list that includes such books
as James Watson’s The Double Helix and William James’s The Varieties of
Religious Experience. According to The Stanford Encyclopedia of
Philosophy, “Written as a defense of logicism (i.e., the view that
mathematics is in some significant sense reducible to logic), the book was
instrumental in developing and popularizing modern mathematical logic. It
also served as a major impetus for research in the foundations of
mathematics throughout the twentieth century. Next to Aristotle’s
Organon, it remains the most influential book on logic ever written.”

Although Principia succeeded in providing derivations of many major
theorems in mathematics, some critics were nervous about some the book’s
assumptions, such as the axiom of infinity (that is, there exists an infinite
number of objects), which seemed to be an empirical assumption rather
than a logical one. Therefore, it is still an open question as to whether
mathematics can be reduced to logic. Nevertheless, Principia was
extremely influential in emphasizing the connections between logicism and
traditional philosophy, thus catalyzing new research in diverse areas of
philosophy, mathematics, economics, linguistics, and computer science.

In Principia, after a few hundred pages, the authors prove that 1 + 1 = 2.
Cambridge University Press, the publisher of the book, had decided that
publishing Principia would result in an estimated loss of 600 pounds. Only



after the authors agreed to give some money to Cambridge was the book
published.

SEE ALSO Aristotle’s Organon (c. 350 B.C.), Peano Axioms (1889), Barber Paradox (1901), and
Gödel’s Theorem (1931).



After a few hundred pages of Principia, volume 1, the authors note that 1 + 1 = 2.
The proof is actually completed in Volume II, accompanied by the comment,
“The above proposition is occasionally useful.”



Hairy Ball Theorem
1912

Luitzen Egbertus Jan Brouwer (1881–1966)

In 2007, materials scientist Francesco Stellacci of the Massachusetts
Institute of Technology made use of the hairy ball theorem (HBT) in
mathematics to force nanoparticles to stick together to form long chainlike
structures. According to a very high-level view of the theorem, first proved
in 1912 by Dutch mathematician Luitzen Brouwer, if a sphere is covered in
hair and we try to smoothly brush those hairs to make them all lie flat, we
will always leave behind at least one hair standing up straight or a hole (for
example, a bald spot).

Stellacci’s team covered gold nanoparticles with sulfurous molecular
hairs. Because of the HBT, hairs were likely to protrude in one or more
locations, and these points became unstable defects on the particle surfaces,
making it easy to substitute these standouts with chemicals that behaved as
handles so that the particles could stick to one another, and perhaps
someday be used to form nanowires in electronics devices.

Using mathematical language, the HBT states that any continuous
tangent vector field on the sphere must have at least one point where the
vector field is zero. Consider a continuous function f that assigns a vector in
3-D space to every point p on a sphere such that f(p) is always tangent to
the sphere at p. This means that at least one p exists such that f(p) = 0. In
other words, “the hair on a fur ball can’t be brushed so that it lies flat at
every point.”

The implications of the theorem are intriguing. For example, since wind
may be thought of as vectors with magnitudes and directions, the theorem
states that somewhere on the Earth’s surface, the horizontal wind speed
must be zero, no matter how windy it is at every other location.
Interestingly, the hairy ball theorem does not apply to the surface of a torus
(for example, a doughnut surface), and thus it is theoretically possible to
create an admittedly unappetizing hairy doughnut where all the hairs lie
flat.



SEE ALSO Brouwer Fixed-Point Theorem (1909).



If we try to smoothly brush the hairs on a hairy sphere to make them all lie flat,
we will always leave behind at least one hair standing up straight or a hole (for
example, a bald spot).



Infinite Monkey Theorem
1913

Félix Édouard Justin Émile Borel (1871–1956)

The infinite monkey theorem states that a monkey pressing keys at random
on a typewriter keyboard for an infinite amount of time will almost surely
type a particular finite text, such as the Bible. Let us consider a single
biblical phrase, “In the beginning, God created the heavens and the earth.”
How long would it take a monkey to type this phrase? Assume that there
are 93 symbols on a keyboard. The phrase contains 56 letters counting
spaces and the period at the end). If the probability of hitting the correct key
on the typewriter is 1/n, where n is the number of possible keys, then the
probability of the monkey correctly typing 56 consecutive characters in the
target phrase is, on average, 1/9356, which means that the monkey would
have to try more than 10100 times, on average, before getting it right! If the
monkey pressed one key per second, he’d be typing for well over the
current age of the universe.

Interestingly, if we were to save characters that are typed correctly, the
monkey would obviously require many fewer keystrokes. Mathematical
analysis reveals that the monkey, after only 407 trials, would have a 50/50
chance that the correct sentence was typed! This crudely illustrates how
evolution can produce remarkable results when harnessing nonrandom
changes by preserving useful features and eliminating nonadaptive ones.

French mathematician Émile Borel mentioned the “dactylographic” (that
is, typewriting) monkeys in a 1913 article, in which he commented on the
likelihood of one million monkeys typing 10 hours a day to produce books
in a library. The physicist Arthur Eddington wrote in 1928, “If an army of
monkeys were strumming on typewriters, they might write all the books in
the British Museum. The chance of their doing so is decidedly more
favorable than the chance of [all gas molecules in a vessel suddenly moving
to] one half of the vessel.”

SEE ALSO Law of Large Numbers (1713), Laplace’s Théorie Analytique des Probabilités (1812),
Chi-Square (1900), and The Rise of Randomizing Machines (1938).



According to the infinite monkey theorem, a monkey pressing keys at random on
a typewriter keyboard for an infinite amount of time will almost surely type a
particular finite text, such as the Bible.



Bieberbach Conjecture
1916

Ludwig Georg Elias Moses Bieberbach (1886–1982), Louis de Branges
de Bourcia (b. 1932)

The Bieberbach conjecture is associated with two colorful personalities: the
vicious Nazi mathematician Ludwig Bieberbach, who made the conjecture
in 1916, and French-American Louis de Branges, a loner mathematician
who proved the conjecture in 1984, although some mathematicians were
initially skeptical of de Branges’ work because he had earlier announced
false results. Author Karl Sabbagh writes of de Branges, “He may not be a
crank, but he is cranky. ‘My relationships with my colleagues are
disastrous,’ he told me. And he does seem to have left a trail of disgruntled,
irritated, and even contemptuous colleagues behind him if only because he
makes no concessions to students and colleagues who are not familiar with
the field in which he works.”

Bieberbach was an active Nazi and involved in the repression of Jewish
colleagues, including German mathematicians Edmund Landau and Issai
Schur. Bieberbach said that “representatives of overly different races do not
mix as students and teachers…. I find it surprising that Jews are still
members of academic commissions.”

The Bieberbach conjecture states that if a function provides a one-to-one
association between points in the unit circle and points in a simply
connected region of the plane, the coefficients of the power series that
represents the function are never larger than the corresponding power. In
other words, we are given f(z) = a0 + a1z + a2z2 + a3z3 + …. If a0 = 0 and a1
= 1, then |an| ≤ n for each n ≥ 2. A “simply connected region” may be quite
complicated, but it may not contain any holes.

De Branges says about his mathematical approach, “My mind is not very
flexible. I concentrate on one thing, and I am incapable of keeping an
overall picture. [If I omit something] then I have to be very careful with
myself that I don’t fall into some sort of a depression….” The Bieberbach



conjecture is significant partly because it challenged mathematicians for 68
years, and during this time, it inspired significant research.

SEE ALSO Riemann Hypothesis (1859) and Poincaré Conjecture (1904).



Nazi mathematician Ludwig Bieberbach made his famous conjecture in 1916,
and it was not proved until 1984.



Johnson’s Theorem
1916

Roger Arthur Johnson (1890–1954)

Johnson’s theorem states that if three identical circles pass through a
common point, then their other three intersections must lie on another circle
that is of the same size as the original three circles. The theorem is notable
not only for its simplicity but also because it was apparently not
“discovered” until 1916 by the American geometer Roger Johnson. David
Wells writes that this relatively recent finding in the history of mathematics
“suggests a wealth of geometrical properties still lie hidden, waiting to be
discovered.”

Johnson is the author of Johnson’s Modern Geometry: An Elementary
Treatise on the Geometry of the Triangle and the Circle. He received his
Ph.D. from Harvard in 1913, and from 1947 to 1952 he served as chairman
of the Mathematics Department of the Brooklyn branch of Hunter College,
which later became Brooklyn College.

The idea that very simple yet profound mathematics can still be
discovered even today is not as far-fetched as it sounds. For example,
mathematician Stanislaw Ulam, in the mid to late 1900s, seemed to
overflow with simple but novel ideas that quickly led to new branches of
mathematics such as those that include cellular automata theory and the
Monte Carlo method. Another example of simplicity and profundity are
Penrose Tilings, the pattern of tiles discovered around 1973 by Roger
Penrose. These tiles can completely cover an infinite surface in a pattern
that is always non-repeating aperiodic). Aperiodic tiling was first
considered merely a mathematical curiosity, but physical materials were
later found in which the atoms were arranged in the same pattern as a
Penrose tiling, and now the field plays an important role in chemistry and
physics. We should also consider the intricate and strikingly beautiful
behavior of the Mandelbrot Set, a complicated fractal object described by
a simple formula, z = z2 + c, and unearthed toward the end of the twentieth
century.



SEE ALSO Borromean Rings (834), Buffon’s Needle (1777), Sangaku Geometry (c. 1789), Cellular
Automata (1952), Penrose Tiles (1973), Fractals (1975), and Mandelbrot Set (1980).



According to Johnson’s theorem, if three identical circles pass through a common
point, then their other three intersections must lie on another circle that is of the
same size as the original three circles.



Hausdorff Dimension
1918

Felix Hausdorff (1868–1942)

The Hausdorff dimension was introduced in 1918 by the mathematician
Felix Hausdorff and can be used to measure the fractional dimensions of
fractal sets. In everyday life, we usually think about the whole-number
topological dimensions of smooth objects. For example, a plane is two-
dimensional because a point on a plane can be described by two
independent parameters, for example, locations along an x- and y-axis. A
straight line is one-dimensional.

For certain more complicated sets and curves, the Hausdorff dimension
provides another way to define dimension. For example, imagine a line that
zigzags and twists in such an intricate way that it partially fills the plane. Its
Hausdorff dimension increases beyond 1 and takes on values that get closer
and closer to 2 the more the line fills the plane.

Space-filling curves like the infinitely convoluted Peano Curves have a
Hausdorff dimension of 2. The Hausdorff dimensions of coastlines vary
from about 1.02 for the coastline of South Africa to 1.25 for the west coast
of Great Britain. In fact, one definition of a fractal is a set for which the
Hausdorff dimension exceeds the topological dimension. The use of
fractional dimensions to quantify roughness, scaling behavior, and intricacy
has been demonstrated in such diverse areas as art, biology, and geology.

Hausdorff, a Jew, was a professor of mathematics at the University of
Bonn, and was one of the founders of modern topology and famous for his
work in functional analysis and set theory. In 1942, when he was about to
be sent to a concentration camp by the Nazis, he committed suicide together
with his wife and sister-in-law. The day before, Hausdorff wrote a friend,
“Forgive us. We wish you and all our friends will experience better times.”
Many of the approaches used to compute the Hausdorff dimension for
intricate sets were formulated by another Jew, the Russian mathematician
Abram Samoilovitch Besicovitch (1891–1970), and hence the term
Hausdorff-Besicovitch dimension is sometimes used.



SEE ALSO Peano Curve (1890), Koch Snowflake (1904), Coastline Paradox (c. 1950), and Fractals
(1975).



The Hausdorff dimension can be used to measure the fractional dimensions of
fractal sets such as represented by this intricate fractal pattern rendered by Paul
Nylander.



Brun’s Constant
1919

Viggo Brun (1885–1978)

Martin Gardner writes, “No branch of number theory is more saturated with
mystery than the study of prime numbers: those exasperating, unruly
integers that refuse to be divided evenly by any integers except themselves
and 1. Some problems concerning primes are so simple that a child can
understand them and yet so deep and far from solved that many
mathematicians now suspect they have no solution….Perhaps number
theory, like quantum mechanics, has its own uncertainty principle that
makes it necessary, in certain areas, to abandon exactness for probabilistic
formulations.”

Primes often occur as pairs of consecutive odd integers such as 3 and 5.
In 2008, the largest known twin primes contained more than 58,000 digits
each. Although infinitely many twin primes may exist, this conjecture
remains unproven. Perhaps because the twin prime conjecture is a major
unsolved problem, the movie The Mirror Has Two Faces features a math
professor played by Jeff Bridges who explains the conjecture to Barbra
Streisand.

In 1919, Norwegian mathematician Viggo Brun proved that if we add
together the reciprocals of successive twin primes, the sum converges to a
specific numerical value, now called Brun’s constant: B = (1/3 + 1/5) + (1/5
+ 1/7) + … ≈ 1.902160….Given that the sum of the reciprocals of all prime
numbers diverges to infinity, it is fascinating that the twin prime sum
converges—that is, approaches a definite finite value. This in turn suggests
the relative “scarcity” of twin primes, even though an infinite set of twin
primes may exist. Today, the quest for twin primes, as well as for
increasingly accurate values for B, continues in several universities. Other
than the first pair, all pairs of twin primes have the form (6n − 1, 6n + 1).

Andrew Granville remarks, “Prime numbers are the most basic objects in
mathematics. They also are among the most mysterious, for after centuries
of study, the structure of the set of prime numbers is still not well
understood….”



SEE ALSO Cicada-Generated Prime Numbers (c. 1 Million B.C.), Sieve of Eratosthenes (240 B.C.),
Harmonic Series Diverges (c. 1350), Goldbach Conjecture (1742), Constructing a Regular
Heptadecagon (1796), Gauss’s Disquisitiones Arithmeticae (1801), Proof of the Prime Number
Theorem (1896), Polygon Circumscribing (c. 1940), Gilbreath’s Conjecture (1958), Ulam Spiral
(1963), and Andrica’s Conjecture (1985).



A graph of the number of twin primes less than x. The range of the x-axis is from
0 to 800, and the rightmost plateau, at the top of the graph, occurs at a value of
30.



Googol
c. 1920

Milton Sirotta (1911–1981), Edward Kasner (1878–1955)

The term googol, which stands for the number 1 followed by 100 zeros, was
coined by nine-year-old Milton Sirotta. Milton and his brother Edwin
worked for most of their lives in their father’s factory in Brooklyn, New
York, pulverizing apricot pits to form an abrasive used for industrial
purposes. Sirotta was the nephew of American mathematician Edward
Kasner, who popularized the term after he asked Milton to make up a word
for a very large number. The word googol first appeared in print
publications in 1938.

Kasner is famous for being the first Jew appointed to a faculty position in
the sciences at Columbia University and for his coauthoring of the book
Mathematics and the Imagination, in which he introduced googol to a wide
nontechnical audience. Although googol is of no special significance in
mathematics, it has proven to be very useful for comparing large quantities,
and for stimulating awe in the public mind as to the wonders of
mathematics and the vast universe in which we live. It has also changed the
world in other ways. Larry Page, one of the founders of the Internet search
engine Google, was intrigued by mathematics and named his company after
googol, after accidentally misspelling the word.

A little more than a googol different ways exist to arrange 70 items in a
sequence, such as 70 people waiting in line to enter a doorway. Most
scientists agree that if we could count all the atoms in all the stars we can
see, we would have far less than a googol atoms. A googol years are
required for all the black holes in the universe to evaporate. However, the
number of possible chess games is more than a googol. The term
googolplex is 1 followed by a googol number of zeros. It has more digits
than there are atoms in stars in the visible universe.

SEE ALSO Archimedes: Sand, Cattle & Stomachion (c. 250 B.C.), Cantor’s Transfinite Numbers
(1874), and Hilbert’s Grand Hotel (1925).



A little more than a googol different ways exist for arranging the 70 beads in
sequence, assuming that each bead is different and that the necklace remains
open.



Antoine’s Necklace
1920

Louis Antoine (1888–1971)

Antoine’s necklace is a gorgeous mathematical object that may be
represented as chains within chains within chains…. The necklace can be
constructed by first considering a solid torus, or doughnut shape. Within the
torus, we construct a chain C of n components (links). Next, we modify
each link of chain C so that it is actually another chain C1 of n solid tori. In
each link of C1, we construct a smaller chain of solid tori embedded in each
link. Continue the process forever to create the delicate necklace of tori
whose diameters decrease to zero.

Mathematicians refer to Antoine’s necklace as homeomorphic with a
Cantor set. Two geometrical objects are called homeomorphic if the first
can be deformed into the second by stretching and bending. For example,
we can smoothly deform a malleable, clay doughnut into the shape of a
coffee cup without any tearing through the clay and pasting parts together
again. The hole in the doughnut becomes the space in the handle for the
coffee cup. The Cantor set, introduced by German mathematician Georg
Cantor in 1883, is a special set of points with infinitely many gaps between
them.

French mathematician Louis Antoine lost his sight at the age of 29 in
World War I. Mathematician Henri Lebesgue advised Antoine to study two-
and three-dimensional topology, because “in such a study, the eyes of the
spirit and the habit of concentration will replace the lost vision.” Antoine’s
necklace is notable because it is the first “wild embedding” of a set in three-
dimensional space. Using Antoine’s ideas, James Alexander invented his
famous Horned Sphere.

Beverly Brechner and John Mayer write, “The tori are used to construct
Antoine’s Necklace, but no torus is actually contained in Antoine’s
Necklace. Only the ‘beads,’ the intersections of (infinitely many) solid tori,
are left. Antoine’s Necklace is totally disconnected…because for any two



different points, there is some stage of construction such that the two points
will lie in different tori….”

SEE ALSO Königsberg Bridges (1736), Alexander’s Horned Sphere (1924), Menger Sponge (1926),
and Fractals (1975).



Rendering of Antoine’s necklace, by computer scientist and mathematician
Robert Scharein. In the next stage of construction, each component ring would
be replaced with a linked chain of rings. Given an infinite number of stages,
what remains is Antoine’s necklace.



Noether’s Idealtheorie
1921

Amalie Emmy Noether (1882–1935)

Despite the horrible prejudice they faced, several women have fought
against the establish ment and persevered in mathematics. German
mathematician Emmy Noether was described by Albert Einstein as “the
most significant creative mathematical genius thus far produced since the
higher education of women began.”

In 1915, while at the University of Göttingen, Germany, Noether’s first
significant mathematical breakthrough was in theoretical physics. In
particular, Noether’s theorem dealt with symmetry relationships in physics
and their relationship to conservation laws. This and related work was an
aid to Einstein when he developed his general theory of relativity, which
focused on the nature of gravity, space, and time.

After Noether had received her Ph.D., she attempted to teach at
Göttingen, but her opponents said that men could not expect to learn “at the
feet of a woman.” Her colleague David Hilbert replied to her detractors, “I
do not see that the sex of the candidate is against her admission as a
privatdozent [licensed lecturer]. After all, the university senate is not a
bathhouse.”

Noether is also known for her contributions to noncommutative algebras,
where the order in which terms are multiplied affects the results. She is
most famous for her study of “chain conditions on ideals of rings,” and, in
1921, Noether published Idealtheorie in Ringbereichen, which is of major
importance in the development of modern abstract algebra. This area of
mathematics examines the general properties of operations and often unifies
logic and number theory with applied mathematics. Alas, in 1933, her
mathematical achievements were utterly dismissed when the Nazis
terminated her from the University of Göttingen because she was Jewish.

She fled Germany and joined the faculty at Bryn Mawr College in
Pennsylvania. According to journalist Siobhan Roberts, Noether “made
weekly trips to lecture at Princeton’s institute, and to visit her friends



Einstein and Herman Weyl.” Her influence was far and wide, and many of
her ideas appeared in papers written by students and colleagues.

SEE ALSO The Death of Hypatia (415) and The Doctorate of Kovalevskaya (1874).



Amalie Emmy Noether, author of Idealtheorie in Ringbereichen (Theory of Ideals
in Ring Domains), which was of major importance in the development of modern
abstract algebra. Noether also developed some of the mathematics of general
relativity but often toiled without pay.



Lost in Hyperspace
1921

George Pólya (1887–1985)

Imagine a robotic beetle placed in a twisting tube. The creature executes an
infinite random walk by walking forever as it moves randomly one step
forward or one step back in the tube. Assume that the tube is infinitely long.
What is the probability that the random walk will eventually take the beetle
back to its starting point?

In 1921, Hungarian mathematician George Pólya proved that the answer
is one—infinite likelihood of return for a one-dimensional random walk. If
the beetle were placed at the origin of a two-space universe (a plane), and
then the beetle executed an infinite random walk by taking a random step
north, south, east, or west, the probability that the random walk would
eventually take the beetle back to the origin is also one.

Pólya also showed that our three-dimensional world is special: Three-
dimensional space is the first Euclidean space in which it is possible for the
beetle to get hopelessly lost. The beetle, executing an infinite random walk
in a three-space universe, will eventually come back to the origin with a
0.34 or 34 percent probability. In higher dimensions, the chances of
returning are even slimmer, about 1/(2n) for large dimensions n. This 1/(2n)
probability is the same as the probability that the beetle would return to its
starting point on its second step. If the beetle does not make it home in early
attempts, it is probably lost in space forever.

Pólya’s parents were Jewish but had converted to Roman Catholicism the
year before his birth. He was born in Budapest, Hungary, and in the 1940s
became a professor of mathematics at Stanford University. His book How to
Solve It sold more than one million copies, and he is considered by many to
be among the most influential mathematicians of the twentieth century.

SEE ALSO Dice (3000 B.C.), Law of Large Numbers (1713), Buffon’s Needle (1777), Laplace’s
Théorie Analytique des Probabilités (1812), and Murphy’s Law and Knots (1988).



An insect randomly walks one step forward or one step back in an infinite tube.
What is the probability that the random walk will eventually take the insect back
to its starting point?



Geodesic Dome
1922

Walther Bauersfeld (1879–1959), Richard Buckminster “Bucky” Fuller
(1895–1983)

A geodesic dome can be created by triangulating a Platonic Solid or other
polyhedron so that it has flat triangular faces and so that it can more closely
approximate a sphere or hemisphere. Several designs for such domes exist.
As an example, consider a regular dodecahedron with its twelve pentagonal
faces. Place a point in the middle of each pentagon, and connect it with five
lines to the vertices of the pentagon. Raise the point so that it touches an
imaginary sphere around the decahedron. You’ve now created a new
polyhedron with 60 triangular faces and a simple example of a geodesic
sphere. Closer approximations to spheres may be created by dividing the
faces into more triangles.

The triangular faces distribute stress across the entire structure, and in
theory the domes can grow to extremely large sizes due to their rigidity and
strength. The first true geodesic dome was designed by German engineer
Walther Bauersfeld for a planetarium in Jena, Germany, which opened to
the public in 1922. In the late 1940s, American architect R. Buckminster
Fuller independently invented the geodesic dome, and he received a U.S.
patent for his design. The U.S. Army was so impressed with his structures
that they had him oversee the design of domes for military use. Aside from
strength, domes were desirable because they enclosed a great volume for
little surface area, which made them efficient in terms of building materials
and decreased heat loss. Fuller himself lived in a geodesic dome for part of
his life, and he noted that its low air resistance would help it withstand
hurricanes. Always the dreamer, Fuller formulated the ambitious plan to
place a geodesic dome, 2 miles (3.2 kilometers) in diameter and 1 mile (1.6
kilometers) high at its center, over New York City so that the weather could
be regulated and inhabitants protected from rain and snow!

SEE ALSO Platonic Solids (350 B.C.), Archimedean Semi-Regular Polyhedra (c. 240 B.C.), Euler’s
Formula for Polyhedra (1751), Icosian Game (1857), Pick’s Theorem (1899), Császár Polyhedron
(1949), Szilassi Polyhedron (1977), Spidrons (1979), and Solving of the Holyhedron (1999).



The United States Pavilion with a geodesic dome, featured at the 1967 World
Exhibition (“Expo 67”) in Montreal, Canada. The sphere had a diameter of 250
feet (76 meters).



Alexander’s Horned Sphere
1924

James Waddell Alexander (1888–1971)

Alexander’s horned sphere is an example of a convoluted, intertwined
surface for which it is visually difficult to define an inside and outside.
Introduced by mathematician James Waddell Alexander in 1924,
Alexander’s horned sphere is formed by successively growing pairs of
horns that are almost interlocked and whose end points approach each other.
The initial steps of the construction can be visualized with your fingers.
Move the thumb and forefinger of each of your hands close to one another,
and then grow a smaller thumb and forefinger on each of these, and
continue this budding without limit! The object is a fractal, composed of
interlocking pairs of “fingers” that trace orthogonal perpendicular) circles
of decreasing radii.

Although difficult to visualize, Alexander’s horned sphere (together with
its inside) is homeomorphic to a ball. (Two geometrical objects are called
homeomorphic if the first can be deformed into the second by stretching
and bending.) Thus, Alexander’s horned sphere can be stretched into a ball
without puncturing or breaking it. Martin Gardner writes, “The infinitely
regressing, interlocking horn forms, at the limit, what topologists call a
‘wild structure’…. Although it is equivalent to the simply connected surface
of a ball, it bounds a region that is not simply connected. A loop of elastic
cord circling the base of a horn cannot be removed from the structure even
in infinity of steps.”

Alexander’s horned sphere is more than a mind-boggling curiosity—it is
a concrete and important demonstration that the Jordan-Schönflies theorem
does not extend to higher dimensions. This theorem states that simple
closed curves separate a plane into an inside bounded region and an outside
unbounded region and that these regions are homeomorphic to the inside
and outside of a circle. The theorem is invalid in three dimensions.

SEE ALSO Jordan Curve Theorem (1905), Antoine’s Necklace (1920), and Fractals (1975).



A portion of Alexander’s horned sphere, rendered by Cameron Browne.
Introduced by mathematician James Waddell Alexander in 1924, Alexander’s
horned sphere is a fractal, composed of an infinite number of interlocking pairs
of “fingers.”



Banach-Tarski Paradox
1924

Stefan Banach (1892–1945), Alfred Tarski (1902–1983)

The famous and seemingly bizarre Banach-Tarski (BT) paradox was first
stated by Polish mathematicians Stefan Banach and Alfred Tarski in 1924.
The paradox (which is actually a proof) shows how it is possible to take a
mathematical representation of a ball, break it into several pieces, and then
reassemble those pieces to make two identical copies of the ball. Moreover,
it shows how one can decompose a pea-sized ball and then reassemble the
pieces to make another ball the size of the moon! (In 1947, Robinson
showed that five is the minimal number of pieces required.)

This paradox, built on the early work of Felix Hausdorff, shows that the
kinds of quantities that can be measured in our physical universe are not
necessarily preserved when a ball, as defined by mathematicians, with an
infinite set of points is chopped into pieces and reassembled in a different
way using just translations and rotations. In the BT paradox, the
unmeasurable subsets (pieces) involved are very complicated and
convoluted, lacking straightforward counterparts to boundaries and volume
in the physical world. The paradox does not hold in two dimensions but
does hold in all dimensions higher than two.

The BT paradox depends on the Axiom of Choice (AC). Because the
paradox result seems so strange, some mathematicians have suggested that
AC must be wrong. On the other hand, acceptance of AC is so useful in
numerous branches of mathematics that mathematicians often quietly use it
and proceed with their proofs and theorems.

In 1939, the brilliant Banach was elected president of the Polish
Mathematical Society, but a few years later, during the Nazi occupation,
Banach was compelled to feed his own blood to lice for a German study of
infectious diseases. Tarski had converted to Roman Catholicism because it
would be difficult for a Jew to obtain a serious position in the Polish
universities. During World War II, the Nazis murdered nearly all his
extended family.



SEE ALSO Zeno’s Paradoxes (c. 445 B.C.), Aristotle’s Wheel Paradox (c. 320 B.C.), St. Petersburg
Paradox (1738), Barber Paradox (1901), Zermelo’s Axiom of Choice (1904), Hausdorff Dimension
(1918), Hilbert’s Grand Hotel (1925), Birthday Paradox (1939), Coastline Paradox (c. 1950),
Newcomb’s Paradox (1960), and Parrondo’s Paradox (1999).



The Banach-Tarski paradox shows how it is possible to take a mathematical
representation of a ball, break it into several pieces, and then reassemble those
pieces to make two identical copies of the ball.



Squaring a Rectangle
1925

Zbigniew Moron (1904–1971)

A difficult puzzle that has captivated mathematicians for at least a hundred
years involves the operation of “squaring” a rectangle and a square, the
latter of which is also known as a “perfect square dissection.” The general
problem is to tile a rectangle or square using square tiles all of different
sizes expressed as integers. This may sound easy, and you can even
experiment with a pencil, paper, and graph paper, but it turns out that very
few tile arrangements work.

The first squared rectangle was discovered in 1925 by Polish
mathematician Zbigniew Moron. In particular, Moron found a 33 × 32
rectangle that can be tiled with nine different squares with lengths 1, 4, 7, 8,
9, 10, 14, 15, and 18. He also discovered a 65 × 47 rectangle tiled with 10
square tiles with lengths 3, 5, 6 11, 17, 19, 22, 23, 24, and 25. For years,
mathematicians claimed that perfect square dissections of squares were
impossible to construct.

In 1936, four students at Trinity College—R. L Brooks, C. A. B. Smith,
A. H. Stone, and W. T. Tutte—became fascinated by the topic, and finally,
in 1940, these mathematicians discovered the first squared square
consisting of 69 tiles! With further effort, Brooks reduced the number of
tiles to 39. In 1962, A. W. J. Duivestijn proved that any squared square
must contain at least 21 tiles, and in 1978, he had found such a square and
proved that it was the only one.

In 1993, S. J. Chapman found a tiling of the Möbius band using just 5
square tiles. A cylinder can also be tiled with squares of different sizes, but
this requires at least 9 tiles.

SEE ALSO Wallpaper Groups (1891), Voderberg Tilings (1936), and Penrose Tiles (1973).



Polish mathematician Zbigniew Moron discovered this 65 × 47 rectangle that is
tiled with 10 square tiles with side lengths 3, 5, 6 11, 17, 19, 22, 23, 24, and 25.



Hilbert’s Grand Hotel
1925

David Hilbert (1862–1943)

Imagine an ordinary hotel with 500 rooms, all of which are occupied by
guests. You arrive in the afternoon and are told that there are no vacancies.
You sadly leave. There is no paradox here. Next, imagine a hotel in which
there are an infinite number of rooms, each of which is occupied. Although
the hotel is full, the clerk can give you a room. How can this be? Later on
the same day, an endless stream of conventioneers arrives, and the clerk is
able to give them all rooms, making a huge fortune in the process!

German mathematician David Hilbert posed these paradoxes in the 1920s
to illustrate the mysterious properties of the infinite. Here’s how you get a
room in Hilbert’s Grand Hotel. When you arrive alone at the full hotel, the
clerk can give you a room by moving the guest who is in Room 1 into
Room 2, and then moving the original guest in Room 2 into Room 3, and so
on. Room 1 is now vacant for you. In order to accommodate the endless
stream of conventioneers, the current occupants are all moved into even-
numbered rooms by moving the original guest in Room 1 to Room 2, the
original guest in Room 2 into Room 4, the original guest in Room 3 into
Room 6, and so forth. The clerk now may assign the conventioneers to the
empty odd-numbered rooms.

The paradox of Hilbert’s Grand Hotel can be understood by using
Cantor’s theory of Transfinite Numbers. Thus, while in an ordinary hotel,
the number of odd-numbered rooms is smaller than the total number of
rooms, in an infinite hotel, the “number” of odd-numbered rooms is no
smaller than total “number” of rooms. (Mathematicians use the term
cardinality when referring to the size of these sets of rooms.)

SEE ALSO Zeno’s Paradoxes (c. 445 B.C.), Cantor’s Transfinite Numbers (1874), Peano Axioms
(1889), and Hilbert’s 23 Problems (1900).



In Hilbert’s Grand Hotel, the hotel is fully occupied, yet the clerk can give you a
room. How can this be?



Menger Sponge
1926

Karl Menger (1902–1985)

The Menger sponge is a fractal object with an infinite number of cavities—
a nightmarish object for any dentist to contemplate. The object was first
described by Austrian mathematician Karl Menger in 1926. To construct the
sponge, we begin with a “mother cube” and subdivide it into 27 identical
smaller cubes. Next, we remove the cube in the center and the six cubes that
share faces with it. This leaves behind 20 cubes. We continue to repeat the
process forever. The number of cubes increases by 20n, where n is the
number of iterations performed on the mother cube. The second iteration
gives us 400 cubes, and by the time we get to the sixth iteration, we have
64,000,000 cubes.

Each face of the Menger sponge is called a Sierpinski carpet. Fractal
antennae based on the Sierpinski carpet are sometimes used as efficient
receivers of electromagnetic signals. Both the carpets and the entire cube
have fascinating geometrical properties. For example, the sponge has an
infinite surface area while enclosing zero volume.

According to the Institute for Figuring, with each iteration, the Sierpinski
carpet face “dissolves into a foam whose final structure has no area
whatever yet possesses a perimeter that is infinitely long. Like the skeleton
of a beast whose flesh has vanished, the concluding form is without
substance—it occupies a planar surface, but no longer fills it.” This porous
remnant hovers between a line and a plane. Whereas a line is one-
dimensional and a plane two-dimensional, the Sierpinski carpet has a
“fractional” dimension of 1.89. The Menger sponge has a fractional
dimension (technically referred to as the Hausdorff Dimension) between a
plane and a solid, approximately 2.73, and it has been used to visualize
certain models of a foam-like space-time. Dr. Jeannine Mosely has
constructed a Menger sponge model from more than 65,000 business cards
that weighs about 150 pounds (70 kilograms).

SEE ALSO Pascal’s Triangle (1654), Prince Rupert’s Problem (1816), Hausdorff Dimension (1918),
Antoine’s Necklace (1920), Ford Circles (1938), and Fractals (1975).



A child exploring inside a Menger sponge with its infinite number of cavities.
This collaborative artwork by fractal enthusiasts Gayla Chandler and Paul
Bourke makes use of Bourke’s computer-generated sponge that he merged with
an image of a human child.



Differential Analyzer
1927

Vannevar Bush (1890–1974)

Differential equations play a crucial role in physics, engineering, chemistry,
economics, and numerous other disciplines. These equations are relevant
whenever a function expresses continuously changing quantities along with
some rate of change, expressed as derivatives. Only the simplest differential
equations yield solutions that are expressed by compact and explicit
formulas with a finite number of basic functions like sines and Bessel
Functions.

In 1927, American engineer Vannevar Bush and his colleagues developed
a differential analyzer (DA), an analog computer with wheel-and-disk
components that could solve, via integration methods, differential equations
with several independent variables. The DA was among the first advanced
computing devices to be used for practical applications.

Earlier versions of these kinds of devices had their roots in the work of
Lord Kelvin and his harmonic analyzer (1876). In the United States,
researchers working at the Wright-Patterson Air Force Base and Moore
School of Electrical Engineering at the University of Pennsylvania built the
DA devices, in part for creating artillery firing tables, prior to the invention
of ENIAC (electronic numerical integrator and computer).

Over the years, the DA has had many applications, ranging from soil
erosion studies and the building of blueprints for dams to the design of
bombs used to destroy German dams during World War II. These devices
have even been featured in science fiction films such as the 1956 classic
Earth vs. the Flying Saucers!

In his 1945 essay “As We May Think,” Bush described his vision of the
memex, a futuristic machine that would enhance human memory by
allowing humans to store and retrieve information linked by associations, in
a manner similar to hypertext on the Web today. He wrote, “It is a far cry
from the abacus to the modern keyboard accounting machine. It will be an
equal step to the arithmetical machine of the future….Relief must be



secured from laborious detailed manipulation of higher
mathematics….Man’s spirit should be elevated….”

SEE ALSO Abacus (c. 1200), Bessel Functions (1817), Harmonograph (1857), Harmonic Analyzer
(1876), ENIAC (1946), Curta Calculator (1948), and Ikeda Attractor (1979).



A differential analyzer at the Lewis Flight Propulsion Laboratory, in 1951. The
analyzer was among the first advanced computing devices to be used for
practical applications such as the design of bombs used to destroy German dams
during World War II.



Ramsey Theory
1928

Frank Plumpton Ramsey (1903–1930)

Ramsey theory is concerned with finding order and patterns in systems.
Author Paul Hoffman writes, “The idea behind Ramsey theory is that
complete disorder is impossible…. Any mathematical ‘object’ can be found
if sought in a large enough universe. The Ramsey theorist wants to know
the smallest universe that is guaranteed to contain a certain object.”

Ramsey theory is named after the English mathematician Frank Ramsey.
He started this branch of mathematics in 1928 while exploring a problem in
logic. As Hoffman suggested, Ramsey theorists often seek the number of
elements in a system that is necessary for a particular property to hold.
Except for some interesting work by Paul Erdös, it was not until the late
1950s that research in Ramsey theory began to make rapid progress.

One example of the simplest application deals with the Pigeonhole
Principle that states that if we have m pigeon homes and n pigeons, we can
be sure that at least one home houses more than one pigeon if n > m. For a
more complicated example, consider a scattering of n points on a paper.
Each point is connected to every other point with a straight line that is
either red or blue. Ramsey’s theorem—which is just one foundational result
in combinatorics and Ramsey theory—shows that n must be 6 in order to
ensure that either a blue triangle or red triangle appears on the paper.

Another way to think about Ramsey theory involves the so-called party
problem. For example, what is the smallest party that is guaranteed to have
either at least 3 attendees who are (pairwise) mutual strangers or at least 3
of them who are (pairwise) mutual acquaintances? The answer is 6.
Determining the party size necessary to ensure the presence of at least 4
mutual friends or at least 4 mutual strangers is much more difficult, and
solutions for higher party sizes may never be known.

SEE ALSO Archimedes: Sand, Cattle & Stomachion (c. 250 B.C.), Euler’s Polygon Division
Problem (1751), Thirty-Six Officers Problem (1779), Pigeonhole Principle (1834), Birthday Paradox
(1939), and Császár Polyhedron (1949).



Five points connected to each other with straight lines that are either red or
blue. In this depiction, no all-red or all-blue triangle exists between points. Six
points are required to ensure that either a blue or red triangle is formed.



Gödel’s Theorem
1931

Kurt Gödel (1906–1978)

Austrian mathematician Kurt Gödel was an eminent mathematician and
among the most brilliant logicians of the twentieth century. The
implications of his incompleteness theorem are vast, applying not only to
mathematics but also touching on areas such as computer science,
economics, and physics. When Gödel was at Princeton University, one of
his closest friends was Albert Einstein.

Gödel’s theorem, published in 1931, had quite a sobering effect upon
logicians and philosophers because it implies that within any rigidly logical
mathematical system, propositions or questions exist that cannot be proved
or disproved on the basis of axioms within that system, and therefore it is
possible for basic axioms of arithmetic to give rise to contradictions. This
makes mathematics essentially “incomplete.” The repercussions of this fact
continue to be felt and debated. Moreover, Gödel’s theorem put an end to
centuries of attempting to establish axioms that would provide a rigorous
basis for all of mathematics.

Author Hao Wang writes on this very subject in his book Reflections on
Kurt Gödel: “The impact of Gödel’s scientific ideas and philosophical
speculations has been increasing, and the value of their potential
implications may continue to increase. It may take hundreds of years for the
appearance of more definite confirmations or refutations of some of his
larger conjectures.” Douglas Hofstadter notes that a second theorem of
Gödel’s also suggests the inherent limitation of mathematical systems and
“implies that the only versions of formal number theory which assert their
own consistency are inconsistent.”

In 1970, Gödel’s mathematical proof of the existence of God began to
circulate among his colleagues. The proof was less than a page long and
caused quite a stir. Toward the end of his life, Gödel was paranoid and felt
that people were trying to poison him. He stopped eating and died in 1978.
During his life, he had also suffered from nervous breakdowns and
hypochondria.



SEE ALSO Aristotle’s Organon (c. 350 B.C.), Boolean Algebra (1854), Venn Diagrams (1880),
Principia Mathematica (1910–1913), and Fuzzy Logic (1965).



Albert Einstein and Kurt Gödel. Photo by Oskar Morgenstern, Institute of
Advanced Study Archives, Princeton, 1950s.



Champernowne’s Number
1933

David Gawen Champernowne (1912–2000)

If you were to concatenate, or link together, positive integers, 1, 2, 3, 4,…,
and lead with a decimal point, we would obtain Champernowne’s number,
0.1234567891011121314…. Like π, and e, Champernowne’s number is
transcendental—that is, it is not the root of any polynomial with integer
coefficients. We also know this number to be “normal” in base 10, which
means that any finite pattern of numbers occurs with the frequency
expected for a completely random sequence. David Champernowne
demonstrated that this number is normal by showing that not only will the
digits 0 through 9 occur exactly with a 10 percent frequency in the limit, but
each possible block of two digits will occur with 1 percent frequency in the
limit, each block of three digits will occur with 0.1 percent frequency, and
so forth.

Cryptographers have noted that Champernowne’s number does not
trigger some of the simplest, traditional statistical indicators of
nonrandomness. In other words, simple computer programs, which attempt
to find regularity in sequences, may not “see” the regularity in
Champernowne’s number. This deficit reinforces the notion that statisticians
must be very cautious when declaring a sequence to be random or
patternless.

Champernowne’s number is the first constructed example of a normal
number. It was produced in 1933 by David Champernowne while he was
still an undergraduate student at the University of Cambridge. In 1937,
German mathematician Kurt Mahler proved that Champernowne’s constant
is transcendental. Today, we know that the binary Champernowne constant,
obtained by concatenating the binary (0 and 1) representations of the
integers, is normal in base 2.

Hans Von Baeyer suggests that by translating the 0s and 1s to Morse
code, “every conceivable finite sequence of words is buried somewhere in
the string’s tedious gobbledygook,…every love letter and every novel ever



written….You may have to travel out along the string for billions of light
years before you find them, but they are all in there somewhere….”

SEE ALSO Transcendental Numbers (1844) and Normal Number (1909).



The first 100,000 binary digits of Champernowne’s number in binary, adapted
from the work of Adrian Belshaw and Peter Borwein. The 0s in the sequence are
converted to −1s, and then digit pairs (±1, ±1) used to walk (±1, ±1) in the plane.
The graph’s x-axis range is (0, 8,400).



Bourbaki: Secret Society
1935

Henri Cartan (b. 1904), Claude Chevalley (1909–1984), Szolem
Mandelbrojt (1899–1983), André Weil (1906–1998), and others

Historian of science Amir Aczel once wrote that Nicolas Bourbaki was “the
greatest mathematician of the twentieth century” who “changed the way we
think about mathematics….He was responsible for the emergence of the
‘New Math’ that swept through American education in the middle of the
century….” His treatises “form a towering foundation for much of the
modern mathematics….No working mathematician…today is free of the
influence of the seminal work of Nicolas Bourbaki.”

However, Bourbaki, the genius mathematician and author of dozens of
acclaimed works, never existed! Bourbaki was not an individual, but rather
a secret society of mathematicians, almost all French, formed in 1935. The
group attempted to produce a completely self-contained, extremely logical
and rigorous treatment of all essential modern mathematics—from
beginning to end—by publishing books on set theory, algebra, topology,
functions, integration, and more. The founding members of the secret group
included the brilliant mathematicians Henri Cartan, Jean Coulomb, Jean
Delsarte, Claude Chevalley, Jean Dieudonné, Charles Ehresmann, René de
Possel, Szolem Mandelbrojt, and André Weil. Members felt that older
mathematicians were needlessly clinging to old practices; thus, members of
Bourbaki had to resign by age 50.

While writing their collaborative books, any member had the right to
veto any aspect that he deemed inappropriate. Shouting matches ensued. At
each meeting, their works would be read aloud and scrutinized, line by line.
In 1983, Bourbaki published its last volume, titled Spectral Theory. Today,
L’Association des Collaborateurs de Nicolas Bourbaki still organizes
Bourbaki seminars every year.

Author Maurice Mashaal wrote that “Bourbaki never invented
revolutionary techniques nor proved grandiose theorems—and neither did it
try to do so. What the group did bring…was a new vision of mathematics, a



profound reorganization and reclarification of its components, lucid
terminology and notation, and distinctive style.”

SEE ALSO Principia Mathematica (1910–1913).



World War I cemetery in France near Verdun. The aftermath of the war presented
a difficult challenge for aspiring French mathematicians. Vast numbers of
students and young teachers were killed, which was one motivation for several
young Parisian math students to create the Bourbaki group.



Fields Medal
1936

John Charles Fields (1863–1932)

The Fields Medal is the most famous and influential award in mathematics.
Like the Nobel Prize for other realms of achievement, the Fields Medal
grew from a desire to elevate mathematics above national hostilities. The
medal is awarded every four years and rewards past achievements and
stimulates future research.

The award is sometimes referred to as the “Nobel Prize of
mathematicians” because there is no actual Nobel Prize awarded for
mathematics; however, the Fields Medal is awarded only to mathematicians
40 years of age and younger. The monetary amount is relatively small, only
about $13,500 in 2006 compared to the Nobel Prize, which is more than $1
million. The award was established by Canadian mathematician John
Charles Fields and first awarded in 1936. When Fields died, his will
specified that $47,000 be added to the funds for the gold medal.

The front of the medal depicts the Greek geometer Archimedes. The
Latin phrase on the back translates to “The mathematicians having
congregated from the whole world awarded [this medal] because of
outstanding writings.”

Mathematician Alexander Grothendieck boycotted his own Fields Medal
ceremony in 1966, because it was held in Moscow and he wished to protest
the Soviet military presence in Eastern Europe. In 2006, Russian
mathematician Grigori Perelman rejected the prize when he was awarded
the medal for “his contributions to geometry and his revolutionary insights
into the analytical and geometric structure of the Ricci flow,” which led to
the proof of the Poincaré Conjecture. He refused, saying that the prize was
irrelevant.

Interestingly, roughly 25 percent of medalists have been Jewish, and
almost half have held appointments at the Institute for Advanced Study, in
Princeton, New Jersey. Alfred Nobel (1833–1896), Swedish chemist and
inventor of dynamite, created the Nobel Prize; however, because he was an
inventor and industrialist, he did not establish a prize in mathematics,



because he personally had little interest in mathematics or theoretical
sciences.

SEE ALSO Archimedes: Sand, Cattle & Stomachion (c. 250 B.C.), Poincaré Conjecture (1904),
Langlands Program (1967), Catastrophe Theory (1968), and Monster Group (1981).



The Fields Medal is sometimes referred to as the “Nobel Prize of
mathematicians”; however, the Fields Medal is awarded only to mathematicians
40 years of age and younger.



Turing Machines
1936

Alan Turing (1912–1954)

Alan Turing was a brilliant mathematician and computer theorist who was
forced to become a human guinea pig and subjected to drug experiments to
“reverse” his homosexuality. This persecution occurred despite the fact that
his code-breaking work helped shorten World War II and led to his award of
the Order of the British Empire.

When Turing had called the police to investigate a burglary at his home
in England, a homophobic police officer suspected that Turing was
homosexual. Turing was forced to either go to jail for a year or take
experimental drug therapy. To avoid imprisonment, he agreed to be injected
with estrogen hormone for a year. His death at age 42, two years after his
arrest, was a shock to his friends and family. Turing was found in bed. The
autopsy indicated cyanide poisoning. Perhaps he had committed suicide, but
to this day we are not certain.

Many historians consider Turing to be the “father of modern computer
science.” In his landmark paper, “On Computable Numbers, with an
Application to the Entscheidungs Problem” (written in 1936), he proved
that Turing machines (abstract symbol-manipulating devices) would be
capable of performing any conceivable mathematical problem that is
represented as an algorithm. Turing machines help scientists better
understand the limits of computation.

Turing is also the originator of the Turing test, which caused scientists to
think more clearly about what it means to call a machine “intelligent” and
whether machines may one day “think.” Turing believed that machines
would eventually be able to pass his test by demonstrating they could
converse with people in such a natural way that people could not tell if they
were talking to a machine or a human.

In 1939, Turing invented an electromechanical machine that could help
break the Nazi codes produced by their Enigma code machine. Turing’s
machine, called the “Bombe,” was enhanced by mathematician Gordon



Welchman, and it became the main tool for deciphering Enigma
communications.

SEE ALSO ENIAC (1946), Information Theory (1948), and Public-Key Cryptography (1977).



A replica of a Bombe machine. Alan Turing invented this electromechanical
device to help break the Nazi codes produced by their Enigma code machine.



Voderberg Tilings
1936

Heinz Voderberg (1911–1942)

A tessellation, or tiling, of a plane consists of a collection of smaller shapes,
called tiles, that fills a surface with no overlaps and no gaps between the
tiles. Perhaps the most obvious tessellations are those seen on tiled floors in
which the tiles are shaped like squares or hexagons. Hexagonal tiling is the
basic structure of a honeycomb, perhaps “useful” to the bees because of the
efficiency of this tiling in terms of material required to create a lattice of
cells within a given area. Eight different kinds of tessellations of the plane
exist that employ two or more convex regular polygons such that the same
polygons, in the same order, surround each polygon vertex.

Tessellations are common in the art of Dutch artist M. C. Escher as well
as in ancient Islamic art. In fact, tessellations are thousands of years old and
can be traced to the Sumerian civilization (about 4000 B.C.), in which
building walls were decorated by tiling designs constructed from clay.

The Voderberg tiling, discovered by Heinz Voderberg in 1936, is special
because it is the earliest-known spiral tessellation of the plane. The
attractive pattern is made from a single repeating tile in the form of an
irregularly shaped nonagon—that is, a nine-sided polygon. As the nonagon
is repeated, it forms an infinite spiral strip, which, when joined with another
strip, covers the plane with no gaps. The Voderberg tiling is referred to as
monohedral because it is a tessellation in which all tiles are the same.

In the 1970s, a wonderful new set of spiral tilings were discussed by
mathematicians Branko Grünbaum and Geoffrey C. Shephard. Their tiles
can be used to produce one-, two-, three-, and six- armed spirals that tile the
plane. In 1980, Marjorie Rice and Doris Schattschneider described
additional ways to create spiral tilings, containing multiple arms, from
pentagonal tiles.

SEE ALSO Wallpaper Groups (1891), Squaring a Rectangle (1925), Penrose Tiles (1973), and
Spidrons (1979).



A spiral Voderberg tiling, rendered by Teja Krašek. This kind of tiling is referred
to as monohedral because it is a tessellation in which all tiles are the same.



Collatz Conjecture
1937

Lothar Collatz (1910–1990)

Imagine walking in a blinding hailstorm in which the hailstones drift up and
down in the wisps and eddies of wind. Sometimes the stones shoot up for as
far as your eye can see and then come plummeting back to Earth, smashing
into the ground like little meteorites.

Hailstone number problems have fascinated mathematicians for several
decades and are studied because they are so simple to calculate yet
apparently intractably hard to solve. To compute a sequence of hailstone
numbers—also referred to as 3n + 1 numbers—start by choosing any
positive integer. If your number is even, divide it by 2. If it is odd, multiply
by 3 and add 1. Next, take your answer and repeat the rule. For example,
the hailstone sequence for 3 is 3, 10, 5, 16, 8, 4, 2, 1, 4, … (The “…”
indicates that the sequence continues forever as 4, 2, 1, 4, 2, 1, 4, and so
forth.)

Like hailstones falling from the sky through storm clouds, this sequence
drifts down and up, sometimes in seemingly haphazard patterns. Also, like
hailstones, hailstone numbers always seem eventually to fall back down to
the “ground” (the integer “1”). The Collatz conjecture, named after German
mathematician Lothar Collatz who proposed it in 1937, states that this
process will eventually fall to 1 for any starting positive integer. So far,
mathematicians have not found a way to prove this conjecture, although the
conjecture has been checked by computer for all start values up to 19 × 258

≈ 5.48 × 1018.
A variety of awards have been offered to anyone who can prove or

disprove the conjecture. Mathematician Paul Erdös commented on the
complexity of 3n + 1 numbers, “Mathematics is not yet ready for such
problems.” The amiable and modest Collatz received many honors for his
contributions to mathematics, and he died in 1990 in Bulgaria, while
attending a mathematics conference concerning computer arithmetic.



SEE ALSO Erdös and Extreme Collaboration (1971), Ikeda Attractor (1979), and The On-Line
Encyclopedia of Integer Sequences (1996).



Fractal Collatz pattern. Although the behavior of 3n+1 numbers is usually
studied for integers, it is possible to extend the mathematical mappings to
complex numbers and represent the intricate fractal behavior through coloration
in the complex plane.



Ford Circles
1938

Lester Randolph Ford, Sr. (1886–1975)

Imagine a frothy milkshake with an infinite number of bubbles of all sizes,
touching one another but not interpenetrating. The bubbles become smaller
and smaller, always filling in the cracks and spaces between larger ones.
One form of such mysterious froth was discussed by mathematician Lester
Ford in 1938, and it turns out that they characterize the very fabric of our
“rational” number system. (Rational numbers are numbers like 1/2 that can
be expressed as fractions.)

To create the Ford froth, begin by choosing any two integers, h and k.
Draw a circle with radius 1/(2k2) and centered at (h/k, 1/(2k2)). For
example, if you select h = 1 and k = 2, you draw a circle centered at (0.5,
0.125) and with radius 0.125. Continue to place circles for different values
of h and k. As your picture becomes denser, you’ll notice that none of your
circles intersect, although some will be tangent to one another that is, just
kiss one another). Any circle has an infinitude of circles that kisses it.

Consider a godlike archer positioned above the Ford froth with an
appropriately large y value. To simulate the shooting of the arrow, draw a
vertical line from the location of your archer (for example, at x = a) down to
the x-axis. (This line is perpendicular to the x-axis.) If a is a rational
number, the line must pierce some Ford circle and hit the horizontal x-axis
exactly at the circle’s point of tangency. However, when the archer’s
position is at an irrational number (a non-repeating, endless decimal value
like π = 3.1415…), it must leave every circle that it enters and then must
enter another circle. Thus, the archer’s arrow must pass through an infinity
of circles! A deeper mathematical study of Ford circles shows that they
provide excellent visualizations of different levels of infinity and of
Cantor’s Transfinite Numbers.

SEE ALSO Cantor’s Transfinite Numbers (1874), Menger Sponge (1926), and Fractals (1975).



Ford circles, rendered by Jos Leys. The image is rotated 45° so that the x-axis
extends from bottom left to upper right. The circles become smaller and smaller,
always filling in the cracks and spaces between larger ones.



The Rise of Randomizing Machines
1938

William Thomson, Baron Kelvin of Largs (1824–1907), Sir Maurice
George Kendall (1907–1983), Bernard Babington Smith (d. 1993),
Leonard Henry Caleb Tippett (1902–1985), Frank Yates (1902–1995),
Sir Ronald Aylmer Fisher, FRS (1890–1962)

In modern science, random number generators are useful in simulating
natural phenomena and in sampling data. Before the rise of modern
electronic computers, researchers had to be creative in their approaches for
obtaining random numbers. For example, in 1901, Lord Kelvin used
numbers written on small papers drawn from a bowl to generate random
numbers. However, he found this approach “unsatisfactory,” writing, “The
best mixing we could make in the bowl seemed to be quite insufficient to
secure equal chances for all the billets.”

In 1927, British statistician Leonard Tippett provided researchers with a
table of 41,600 random digits that he had constructed by taking the middle
digits of numbers representing the area of parishes in England. In 1938,
British statisticians Ronald Fischer and Frank Yates published 15,000
additional random numbers using two decks of playing cards to select digits
in logarithms.

In 1938 and 1939, British statistician Maurice Kendall started his
research with British psychologist Bernard Babington Smith to produce
random numbers by machine. Their randomizing machine was the first such
mechanical device used to produce a table of 100,000 random digits. They
also formulated a series of rigorous tests to determine if the digits were
indeed statistically random. Kendall and Smith’s numbers were commonly
used until the RAND Corporation published A Million Random Digits with
100,000 Normal Deviates in 1955. RAND used a roulette-wheel-like
machine similar to the Kendall and Smith machine, and verified the digits
as statistically random using similar mathematical tests.

Kendall and Smith used a motor connected to a circular piece of
cardboard, about 10 inches (25 centimeters) in diameter. The disk was
divided into 10 segments “as equal in size as we could make them,”



numbered consecutively from 0 to 9. The disk was illuminated by a neon
lamp. A capacitor charged and the lamp eventually produced a flash. The
operator of the randomizing machine would see a number and record it.

SEE ALSO Dice (c. 3000 B.C.), Buffon’s Needle (1777), and Von Neumann’s Middle-Square
Randomizer (1946).



The complex and unpredictable motions of wax blobs within lava lamps has been
used as a source of random numbers. Such a system for generating random
numbers is mentioned in U.S. Patent 5,732,138, issued in 1998.



Birthday Paradox
1939

Richard von Mises (1883–1953)

Martin Gardner writes, “Since the beginning of history, unusual
coincidences have strengthened belief in the influence on life of occult
forces. Events that seemed to miraculously violate the laws of probability
were attributed to the will of gods or devils, God or Satan, or at the very
least to mysterious laws unknown to science and mathematics.” One
problem that has intrigued coincidence researchers is the birthday paradox.

Imagine you are in a large living room that people gradually enter. How
many people must be in the room before the probability that some share a
birthday becomes at least 50 percent? This problem, posed in 1939 by
Austrian-born American mathematician Richard von Mises, is significant
because its solution is counterintuitive to most people, because it is one of
the most explored probability problems in classrooms today, and because
variations of the birthday problem serve as useful models for analyzing
amazing coincidences in everyday life.

Assuming 365 days each year, the answer to the problem is a mere 23
people. In other words, if a room is filled with 23 or more randomly chosen
people, there is more than a 50 percent probability that some pair of people
will have the same birthday. For 57 or more people, the probability is more
than 99 percent. The probability becomes 100 percent if there are at least
366 people in the room, due to the Pigeonhole Principle. We assume that
the 365 possible birthdays are equally likely, and leap days are ignored. The
formula for calculating the probability of at least two of the n persons
having the same birthday is 1– [365!/[365n(365 – n)!], which can be
approximated by 1 − e−n2/(2·365).

Just 23 people may have been fewer than you expected because we were
not seeking two particular people or a specific birth date. A match on any
date for any two people is sufficient. In fact, 253 different pairings are
possible among 23 people, any of which could lead to a match.



SEE ALSO Zeno’s Paradoxes (c. 445 B.C.), Aristotle’s Wheel Paradox (c. 320 B.C.), Law of Large
Numbers (1713), St. Petersburg Paradox (1738), Pigeonhole Principle (1834), Barber Paradox
(1901), Banach-Tarski Paradox (1924), Hilbert’s Grand Hotel (1925), Ramsey Theory (1928),
Coastline Paradox (c. 1950), Newcomb’s Paradox (1960), and Parrondo’s Paradox (1999).



How many people must be in the room before the probability that some share a
birthday becomes at least 50 percent? Assuming 365 days each year, the
counterintuitive answer to the problem is a mere 23 people.



Polygon Circumscribing
c. 1940
Edward Kasner (1878–1955), James Roy Newman (1907–1966)

Draw a circle, with a radius equal to 1 inch (about 2.5 centimeters). Next,
circumscribe surround) the circle with an equilateral triangle. Next,
circumscribe the triangle with another circle. Then circumscribe this second
circle with a square. Continue with a third circle, circumscribing the square.
Circumscribe this circle with a regular pentagon. Continue this procedure
indefinitely, each time increasing the number of sides of the regular
polygon by one. Every other shape used is a circle that grows continually in
size as it encloses the assembly of predecessors. If you were to repeat this
process, always adding larger circles at the rate of a circle a minute, how
long would it take for the largest circle to have a radius equal to the radius
of our solar system?

By continually surrounding the shapes with circles, it would seem that
the radii should grow larger and larger, becoming infinite as we continue
the process. However, the assembly of nested polygons and circles will
never grow as large as the solar system, never grow as large as the Earth,
never grow as large as a typical adult bicycle tire. Although the circles
initially grow very quickly in size, the rate of growth gradually slows down,
and the radii of the resulting circles approach a limiting value given by the
infinite product: R = 1/[cos(π/3) × cos(π/4) × cos(π/5)…].

Perhaps most intriguing was the controversy over the limiting value of R.
It seems simple enough to compute. According to mathematicians Edward
Kasner and James Newman, who first reported a value in the 1940s, R is
approximately equal to 12. A value of 12 is also mentioned in a German
article published in 1964.

Christoffel J. Bouwkamp published a paper in 1965 that reports the true
value of R = 8.7000. I find it fascinating that, until 1965, mathematicians
still assumed that the correct value of R was 12. The correct value of R with
17 digits is 8.7000366252081945….

SEE ALSO Zeno’s Paradoxes (c. 445 B.C.), Wheat on a Chessboard (1256), Harmonic Series
Diverges (c. 1350), Discovery of Series Formula for π (c. 1500), and Brun’s Constant (1919).



A central circle is surrounded by alternating polygons and circles, as described
in the text (the red lines are thickened in the illustration for artistic effect). Is it
possible to make the pattern grow as large as a typical adult bicycle tire?



Hex
1942

Piet Hein (1905–1996), John Forbes Nash, Jr. (b. 1928)

Hex is a two-player board game played on a hexagonal grid, usually in the
shape of an 11 × 11 diamond. It was invented by Danish mathematician and
poet Piet Hein in 1942 and independently by American mathematician John
Nash in 1947. Nash, a Nobel Prize winner, is perhaps best known to the
public as the subject of the Hollywood movie A Beautiful Mind, which
highlights his mathematical prowess and battles with schizophrenia.
According to the book A Beautiful Mind, Nash promoted a 14 × 14 board as
the optimal size.

Players use differently colored pieces (for example, red and blue) and
alternatively place them in the hexagonal cells. Red’s goal is to form a red
path connecting two opposite sides of the board. Blue’s goal is to form a
path connecting the other opposite sides. The four corner hexagons belong
to both sides. Nash discovered that the game can never end in a tie, and the
game favors the first player, who can have a winning strategy. One way of
making the game fairer is to allow the second player to choose his or her
color after the first player makes the first move or after the first three
moves.

In 1952, Parker Brothers marketed a version of the game to the general
public that used hexagonal playing pieces. A winning strategy for the first
player has been demonstrated for several sizes of playing boards. Although
the game seems simple, mathematicians have used it for more profound
applications, such as for proving the Brouwer Fixed-Point Theorem.

Hein became internationally famous for his designs, poems, and
mathematical games. When the Germans invaded Denmark in 1940, he was
forced to go underground because he was the head of an anti-Nazi group. In
1944, he explained his creative approach: “Art is the solution to problems
which cannot be formulated clearly before they have been solved.”

SEE ALSO Brouwer Fixed-Point Theorem (1909), Pig Game Strategy (1945), Nash Equilibrium
(1950), and Instant Insanity (1966).



Hex board game played on a hexagonal grid. Red’s goal is to form a red path
connecting two opposite sides of the board. Blue’s goal is to form a path
connecting the other opposite sides. In this example, Red wins.



Pig Game Strategy
1945

John Scarne (born Orlando Carmelo Scarnecchia) (1903–1985)

Pig is a game with simple rules but with surprisingly complex strategies and
analyses. It is significant as a metaphor for many apparently simple
problems that have led to rich mathematical research years later, and as a
teaching tool used by numerous educators when discussing game strategy.

Pig was first described in print in 1945 by John Scarne—American
magician, game expert, card manipulator, and inventor—but the game has
its roots in older “folk games” with several variations. To play Pig, a player
rolls a die until either a 1 is rolled or the player “holds” and tallies the sum
of the rolls during her turn. If the player rolls a 1, nothing is added to the
player’s score during her turn, and the opponent now has his turn. The first
player to attain a score of 100 or more wins. Example: You roll a 3. You
decide to roll again and roll a 1. Thus, you add nothing to your score and
hand the die to your opponent. He rolls the sequence 3–4–6 and decides to
hold. Thus, he adds 13 to his score and hands the die back to you.

Pig is considered a “jeopardy” dice game because players must decide if
they should jeopardize previous gains by rolling for possible additional
gains. In 2004, computer scientists Todd W. Neller and Clifton Presser of
Gettysburg College in Pennsylvania analyzed Pig in detail to elucidate a
strategy for optimal play. Using mathematics and computer graphics, they
revealed an intricate, nonintuitive strategy for winning and showed why
playing to maximize points for a single turn clearly is different from playing
to win. About their findings and visualizations of optimal policies, they
poetically write, “Seeing the ‘landscape’ of this policy is like seeing the
surface of a distant planet sharply for the first time, having previously seen
only fuzzy images.”

SEE ALSO Dice (c. 3000 B.C.), Nash Equilibrium (1950), Prisoner’s Dilemma (1950), Newcomb’s
Paradox (1960), and Instant Insanity (1966).



The simple game of Pig has surprisingly complicated strategies and analyses.
Pig was first described in print in 1945 by American magician and inventor John
Scarne.



ENIAC
1946

John Mauchly (1907–1980) and J. Presper Eckert (1919–1995)

ENIAC, short for Electronic Numerical Integrator and Computer, was built
at the University of Pennsylvania by American scientists John Mauchly and
J. Presper Eckert. This device was the first electronic, reprogrammable,
digital computer that could be used to solve a large range of computing
problems. The original purpose of ENIAC was to calculate artillery firing
tables for the U.S. Army; however, its first important application involved
the design of the hydrogen bomb.

ENIAC was unveiled in 1946, having cost nearly $500,000, and it was in
nearly continuous use until it was turned off on October 2, 1955. The
machine contained more than 17,000 vacuum tubes and around 5 million
hand-soldered joints. An IBM card reader and card punch machine were
used for input and output. In 1997, a team of engineering students led by
Professor Jan Van der Spiegel created a “replica” of the 30-ton ENIAC on a
single integrated circuit!

Other important electrical computing machines of the 1930s and 1940s
include the American Atanasoff-Berry Computer (demonstrated in
December, 1939), the German Z3 (demonstrated in May, 1941), and the
British Colossus computer (demonstrated in 1943); however, these
machines were either not fully electronic or not general purpose.

The authors of the ENIAC patent (No. 3,120,606; filed in 1947) write,
“With the advent of everyday use of elaborate calculations, speed has
become paramount to such a high degree that there is no machine on the
market today capable of satisfying the full demand of modern
computational methods….The present invention is intended to reduce to
seconds such lengthy computations….”

Today, computer use has invaded most areas of mathematics, including
numerical analysis, number theory, and probability theory. Mathematicians,
of course, increasingly use computers in their research and in their teaching,
sometimes using computer graphics to gain insight. Famous mathematical
proofs have been done with the aid of the computer.



SEE ALSO Abacus (1200), Slide Rule (1621), Babbage Mechanical Computer (1822), Differential
Analyzer (1927), Turing Machines (1936), Curta Calculator (1948), and HP-35: First Scientific
Pocket Calculator (1972).



U.S. Army photo of ENIAC, the first electronic, reprogrammable, digital
computer that could be used to solve a large range of computing problems. Its
first important application involved the design of the hydrogen bomb.



Von Neumann’s Middle-Square Randomizer
1946

John von Neumann (1903–1957)

Scientists use random number generators for tackling a wide variety of
problems, such as developing secret codes, modeling the movement of
atoms, and conducting accurate surveys. A pseudorandom number
generator (PRNG) is an algorithm that produces a sequence of numbers that
emulate the statistical properties of random numbers.

The middle-square method, developed by mathematician John von
Neumann in 1946, is one of the most famous and earliest computer-based
PRNGs. He started with a number such as 1946 and squared it to produce
3786916, which can be written as 03786916. He removed the middle four
digits, 7869, and continued the process of squaring and removal. In actual
practice, von Neumann used 10-digit numbers and followed the same rules.

Von Neumann, famous for his collaborative research in thermonuclear
reactions that led to the hydrogen bomb, understood that his simple
randomizing approach had flaws and that the sequences would eventually
repeat, but he was satisfied with the method for many applications. In 1951,
von Neumann cautioned users of these schemes, “Anyone who considers
arithmetical methods of producing random digits is, of course, in a state of
sin.” Nevertheless, he preferred this approach to better hardware-based
random number generators that did not record their values, thus making it
difficult to repeat procedures to identify problems. In any case, von
Neumann did not have access to sufficient computer memory to store many
“random” values. Indeed, his wonderfully simple approach produced
numbers on the ENIAC computer hundreds of times faster than reading
numbers from punch cards.

More recent and useful PRNGs make use of the linear congruential
method of the form Xn+1 = (aXn + c) mod m. Here, n ≥ 0, a is the multiplier,
m the modulus, c the increment, and X0 the starting value. The Mersenne
twister PRNG algorithm, developed in 1997 by Makoto Matsumoto and
Takuji Nishimura, is also desirable for many of today’s applications.



SEE ALSO Dice (c. 3000 B.C.), Buffon’s Needle (1777), The Rise of Randomizing Machines
(1938), and ENIAC (1946).



John von Neumann in the 1940s. Von Neumann developed the middle-square
method, a famous, early computer-based pseudorandom number generator.



Gray Code
1947

Frank Gray (d. 1969), Émile Baudot (1845–1903)

A Gray code represents numbers in a positional notation so that when the
numbers are in counting order, any adjacent number pair will differ in some
single digit by 1, and at one position only. For example, 182 and 172 could
be adjacent counting numbers in a decimal Gray code (the middle digits
differ by 1), but not 182 and 162 (no digits differ by 1), nor 182 and 173
(more than one digit pair differs by 1).

One simple, famous, and useful Gray code is called the reflected binary
Gray code, which consists of only 0s and 1s. Martin Gardner explains that
to convert a standard binary number to its reflected Gray equivalent, we
first examine the rightmost digit and then consider each digit in turn. If the
next digit to the left is 0, let the original digit stand. If the next digit to the
left is 1, change the original digit. (The digit at the extreme left is assumed
to have a 0 on its left and therefore remains unchanged.) For example,
applying this conversion to the number 110111 gives the Gray number
101100. We can then convert all the standard binary numbers to create the
Gray sequence that starts 0, 1, 11, 10, 110, 111, 101, 100, 1100, 1101, 1111,
…

The reflected binary code was originally designed to make it easier to
prevent erroneous output from electromechanical switches. In this
application, a slight change in position only affects one bit. Today, Gray
codes are used to facilitate error correction in digital communications, such
as in TV signal transmission, and to make transmission systems less
susceptible to noise. The French engineer Émile Baudot used Gray codes in
telegraphy in 1878. The code is named after Bell Labs research physicist
Frank Gray, who made extensive use of these codes in his engineering
patents. Gray had invented a method to convert analog signals to binary
Gray code using vacuum tubes. Today, Gray codes also have important
applications in graph theory and number theory.

SEE ALSO Boolean Algebra (1854), Gros’s Théorie du Baguenodier (1872), Tower of Hanoi
(1883), and Information Theory (1948).



Diagram from Frank Gray’s U.S. patent 2,632,058, filed in 1947 and issued in
1953. In this patent, Gray introduced his famous code, referring to it as a
“reflected binary code.” The code was later named after Gray by other
researchers.



Information Theory
1948

Claude Elwood Shannon (1916–2001)

Teenagers watch TV, cruise the Internet, spin their DVDs, and chat
endlessly on the phone usually without ever realizing that the foundations
for this Information Age were laid by American mathematician Claude
Shannon, who in 1948 published “A Mathematical Theory of
Communication.” Information theory is a discipline of applied mathematics
involving the quantification of data, and it helps scientists understand the
capacity of various systems to store, transmit, and process information.
Information theory is also concerned with data compression and with
methods for reducing noise and error rates to enable as much data as
possible to be reliably stored and communicated over a channel. The
measure of information, known as information entropy, is usually expressed
by the average number of bits needed for storage or communication. Much
of the mathematics behind information theory was established by Ludwig
Boltzmann and J. Willard Gibbs for the field of thermodynamics. Alan
Turing also used similar ideas when breaking of the German Enigma
ciphers during World War II.

Information theory affects a diverse array of fields, ranging from
mathematics and computer science to neurobiology, linguistics, and black
holes. Information theory has practical applications such as breaking codes
and recovering from errors due to scratches in movie DVDs. According to a
1953 issue of Fortune: “It may be no exaggeration to say that man’s
progress in peace, and security in war, depend more on fruitful applications
of Information Theory than on physical demonstrations, either in bombs or
in power plants, that Einstein’s famous equation works.”

Claude Shannon died in 2001, at the age of 84, after a long struggle with
Alzheimer’s disease. At one point in his life, he had been an excellent
juggler, unicyclist, and chess player. Sadly, due to his affliction, he was
unable to observe the Information Age that he helped create.

SEE ALSO Boolean Algebra (1854), Turing Machines (1936), and Gray Code (1947).



Information theory helps technologists understand the capacity of various
systems to store, transmit, and process information. Information theory has
applications in fields ranging from computer science to neurobiology.



Curta Calculator
1948

Curt Herzstark (1902–1988)

The Curta is considered by many historians of science to be the first
commercially successful portable mechanical calculator. Developed by
Austrian Jew Curt Herzstark while a prisoner in the Buchenwald
concentration camp, the handheld Curta could perform multiplication,
addition, subtraction, and division. The cylindrical body of the Curta was
usually held in the left hand and contained eight sliders for number entry.

In 1943, Herzstark was accused of “helping Jews” and “indecent contacts
with Aryan women.” He eventually ended up at Buchenwald, where news
of his technical expertise and ideas on calculating machines led the Nazis to
demand that he make a drawing of his calculator designs; they had hoped to
give the device to Hitler as a gift at the end of the war.

After the war, in 1946, Herzstark was invited by the prince of
Liechtenstein to found a manufacturing plant for the devices, which became
widely available to the public in 1948. For a time, the Curtas were among
the best portable calculators available, and were in frequent use until the
rise of electronic calculators in the 1970s.

The Type I Curta had an 11-digit result counter. The larger Type II Curta,
introduced in 1954, had a 15-digit result counter. Over a period of about 20
years, approximately 80,000 of the Curta I and 60,000 of the Curta II
devices were built.

Astronomer and author Cliff Stoll writes, “Johannes Kepler, Isaac
Newton, and Lord Kelvin all complained about the time they had to waste
doing simple arithmetic…. Oh, for a pocket calculator that could add,
subtract, multiply and divide! One with digital readouts and memory. A
simple, finger-friendly interface. But none were available until 1947. Then,
for a quarter of a century, the finest pocket calculators came from
Liechtenstein. In this diminutive land of Alpine scenery and tax shelters,
Curt Herzstark built the most ingenious calculating machine ever to grace
an engineer’s hand: the Curta calculator.”



SEE ALSO Abacus (1200), Slide Rule (1621), Babbage Mechanical Computer (1822), Ritty Model I
Cash Register (1879), Differential Analyzer (1927), and HP-35: First Scientific Pocket Calculator
(1972).



The Curta calculator may be the first commercially successful portable
mechanical calculator. The handheld device was developed by Curt Herzstark
while a prisoner in the Buchenwald concentration camp. The Nazis hoped to
give the device to Adolph Hitler as a gift.



Császár Polyhedron
1949

Ákos Császár (b. 1924)

Polyhedra are solids built from a collection of polygons joined at their
edges. How many polyhedra exist with every pair of vertices joined by an
edge? Apart from the tetrahedron triangular pyramid), the Császár
polyhedron is the only known polyhedron that is considered to have no
diagonals, where a diagonal is defined as a line joining any two vertices not
connected by an edge. Note that the tetrahedron has four vertices, six edges,
four faces, and no diagonals. An edge joins every pair of corners.

The Császár polyhedron was first described in 1949 by the Hungarian
mathema tician Ákos Császár. Using the theory of combinatorics (the study
of the ways of choosing and arranging objects from collections),
mathematicians now know that other than the tetrahedron, any other no-
diagonal polyhedron must have at least one hole (tunnel). The Császár
polyhedron has one hole (difficult to visualize without a model to hold) and
is topologically equivalent to a torus (doughnut). This polyhedron has 7
vertices, 14 faces, and 21 edges, and is the dual of the Szilassi polyhedron.
For dual polyhedra, the vertices of one polyhedron correspond to the faces
of the other polyhedron.

David Darling writes, “It isn’t known if there are any other polyhedra in
which every pair of vertices is joined by an edge. The next possible figure
would have 12 faces, 66 edges, 44 vertices, and 6 holes, but this seems an
unlikely configuration—as, indeed, to an even greater extent, does any
more complex member of this curious family.”

Martin Gardner remarks on the wide-ranging applications of the Császár
polyhedron, “In studying the skeletal structure of a bizarre solid…[we find]
some remarkable isomor phisms that involve the seven-color map on a
torus, the smallest ‘finite projective plane,’ the solution of an old puzzle
about triplets of seven girls, the solution of a bridge-tournament problem
about eight teams, and the construction of a new kind of magic square
known as a Room square.”



SEE ALSO Platonic Solids (350 B.C.), Archimedean Semi-Regular Polyhedra (c. 240 B.C.), Euler’s
Formula for Polyhedra (1751), Icosian Game (1857), Pick’s Theorem (1899), Geodesic Dome
(1922), Ramsey Theory (1928), Szilassi Polyhedron (1977), Spidrons (1979), and Solving of the
Holyhedron (1999).



Császár polyhedron. Aside from the tetrahedron, the Császár polyhedron is the
only known polyhedron that is considered to have no diagonals, where a
diagonal is defined as a line joining any two vertices not connected by an edge.



Nash Equilibrium
1950

John Nash (b. 1928)

American mathematician John Nash received the 1994 Nobel Prize in
Economics. His prize-winning work appeared almost half a century earlier
in his slender 27-page doctoral thesis written at the age of 21.

In game theory, the Nash equilibrium concerns games involving two or
more players, where no player has anything to gain by changing his strategy
on his own. If each player has chosen a strategy and no player can benefit
by changing his strategy while the other players’ strategies remain
unchanged, then the current set of strategy choices is part of a Nash
equilibrium. In 1950, Nash was the first to show in his dissertation, “Non-
cooperative Games,” that Nash equilibria for mixed strategies must exist for
all finite games with an arbitrary number of players.

Game theory had made great strides in the 1920s with the work of John
von Neumann, which culminated in his book Theory of Games and
Economic Behavior, coauthored with Oskar Morgenstern. They focused on
“zero-sum” games for which the interests of two players were strictly
opposed. Today, game theory has relevance in studying human conflict and
bargaining and to the behavior of animal populations.

As for Nash, in 1958, Fortune singled him out for his achievements in
game theory, algebraic geometry, and nonlinear theory, calling him the most
brilliant of the younger generation of mathematicians. He seemed destined
for continued achievements, but in 1959, he was institutionalized and
diagnosed as schizophrenic. He believed that aliens had made him emperor
of Antarctica and that an ordinary thing, such as a sentence in the
newspaper, could have a hidden and extra-important significance. Nash
once remarked: “I would not dare to say that there is a direct relation
between mathematics and madness, but there is no doubt that great
mathematicians suffer from maniacal characteristics, delirium, and
symptoms of schizophrenia.”



Nobel Prize–winner John Nash. This photo was taken in 2006 at a game theory
symposium at the University of Cologne in Germany.

SEE ALSO Hex (1942), Pig Game Strategy (1945), Prisoner’s Dilemma (1950), Newcomb’s
Paradox (1960), and Checkers Is Solved (2007).



The mathematics of game theory may be used to model real-world scenarios in
fields that range from social sciences to international relations and biology.
Recent studies have applied the Nash equilibrium to the modeling of honeybee
hives that compete for habitat resources.



Coastline Paradox
c. 1950
Lewis Fry Richardson (1881–1953), Benoit Mandelbrot (b. 1924–2010)

If one were to attempt to measure a coastline or the boundary of two
nations, the value of the measurement would depend on the length of the
measuring stick used. As the measuring stick decreased in length, the
measurement would become sensitive to smaller and smaller wiggles in the
boundary, and, in principle, the length of the coastline would approach
infinity as the length of the stick approached zero. British mathematician
Lewis Richardson considered this phenomenon during his attempt to
correlate the occurrence of wars with the nature of the boundary separating
two or more nations. (He found that the number of a country’s wars was
proportional to the number of countries it bordered.) Franco-American
mathematician Benoit Mandelbrot built upon Richardson’s work and
suggested that the relationship between the measuring-stick length (ε) and
the apparent total length (L) of a coastline could be expressed by the
parameter D, the fractal dimension.

One can appreciate D by studying the relationship between the number N
of measuring sticks and the length ε. For a smooth curve such as a circle,
we have N(ε) = c/ε, where c is a constant. However, for a fractal curve like
a coastline, this relationship becomes N(ε) = c/εD. If we multiply both sides
of the formula by ε, the relation can be expressed in terms of the length of
the measuring stick: L(ε) = ε/εD. D corresponds somewhat to the traditional
notion of dimension (a line is one dimensional, a plane two dimensional),
except that D can be a fraction. Because a coastline is convoluted at
different size scales, it slightly “fills” a surface, and its dimension lies
between a line and a plane. The fractal structure implies that repeated
magnification of its graph reveals ever-finer levels of detail. Mandelbrot
gives D = 1.26 for the coastline of Britain. Of course, for real-world objects,
we never can actually use infinitesimally small measuring sticks, but this
“paradox” shows how natural features exhibit fractional dimensions over a
range of measurement scales.

SEE ALSO Weierstrass Function (1872), Koch Snowflake (1904), Hausdorff Dimension (1918), and
Fractals (1975).



As one uses increasingly small measuring sticks to measure the length of the
coastline of England, the length of the coastline appears to approach infinity.
This “paradox” shows how natural features exhibit fractional dimensions over a
range of measurement scales.



Prisoner’s Dilemma
1950

Melvin Dresher (1911–1992), Merrill Meeks Flood (b. 1908), Albert W.
Tucker (1905–1995)

Imagine an angel dealing with two prisoners. Both Cain and Abel are
suspected of having illegally snuck back into the Garden of Eden.
Insufficient evidence exists against either of them. If neither human
confesses, the angel has to lower the “charges” to trespassing, and the two
brothers are condemned to wander the desert for a mere six months. If just
one brother confesses, then the confessor goes free, and the other is doomed
to crawl and eat dust for thirty years. On the other hand, if both Cain and
Abel confess, each will get reduced sentences of five years of wandering.
Cain and Abel are separated so that they cannot communicate. What should
Cain and Abel do?

At first, the solution to their dilemma seems straightforward: Neither
Cain nor Abel should confess so that they both end up with the minimum
punishment—wandering in the desert for six months. However, it’s quite
possible that if Cain wishes to cooperate, then Abel will be tempted to
double-cross Cain at the last minute, thereby achieving the best possible
outcome, which is freedom. One important game-theoretical approach
shows that the scenario leads each suspect to confess even though it will
bring a harsher punishment than the strategy of cooperation and no
confession. Cain and Abel’s dilemma explores the conflict between the
good of the individual and the good of the group.

The Prisoner’s Dilemma was first formally identified in 1950 by Melvin
Dresher and Merrill M. Flood. Albert W. Tucker researched the dilemma to
understand and illustrate the difficulty of analyzing non-zero-sum games—
dilemmas in which one person’s victory is not necessarily the other person’s
defeat. Tucker’s work has since given rise to an enormous related literature
in disciplines ranging from philosophy and biology to sociology, political
science, and economics.

SEE ALSO Zeno’s Paradoxes (c. 445 B.C.), Aristotle’s Wheel Paradox (c. 320 B.C.), St. Petersburg
Paradox (1738), Barber Paradox (1901), Banach-Tarski Paradox (1924), Hilbert’s Grand Hotel



(1925), Birthday Paradox (1939), Pig Game Strategy (1945), Nash Equilibrium (1950), Newcomb’s
Paradox (1960), and Parrondo’s Paradox (1999).



The Prisoners’ Dilemma was first formally identified in 1950 by Melvin Dresher
and Merrill M. Flood. The dilemma helps researchers illustrate the difficulty of
analyzing non-zero-sum games in which one person’s victory is not necessarily
the other person’s defeat.



Cellular Automata
1952

John von Neumann (1903–1957), Stanisław Marcin Ulam (1909–1984),
John Horton Conway (b. 1937)

Cellular automata are a class of simple mathematical systems that can
model a variety of physical processes with complex behaviors. Applications
include the modeling of the spread of plant species, the propagation of
animals such as barnacles, the oscillations of chemical reactions, and the
spread of forest fires.

Some of the classic cellular automata consist of a grid of cells that can
exist in two states, occupied or unoccupied. The occupancy of one cell is
determined from a simple mathematical analysis of the occupancy of
neighbor cells. Mathematicians define the rules, set up the game board, and
let the game play itself out on a checkerboard world. Though the rules
governing the creation of cellular automata are simple, the patterns they
produce are very complicated and sometimes seem almost random, like a
turbulent fluid flow or the output of a cryptographic system.

Early work in this area began with Stanislaw Ulam in the 1940s, when he
modeled the growth of crystals using a simple lattice. Ulam suggested that
mathematician John von Neumann use a similar approach to modeling self-
replicating systems, such as robots that could build other robots, and around
1952, von Neumann created the first 2-D cellular automata, with 29 states
per cell. Von Neumann proved mathematically that a particular pattern
could make endless copies of itself within the given cellular universe.

The most famous two-state, two-dimensional cellular automaton is the
Game of Life invented by John Conway, and popularized by Martin
Gardner in Scientific American. Despite its simple rules, an amazing
diversity of behaviors and forms are generated including gliders—that is,
arrangements of cells that move themselves across their universe and can
even interact to perform computations. In 2002, Stephen Wolfram published
A New Kind of Science, which reinforced the idea that cellular automata can
have significance in virtually all disciplines of science.



SEE ALSO Turing Machines (1936) and Mathematical Universe Hypothesis (2007).



Cone snail with cellular-automata patterns on its shell, resulting from that
activation and inhibition of neighboring pigment cells. The pattern resembles the
output of a one-dimensional cellular automaton, referred to as a Rule 30
automaton.



Martin Gardner’s Mathematical Recreations
1957

Martin Gardner (1914–2010)

“Perhaps an angel of the Lord surveyed an endless sea of chaos, then
troubled it gently with his finger. In this tiny and temporary swirl of
equations, our cosmos took shape.”

—Martin Gardner, Order and Surprise

The authors of Winning Ways for Your Mathematical Plays wrote that
Martin Gardner “brought more mathematics to more millions than anyone
else.” Allyn Jackson, deputy editor of the American Mathematics Society,
wrote that Gardner “opened the eyes of the general public to the beauty and
fascination of mathematics and inspired many to go on to make the subject
their life’s work.” Indeed, several famous concepts in math were first
brought to world attention through Gardner’s works before they appeared in
other publications.

Martin Gardner is an American author who wrote the “Mathematical
Games” column in Scientific American from 1957 to 1981. He has also
published more than 65 books. Gardner attended the University of Chicago,
where he earned a bachelor’s degree in philosophy. The bulk of his vast
education came through his wide reading and correspondence.

According to many modern mathematicians, Gardner is the most
important person to have nurtured interest in mathematics in the United
States for a substantial part of the twentieth century. Douglas Hofstadter
once called Gardner “one of the great intellects produced in this country in
this century.” Gardner’s “Mathematical Games” covered such subjects as
flexagons, Conway’s Game of Life, polyominoes, the soma cube, Hex,
tangrams, Penrose Tiles, public-key cryptography, the works of M.C.
Escher, and fractals.

Gardner’s first article in Scientific American, on the topic of
hexaflexagons (flexible folding objects), ran in December, 1956. Gerry Piel,
the publisher, called Gardner into his office and asked him if enough similar



material existed to make a regular magazine feature. Gardner replied that he
thought so. The next issue—January, 1957—ran the first of the columns.

One logo used for the 2008 Gathering for Gardner conference. This biannual
conference is held in honor of Martin Gardner to promote the exposition of new
ideas in recreational mathematics, magic, puzzles, art, and philosophy. (The logo
is by Teja Krašek.)

SEE ALSO Hex (1942), Cellular Automata (1952), Penrose Tiles (1973), Fractals (1975), Public-
Key Cryptography (1977), and NUMB3RS (2005).



Martin Gardner stands by all his words: Six shelves contain his publications,
dating back to 1931. (The photo was taken in his Oklahoma home in March
2006.)



Gilbreath’s Conjecture
1958

Norman L. Gilbreath (b. 1936)

In 1958, after scribbling on a napkin, American mathematician and
magician Norman L. Gilbreath presented a mystifying hypothesis
concerning prime numbers. Gilbreath wrote the first few prime numbers—
that is, numbers larger than 1, such as 5 or 13, that are divisible only by
themselves or 1. Next, he continued to subtract successive terms and record
the unsigned differences
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, …
1, 2, 2, 4, 2, 4, 2, 4, 6, 2, …
1, 0, 2, 2, 2, 2, 2, 2, 4, …
1, 2, 0, 0, 0, 0, 0, 2, …
1, 2, 0, 0, 0, 0, 2, …
1, 2, 0, 0, 0, 2, …
1, 2, 0, 0, 2, …
1, 2, 0, 2, …
1, 2, 2, …
1, 0, …
1, …
Gilbreath’s conjecture is that, after the initial row, the first number in each
row is always one. No one has ever found an exception, despite searches
out to several hundred billion rows. Mathematician Richard Guy once
wrote, “It does not seem likely that we shall see a proof of Gilbreath’s
conjecture in the near future, although the conjecture is probably true.”
Mathematicians are unsure if the conjecture is particularly relevant to prime
numbers or whether it applies to any sequence that begins with 2 and is
followed by odd numbers that increase at a sufficient rate with sufficient
gaps between them.

Although Gilbreath’s conjecture is historically not as significant as many
of the other entries in this book, it is a marvelous example of the kinds of



simple-to-state problems that even amateur mathematicians can offer, but
that may require mathematicians centuries to solve. A proof may someday
be within our grasp when humanity better understands the distribution of
the gaps between prime numbers.

SEE ALSO Cicada-Generated Prime Numbers (c. 1 Million B.C.), Sieve of Eratosthenes (240 B.C.),
Goldbach Conjecture (1742), Constructing a Regular Heptadecagon (1796), Gauss’s Disquisitiones
Arithmeticae (1801), Riemann Hypothesis (1859), Proof of the Prime Number Theorem (1896),
Brun’s Constant (1919), Ulam Spiral (1963), and Andrica’s Conjecture (1985).



Norman Gilbreath, 2007, while at Cambridge University. The great number
theorist Paul Erdös said that he thought the Gilbreath conjecture was true, but
that it would probably be 200 years before it was proved.



Turning a Sphere Inside Out
1958

Stephen Smale (b. 1930), Bernard Morin (b. 1931)

For many years, topologists knew that it was theoretically possible to turn a
sphere inside out (or “evert” it), yet they didn’t have the slightest idea how
to do it. When computer graphics became available to researchers,
mathematician and graphics expert Nelson Max produced an animated film
finally illustrating the transformation of the sphere. Max’s 1977 movie
Turning a Sphere Inside Out was based on the 1967 sphere eversion work
of Bernard Morin, a blind French topologist. The animation focuses on how
the eversion can be performed by passing the surface through itself without
making any holes or creases. Mathematicians had believed that the problem
was insoluble until around 1958, when American mathematician Stephen
Smale proved otherwise. However, no one could clearly visualize the
motion without the graphics.

When we discuss the eversion of a sphere, we’re not talking about
turning a beach ball inside out by pulling the deflated ball through its
opening and then inflating it again. Instead, we are referring to a sphere
with no orifice. Mathematicians try to visualize a sphere made out of a thin
membrane that can stretch and even pass through itself without ripping or
developing a sharp kink or crease. The task of avoiding such sharp creases
makes the mathematical sphere eversion so difficult.

In the late 1990s, mathematicians went a step further and discovered a
geometrically optimal path—one that minimizes the energy needed to
contort the sphere through its transformation. This optimal sphere eversion,
or optiverse, is now the star of a colorful computer-graphics movie titled
The Optiverse. However, we can’t use the principles in the movie to turn a
real sealed balloon inside out. Because real balls and balloons are not made
of a material that can pass through itself, it is not possible to turn such
objects inside out without poking a hole through them.



Today, mathematicians know precisely how to turn a sphere inside out. However,
for many years, topologists were unable to show how to accomplish this
formidable geometrical task.

SEE ALSO The Möbius Strip (1858), Klein Bottle (1882), and Boy’s Surface (1901).



Carlo H. Sequin’s physical model of one mathematical stage of the sphere
eversion process. (The sphere had started out as green on the outside and red on
the inside.)



Platonic Billiards
1958

Lewis Carroll (1832–1898), Hugo Steinhaus (1887–1972), Matthew
Hudelson (b. 1962)

The Platonic billiards question has intrigued mathematicians for more than
a century, and a complete solution had to wait for nearly fifty years after it
was solved for the case of a cube. Imagine a billiard ball bouncing around
inside a cube. Friction and gravity are neglected for this theoretical
discussion. Can we find a path such that the ball returns to its starting point
after hitting each wall once? The problem was initially posed by English
author and mathematician Lewis Carroll (1832–1898).

In 1958, Polish mathematician Hugo Steinhaus widely published a
solution that showed that such paths existed for cubes, and in 1962,
mathematicians John Conway and Roger Hayward discovered similar paths
inside a regular tetrahedron. Each leg of the path between walls has the
same length for the cube and the tetrahedron. In theory, the ball bounces
along the path forever. However, no one was sure if these kinds of paths
existed for other Platonic Solids.

Finally, in 1997, American mathematician Matthew Hudelson
demonstrated intriguing paths for a billiard ball bouncing around inside
Platonic solids—the eight-sided octahedron, 12-sided dodecahedron, and
the 20-sided icosahedron. These Hudelson paths make contact with each
side of the inner walls and finally return to their starting points and starting
directions of travel. Hudelson used a computer to assist him in his research.
His challenge was particularly difficult, considering the large number of
possibilities that had to be investigated for the dodecahedron and
icosahedron. In order to obtain a better intuition about the problem for these
shapes, Hudelson wrote a program that generated more than 100,000
random initial trajectories, and he studied those that hit all 12 sides in the
dodecahedron and that hit all 20 sides in the icosahedron.

SEE ALSO Platonic Solids (350 B.C.) and Outer Billiards (1959).



Mathematicians have discovered billiard-ball return shots within five Platonic
solids. For example, a closed “bouncing ball” path exists that makes contact
with each inner wall of the 20-sided icosahedron, rendered here by Teja Krašek.



Outer Billiards
1959

Bernhard Hermann Neumann (1909–2002), Jürgen Moser (1928–1999),
Richard Evan Schwartz (b. 1966)

The concept of outer billiards (OB) was developed in the 1950s by
German-born British mathematician Bernhard Neumann. German American
mathematician Jürgen Moser popularized OB in the 1970s as a simplified
model for planetary motions. To experiment with OB, draw a polygon.
Place a point x0 outside the polygon. Think of this as the starting point of a
billiard ball. The ball moves along a straight line just touching a polygon
vertex and continues to travel to a new point x1 such that the vertex is at the
midpoint of the line between x0 and x1. Continue the procedure with the
next vertex in a clockwise fashion.

Neumann asked whether such a trajectory, or orbit, around the convex
polygon could be unbounded so that the ball eventually runs away toward
infinity. For regular polygons, all trajectories are bounded and do not
meander further and further from the polygon. If the vertices of the
polygons have rational coordinates (for example, they can be expressed in
terms of fractions), the trajectories are bounded and periodic, eventually
returning to their starting points.

In 2007, Richard Schwartz of Brown University finally showed that
Neumann’s OB could lead to an unbounded trajectory in the Euclidean
plane, demonstrating this for a quadrilateral called the Penrose kite, which
is used in Penrose tiling. Schwartz also discovered three large, octagonal
regions within which trajectories bounce periodically from one region to the
other. Other regions led to behavior that converged to a set of points from
which the trajectories are unbounded. As with other modern proofs in
mathematics, Schwartz’s initial proof relied on a computer.

As for Neumann, he was awarded his doctorate by the University of
Berlin in 1932. When Hitler came to power in 1933, Neumann understood
the dangers of being a Jew and fled to Amsterdam and then to Cambridge.

SEE ALSO Platonic Billiards (1958) and Penrose Tiles (1973).



Richard Schwartz demonstrates that the dynamics of outer billiards around a
Penrose kite (the orange central polygon) may be visualized by an intricate tiling
pattern. The colors of various polygonal regions provide an indication of the
behavior of trajectories with endpoints in these regions.



Newcomb’s Paradox
1960

William A. Newcomb (1927–1999), Robert Nozick (1938–2002)

Before you are two closed arks, or boxes, labeled “Ark 1” and “Ark 2.” An
angel explains that Ark 1 contains a golden goblet worth $1,000. Ark 2
contains either a spider worth absolutely nothing or the Mona Lisa painting
worth millions of dollars. You have two choices: Take what is in both arks,
or take only what is in Ark 2.

Now the angel makes your choice perplexing. “We have made a
prediction about what you will decide. We are almost certainly correct.
When we expect you to choose both arks, we put only the worthless spider
in Ark 2. When we expect you to take only Ark 2, we have placed the Mona
Lisa inside it. Ark 1 always contains $1,000, no matter what we think you
will do.”

At first, you think that you should select only Ark 2. The angels are
excellent predictors, and therefore you will get the Mona Lisa. If you take
both arks, the angel will very likely have anticipated your choice and have
put a spider in Ark 2. You will only get the $1,000 cup and a spider.

But now the angel confuses you. “Forty days ago, we made a prediction
about which you would choose. We already have either put the Mona Lisa
or the spider in Ark 2, and we’re not going to tell you.”

Now you think you should take both arks and get everything possible. It
seems foolish for you to select only Ark 2, because if you do so, you can’t
get more than the Mona Lisa. Why give up the $1,000?

This is the essence of Newcomb’s paradox, formulated in 1960 by
physicist William A. Newcomb. The puzzle was further elucidated by
philosopher Robert Nozick in 1969. Experts still tear their hair out over this
dilemma and disagree as to your best strategy.

SEE ALSO Zeno’s Paradoxes (c. 445 B.C.), Aristotle’s Wheel Paradox (c. 320 B.C.), St. Petersburg
Paradox (1738), Barber Paradox (1901), Banach-Tarski Paradox (1924), Hilbert’s Grand Hotel
(1925), Prisoner’s Dilemma (1950), and Parrondo’s Paradox (1999).



Newcomb’s paradox, formulated in 1960 by physicist William A. Newcomb.
Would you take both boxes, knowing that the angels are super-intelligent
predictors and almost certainly correct?



Sierpinski Numbers
1960

Wacław Franciszek Sierpinski (1882–1969)

Mathematician Don Zagier writes that “there is no apparent reason why one
number is prime and another not. To the contrary, upon looking at these
numbers one has the feeling of being in the presence of one of the
inexplicable secrets of creation.” In 1960, Polish mathematician Wacław
Sierpinski proved that there are infinitely many odd integers k, called
Sierpinski numbers, such that k × 2n + 1 is never prime for every positive
integer n. Ivars Peterson writes, “That’s a strange result. There appears to be
no obvious reason why these particular expressions never yield a prime.”
Given this background, the Sierpinski problem may be stated as “What is
the smallest Sierpinski number?”

In 1962, American mathematician John Selfridge discovered the
smallest-known Sierpinski number, k = 78,557. In particular, he proved that
when k = 78,557, all numbers of the form k × 2n + 1 are divisible by one of
the following: 3, 5, 7, 13, 19, 37, or 73.

In 1967, Sierpinski and Selfridge conjectured that 78,557 is the smallest
Sierpinski number and, thus, is the answer to the Sierpinski problem. Today,
mathematicians wonder if a smaller Sierpinski number will ever be
discovered. If we were able to scan all values of k < 78,557 and find a
prime number for each, then we would know for sure. As of February,
2008, there were a mere six candidate numbers that had not been eliminated
as possible smaller Sierpinski numbers. “Seventeen Or Bust,” a distributed
computing project, is testing these remaining numbers. For example, in
October of 2007, “Seventeen Or Bust” proved that 33,661 × 27,031,232 + 1, a
2,116,617-digit number, is prime, thus eliminating k = 33,661 as a possible
Sierpinski number. If mathematicians are able to find a prime of the proper
form for all the remaining k, the Sierpinski problem will be solved and the
nearly 50-year quest ended.

SEE ALSO Cicada-Generated Prime Numbers (c. 1 Million B.C.), Sieve of Eratosthenes (240 B.C.),
Goldbach Conjecture (1742), Constructing a Regular Heptadecagon (1796), Gauss’s Disquisitiones
Arithmeticae (1801), Proof of the Prime Number Theorem (1896), Brun’s Constant (1919),



Gilbreath’s Conjecture (1958), Ulam Spiral (1963), Erdös and Extreme Collaboration (1971), and
Andrica’s Conjecture (1985).



Logo of “Seventeen Or Bust,” a distributed-computing project devoted to
determining if 78,557 is the smallest Sierpinski number. For years, their system
has harnessed the computational power of hundreds of computers around the
world, working together on the problem.



Chaos and the Butterfly Effect
1963

Jacques Salomon Hadamard (1865–1963), Jules Henri Poincaré (1854–
1912), Edward Norton Lorenz (1917–2008)

To ancient humans, chaos represented the unknown, the spirit world—
menacing, nightmarish visions that reflected man’s fear of the
uncontrollable and the need to give shape and structure to his
apprehensions. Today, chaos theory is an exciting, growing field that
involves the study of wide-ranging phenomena exhibiting a sensitive
dependence on initial conditions. Although chaotic behavior often seems
“random” and unpredictable, it often obeys strict mathematical rules
derived from equations that can be formulated and studied. One important
research tool to aid in the study of chaos is computer graphics. From
chaotic toys with randomly blinking lights to wisps and eddies of cigarette
smoke, chaotic behavior is generally irregular and disorderly; other
examples include weather patterns, some neurological and cardiac activity,
the stock market, and certain electrical networks of computers. Chaos
theory has also often been applied to a wide range of visual art.

In science, certain famous and clear examples of chaotic physical
systems exist, such as thermal convection in fluids, panel flutter in
supersonic aircraft, oscillating chemical reactions, fluid dynamics,
population growth, particles impacting on a periodically vibrating wall,
various pendula and rotor motions, nonlinear electrical circuits, and buckled
beams.

The early roots of chaos theory started around 1900 when
mathematicians such as Jacques Hadamard and Henri Poincaré studied the
complicated trajectories of moving bodies. In the early 1960s, Edward
Lorenz, a research meteorologist at the Massachusetts Institute of
Technology, used a system of equations to model convection in the
atmosphere. Despite the simplicity of his formulas, he quickly found one of
the hallmarks of chaos—that is, extremely minute changes of the initial
conditions led to unpredictable and different outcomes. In his 1963 paper,
Lorenz explained that a butterfly flapping its wings in one part of the world



could later affect the weather thousands of miles away. Today, we call this
sensitivity the butterfly effect.

SEE ALSO Catastrophe Theory (1968), Feigenbaum Constant (1975), Fractals (1975), and Ikeda
Attractor (1979).



Chaotic mathematical pattern, created by Roger A. Johnston. Although chaotic
behavior may seem “random” and unpredictable, it often obeys mathematical
rules derived from equations that can be studied. Very small changes of the
initial conditions can lead to very different outcomes.



Ulam Spiral
1963

Stanisław Marcin Ulam (1909–1984)

In 1963, while doodling on paper during a boring meeting, Polish-born
American mathematician Stanisław Ulam discovered a remarkable spiral
that reveals patterns in prime numbers. (A prime number is a number larger
than 1, such as 5 or 13, that is divisible only by itself or 1.) Starting with 1
at the center of the counterclockwise spiral, Ulam wrote consecutive natural
numbers. He then circled all the prime numbers. As the spiral grew larger,
he noticed that the prime numbers tended to form diagonal patterns.

As later computer graphics made quite clear, although some kind of
diagonal structures may simply arise from diagonals alternatively
containing odd and even numbers, it is intriguing that the prime numbers
tend to lie on some diagonal lines more than others. Perhaps more important
than the discovery of patterns, Ulam’s simple demonstration highlights the
use of the computer as a kind of microscope that allows mathematicians to
visualize structures that may lead to new theorems. This kind of
investigation in the early 1960s gradually gave rise to the explosion in
experimental mathematics toward the end of the twentieth century.

Martin Gardner writes, “Ulam’s spiral grids have added a touch of
fantasy to speculations about the enigmatic blend of order and haphazardry
in the distribution of primes….Ulam’s doodlings in the twilight zone of
mathematics are not to be taken lightly. It was he who made the suggestion
that led him and Edward Teller to think of the ‘idea’ that made possible the
first thermonuclear bomb.”

In addition to his mathematical contributions and his work on the
Manhattan Project to develop the first nuclear weapon during World War II,
Ulam is also famous for his work on spacecraft propulsion systems. He had
escaped with his brother from Poland on the eve of the Second World War,
but the rest of his family died in the Holocaust.

SEE ALSO Cicada-Generated Prime Numbers (c. 1 Million B.C.), Sieve of Eratosthenes (240 B.C.),
Goldbach Conjecture (1742), Gauss’s Disquisitiones Arithmeticae (1801), Riemann Hypothesis
(1859), Proof of the Prime Number Theorem (1896), Johnson’s Theorem (1916), Brun’s Constant



(1919), Gilbreath’s Conjecture (1958), Sierpinski Numbers (1960), Erdös and Extreme Collaboration
(1971), Public-Key Cryptography (1977), and Andrica’s Conjecture (1985).



A 200 × 200 Ulam spiral plot. Several diagonal patterns are highlighted in
yellow. Ulam’s simple plot demonstrates the use of the computer as a kind of
microscope that allows mathematicians to visualize structures that may lead to
new theorems.



Continuum Hypothesis Undecidability
1963

Georg Cantor (1845–1918), Paul Joseph Cohen (1934–2007)

In the entry on Cantor’s Transfinite Numbers, we discussed the smallest
transfinite number called aleph-nought, written as 0, which “counts” the
number of integers. Even though there is an infinite number of integers,
rational numbers (numbers that can be expressed as fractions), and
irrational numbers (like the square root of 2), the infinite number of
irrationals is in some sense greater than the infinite number of rationals and
integers. Similarly, there are more real numbers (which include rational and
irrational numbers) than there are integers.

To denote this difference, mathematicians refer to the infinity of rationals
or integers as 0 and the infinite number of irrationals or real numbers as C.
There is a simple relationship between C and 0, namely C = 2 0. Here, C is
the cardinality of the set of real numbers, which are sometimes called the
continuum.

Mathematicians also contemplate greater infinities, symbolized by 1, 2,
etc. Here, the set theory symbol 1 stands for the smallest infinite set larger
than 0, and so forth. Cantor’s continuum hypothesis states that C = 1 = 2
0; however, the question of whether or not C truly equals 1 is considered
undecidable in our present set theory. In other words, great mathematicians
such as Kurt Gödel proved that the hypothesis was a consistent assumption
with the standard axioms of set theory. However, in 1963, American
mathematician Paul Cohen proved that it was also consistent to assume the
continuum hypothesis is false! Cohen was born in Long Branch, New
Jersey, into a Jewish family, and he graduated in 1950 from Stuyvesant
High School in New York City.

Interestingly, the number of rational numbers is the same as the number
of integers, and the number of irrationals is the same as the number of real
numbers. Mathematicians usually use the term cardinality when discussing
the “number” of infinite numbers.)



SEE ALSO Aristotle’s Wheel Paradox (c. 320 B.C.), Cantor’s Transfinite Numbers (1874), and
Gödel’s Theorem (1931).



Various infinitudes, while difficult to contemplate, may be explored using
computer graphics, as in this rendition of Gaussian rational numbers. Here,
sphere positions represent the complex fraction p/q. The spheres touch the
complex plane at location p/q and have radii equal to 1/(2qq).



Superegg
c. 1965

Piet Hein (1905–1996)

Around 1965, Danish scientist, designer, and inventor Piet Hein promoted
the superegg, also known as the super-ellipsoid, as an object of beauty and
of fascination because it stood on either end with a spooky stability. The 3-
D shape is produced by using a superellipse, defined by the formula |x/a|2.5

+ |y/b|2.5 = 1 for a/b = 4/3, and revolving this shape around the x-axis. More
generally, we can give the equation of the super-ellipsoid as

(|x|2/a + |y|2/a)a/b + |z|2/b = 1

where a and b are greater than zero.
Hein’s supereggs, made of various materials, were popular as toys and

novelty items in the 1960s. Today, the design is ubiquitous. Supereggs are
used as candlestick holders, in furniture designs, and as liquid-filled
stainless-steel drink coolers that are tossed into beverage glasses. Hein’s
superegg was “laid” for the first time in 1965, when a handheld version was
manufactured and sold by Skjøde in Skjern, Denmark. In 1971, the world’s
largest superegg, made of metal and weighing almost a ton, was placed
outside Kelvin Hall in Glasgow.

French mathematician Gabriel Lamé (1795–1870) worked with the more
general form of the superellipse before Hein, but Hein was the first to create
the superegg and is famous for popularizing his own versions in
architecture, furniture, and even urban planning.

The superellipse was also used as the shape for a roundabout road in
Stockholm, Sweden. The ellipse was unsuitable because its pointed ends
would interfere with smooth traffic flow in the roughly rectangular space. In
1959, Hein was asked for his opinion. Martin Gardner writes about the
Stockholm road: “Hein’s curves proved to be strangely satisfying, neither
too rounded nor too orthogonal, a happy blend of elliptical and rectangular
beauty. Stockholm immediately accepted the 2.5-exponent superellipse
[with a/b = 6/5] as the basic motif of its new center….”



SEE ALSO Astroid (1674).



Piet Hein’s superegg, sitting across the moat from Egeskov Castle in
Kvaerndrup, Fyn Island, Denmark. The castle, built the mid-1550s, is one of the
best-preserved Renaissance “water castles.” Originally, the castle could only be
accessed via a drawbridge.



Fuzzy Logic
1965

Lotfi Zadeh (b. 1921)

Classical two-valued logic is concerned with conditions that are either true
or false. Fuzzy logic (FL) allows a continuous range of truth values and was
introduced by mathematician and computer scientist Lotfi Zadeh, who grew
up in Iran and moved to the United States in 1944. FL has a wide range of
practical applications and is derived from fuzzy set theory, which focuses
on members of a set that have degrees of membership. Zadeh published his
groundbreaking mathematical paper on fuzzy sets in 1965, and in 1973
provided the details of FL.

As an example, consider a temperature-monitoring system for a device.
A membership function may exist for the concepts cold, warm, and hot. A
single measurement may consist of three values such as “not cold,”
“slightly warm,” and “slightly hot”—which may be used to control the
device. Zadeh believed that if feedback controllers could be programmed to
make use of imprecise, noisy input, they could be more effective and easier
to implement. In some sense, this approach is similar to how people often
make decisions.

FL methodology had a difficult start, and Zadeh could not easily find a
technical journal to publish his 1965 paper, perhaps due to a reluctance to
let “vagueness” creep into the engineering field. Author Kazuo Tanaka
writes, “A turning point for fuzzy logic came in 1974 [when] Ebraham
Mamdani of the University of London applied fuzzy logic to…the control
of a simple steam engine….” In 1980, FL was used to control a cement kiln.
Various Japanese companies have used FL to control water purification
processes and train systems. FL has also since been used to control steel
mills, self-focusing cameras, washing machines, fermentation processes,
automobile engine controls, anti-lock braking systems, color-film
developing systems, glass processing, computer programs used in financial
trading, and systems used for recognizing subtle differences in written and
spoken languages.



SEE ALSO Aristotle’s Organon (c. 350 B.C.), Boolean Algebra (1854), Venn Diagrams (1880),
Principia Mathematica (1910–1913), and Gödel’s Theorem (1931).



Fuzzy logic has been used in the design of efficient washing machines. For
example, U.S. patent 5,897,672, issued in 1999, describes the use of fuzzy logic
for detecting the relative proportion of various fabric types present in a clothes
load in a clothes washer.



Instant Insanity
1966

Frank Armbruster (b. 1929)

As a child, I could never solve the colorful cube game called Instant
Insanity. I shouldn’t have felt too bad, because 41,472 different ways exist
for arranging the four cubes in a row, only 2 of which are solutions. A trial-
and-error approach could never have worked.

The puzzle looks deceptively simple, consisting of four cubes with one of
four colors on each of their six faces. The goal is to arrange the four cubes
in a row so that only one color appears along each side of the row of cubes.
Because each cube has 24 orientations, a maximum of 4! × 244 = 7,962,624
positions exist. However, the number may be reduced to 41,472 solutions,
partly because the cubes can be stacked in any order without making a
difference for the solution.

Mathematicians have represented the colored faces of the cubes in terms
of a graph in order to understand efficient ways of solving the puzzle. Using
this approach, each cube is represented by a graph of the colors that appear
on opposite pairs of faces. According to mathematics journalist Ivars
Peterson, “Those familiar with graph theory can typically work out the
solution in minutes. Indeed, the puzzle serves as a neat lesson in logical
thinking.”

The Instant Insanity craze skyrocketed after educational consultant Frank
Armbruster licensed his version of the puzzle to Parker Brothers, and it sold
more than 12 million copies in the late 1960s. A similar colored cube
puzzle was also popular around 1900, when it was called the Great
Tantalizer. Armbruster wrote to me, “When I was given a sample of the
Great Tantalizer in 1965, I saw the potential for using it to teach
combinations and permutations. My first sample was made of wood with
painted sides. I sold my subsequent plastic version, packaged in the solved
condition, and a customer suggested its name, which I trademarked. Parker
Brothers then made me an offer I couldn’t refuse.”

SEE ALSO Gros’s Théorie du Baguenodier (1872), Fifteen Puzzle (1874), Tower of Hanoi (1883),
Hex (1942), and Rubik’s Cube (1974).



Frank Armbruster, holding his famous puzzle Instant Insanity. There are 41,472
different ways for arranging the four cubes in a row, only two of which are
solutions. More than 12 million puzzles sold in the late 1960s.



Langlands Program
1967

Robert Phelan Langlands (b.1936)

In 1967, Robert Langlands, a 30-year-old Princeton mathematics professor,
wrote a letter to the famous number theorist André Weil (1906–1998),
asking Weil’s opinion on some new mathematical ideas. “If you are willing
to read [my letter] as pure speculation, I would appreciate that. If not’I’m
sure you have a waste basket.” According to Science writer Dana
Mackenzie, Weil never wrote back, but Langlands’ letter turned out to be a
“Rosetta stone” linking two different branches of mathematics. In
particular, Langlands posited that an equivalence existed between Galois
representations (which describe relationships among solutions to equations
studied in number theory) and automorphic forms (highly symmetric
functions like the cosine function).

The Langlands program is so fertile a territory that it led to two Fields
Medals for other mathematicians. Langlands’ conjectures sprang, in part,
from an effort to find general versions of patterns that govern how whole
numbers can be broken down into sums of products of other whole
numbers.

According to The Fermat Diary, the Langlands program may be
considered a grand unified theory of mathematics that suggests that “the
mathematics of algebra, which involves equations, and the mathematics of
analytics, which involves the study of smooth curves and continuous
variations, are intimately related.” The conjectures in the Langlands
program “are like a cathedral, the way they fit together so beautifully.”
However, the conjectures are very difficult to prove, and some
mathematicians feel that it may take centuries to complete the Langlands
program.

Mathematician Stephen Gelbart writes, “[The] Langlands program is a
synthesis of several important themes in classical number theory. It is also
—and more significantly—a program for future research. This program
emerged around 1967 in the form of a series of conjectures, and it has
subsequently influenced research in number theory in much the same way



the conjectures of A. Weil shaped the course of algebraic geometry since
1948.”

Robert Langlands.

SEE ALSO Group Theory (1832) and Fields Medal (1936).



The Langlands program links two different branches of mathematics and
involves conjectures that are said to be “like a cathedral” because they exhibit
such an elegant fit. The Langlands program may be considered a grand unified
theory of mathematics which may take centuries to completely elucidate.



Sprouts
1967

John Horton Conway (b. 1937) and Michael S. Paterson (b. 1942)

The game of Sprouts was invented in 1967 by mathematicians John H.
Conway and Michael S. Paterson, when both were at the University of
Cambridge. The addictive game has fascinating mathematical properties.
Conway wrote to Martin Gardner, “The day after Sprouts sprouted, it
seemed that everyone was playing it….peering over ridiculous to fantastic
Sprout positions. Some people were already attacking Sprouts on toruses,
Klein bottles, and…thinking of higher-dimensional versions.”

To play Sprouts against an opponent, start by placing several dots on a
page. To make a move, draw a curve between two spots or a loop from a
spot to itself. Your curve may not cross another curve or itself. Next, place a
new dot on this curve. Players take turns, and the player who makes the last
move wins. Each dot can have at most three curves connected to it.

After just a casual inspection, one might guess that a game could keep
sprouting forever. However, we now know that when Sprouts starts with n
spots, the game will last at least 2n moves and at most 3n − 1 moves. The
first player can always win in games that start with three, four, or five dots.

In 2007, researchers used computer programs to help determine which
player is the winner for all games with up to 32 spots. The status of the 33-
spot game is still unknown. Sprouts experts Julien Lemoine and Simon
Viennot write, “Despite the little number of moves…it is difficult to
determine whether the first or the second player wins, provided those
players play perfectly. The best published and complete hand-checked proof
is due to [Riccardo] Focardi and [Flaminia] Luccio, and shows who the
winner is for the 7-spot game.” Journalist Ivars Peterson writes, “Games
can sprout all sorts of unexpected growth patterns, making formulation of a
winning strategy a tricky proposition. No one has yet worked out a
complete strategy for perfect play.”

SEE ALSO Königsberg Bridges (1736), Jordan Curve Theorem (1905), and Checkers Is Solved
(2007).



Game of Sprouts. In this example, only two starting points (circled) are used, and
the game is not yet finished. Despite its apparent simplicity, the game is very
difficult to analyze as the number of starting points modestly increases.



Catastrophe Theory
1968

René Thom (1923–2002)

Catastrophe theory is the mathematical theory of dramatic or abrupt
changes. Mathematicians Tim Poston and Ian Stewart give examples: “the
roar of an earthquake [or] the critical population density below which
certain creatures grow up as grasshoppers, above which as [swarming]
locusts….A cell suddenly changes its reproductive rhythm and doubles and
redoubles, cancerously. A man has a vision on the road to Tarsus.”

Catastrophe theory was developed by French mathematician René Thom
in the 1960s. The theory was further promoted in the 1970s by Japanese-
born British mathematician Christopher Zeeman, who continued to apply
the theory to the behavioral and biological sciences. Thom was awarded the
Fields Medal in 1958 for his work in topology, the study of geometrical
shapes and their relationships.

Catastrophe theory usually concerns dynamical systems that describe the
time dependence of some quantity (like the beating of the heart) and the
relationship of these systems to topology. In particular, the theory focuses
on certain kinds of “critical points” in which the first derivative of a
function, and one or more higher derivatives, are zero. David Darling
writes: “Many mathematicians took up the study of catastrophe theory, and
it was in tremendous vogue for a while, yet it never achieved the success
that its younger cousin chaos theory has because it failed to live up to its
promise of useful predictions.”

Thom’s quest was to better understand how continuous actions (such as
smooth and stable behavior in prisons or between countries) could suddenly
give way to discontinuous change (prison riots or war). He showed how
such phenomena might be described with their own landscapes in the form
of abstract mathematical surfaces, with names like the butterfly or the
swallowtail. Salvador Dalí’s last painting, The Swallow’s Tail (1983), was
based on a catastrophe surface. Dalí also painted Topological Abduction of
Europe: Homage to René Thom (1983), which depicted a fractured
landscape along with the equation that explained it.



SEE ALSO Königsberg Bridges (1736), The Möbius Strip (1858), Fields Medal (1936), Chaos and
the Butterfly Effect (1963), Feigenbaum Constant (1975), and Ikeda Attractor (1979).



Catastrophe theory is the mathematical theory of abrupt changes, such as the
swarming behavior of grasshoppers as population density increases. Research
has suggested that the sudden swarming behavior is triggered by increased
contacts of the insect’s hind legs over a few-hour period. Large swarms may
consist of billions of insects.



Tokarsky’s Unilluminable Room
1969

George Tokarsky (b. 1946)

Imagine that we are in a dark room with flat walls covered with mirrors.
The room has several turns and side passages. If I light a match somewhere
in the room, would you be able to see it no matter where you stand in the
room, and no matter what the room shape or in which side passage you
stand? We can equivalently pose the question in terms of a billiard ball
bouncing around a pool table. Must there be a pool shot between any two
points on a polygonal pool table?

If we happened to be trapped in an L-shaped room, you’d be able to see
the flame no matter where we stood because the light ray could bounce off
various walls to get to your eye. But can we imagine a mysterious
polygonal room that is so complicated that a point exists that light never
reaches? (For our problem, we consider a person and match to be
transparent.)

This enigma was first presented in print by mathematician Victor Klee in
1969, although it dates back to the 1950s when mathematician Ernst Straus
pondered such problems. It is shocking that no one knew the answer until
1995, when George Tokarsky of the University of Alberta discovered such a
room that is not completely illuminable. His published floor plan of the
room had 26 sides. Subsequently, Tokarsky found an example with 24 sides,
and this strange room is the least-sided unilluminable polygonal room
currently known. We do not know if an unilluminable polygonal room with
fewer sides is possible.

Other similar problems exist. In 1958, mathematical physicist Roger
Penrose and his colleague showed that unlit regions can exist in certain
rooms with curved sides. More recently, certain curved rooms have been
discovered for which infinitely many matches are needed to illuminate
every point. For any finite number of matches, curved rooms exist that
cannot be illuminated by these matches.

SEE ALSO Projective Geometry (1639) and Art Gallery Theorem (1973).



In 1995, mathematician George Tokarsky discovered this unilluminable 26-sided
polygonal “room.” The room contains a location at which a match can be held
that leaves another point in the room in the dark.



Donald Knuth and Mastermind
1970

Donald Ervin Knuth (b. 1938), Mordecai Meirowitz

Mastermind is a code-breaking board game invented in 1970 by Mordecai
Meirowitz, an Israeli postmaster and telecommunications expert.
Mainstream game companies all rejected Meirowitz; thus, he published
with the small English game company Invicta Plastics. The game went on
to sell more than 50 million copies, making it the most successful new
game of the 1970s.

To play the game, a code-maker selects a sequence of four colors,
represented by colored pegs that come in 6 different colors. The opponent
must guess the code-maker’s secret sequence, with as few guesses as
possible. Each guess is presented in the form of a sequence of 4 colored
pegs. The code-maker reveals how many of those pegs are both the correct
color and in the correct position and how many more are the correct color
but in the wrong position. For example, the secret code may be green-white-
bluered. The guess may be orange-yellow-blue-white. Here, the code-maker
indicates that the player has 1 peg of the correct color in the correct position
and 1 peg of the correct color in the wrong position, but he doesn’t mention
the specific color names. The game continues with more guesses. A code-
maker selects from a possible 64 (or 1,206) possible combinations,
assuming there are 6 colors and 4 positions.

Mastermind was significant, partly due to the long stream of research the
game triggered. In 1977, American computer scientist Donald Knuth
published a strategy that enables a player to always guess the correct code
within 5 guesses. This was the first-known algorithm to solve Mastermind,
and numerous papers followed. In 1993, Kenji Koyama and Tony W. Lai
published a strategy with a maximum of 6 guesses required in the worst
case, but with an average number of guesses of only 4.340. In 1996,
Zhixiang Chen and colleagues generalized previous results to the case of n
colors and m positions. The game has also been studied several times using
genetic algorithms, techniques inspired by evolutionary biology.



SEE ALSO Tic Tac Toe (1300 B.C.), Go (548 B.C.), Eternity Puzzle (1999), Solving the Game of
Awari (2002), and Checkers Is Solved (2007).



Schematic representation of Mastermind. The normally hidden code at bottom is
green-blue-red-magenta. The player starts with a guess at the board’s top row
and converges to a solution in five moves after receiving hints (not shown here)
from the opponent.



Erdös and Extreme Collaboration
1971

Paul Erdös (1913–1996)

The public often thinks of mathematicians as being sequestered in private
rooms, rarely talking to others as they work for days to generate new
theorems and solve ancient conjectures. This is true for some, but
Hungarian-born Paul Erdös showed mathematicians the value of
collaborations and “social mathematics.” By the time he died, he had
published roughly 1,500 papers—more papers than any mathematician in
the history of the world, having worked with 511 different collaborators.
His work ranged through a vast landscape of mathematics, including
probability theory, combinatorics, number theory, graph theory, classical
analysis, approximation theory, and set theory.

During the last year of his life, at age 83, he continued churning out
theorems and delivering lectures, defying conventional wisdom that
mathematics was a young person’s sport. Through all his work, he always
shared ideas, caring more that a problem was solved than who solved it.
Author Paul Hoffman wrote, “Erdös thought about more problems than any
other mathematician in history and could recite the details of some 1,500
papers he had written. Fortified by coffee, Erdös did mathematics 19 hours
a day, and when friends urged him to slow down, he always had the same
response: ‘There’ll be plenty of time to rest in the grave.’” After 1971, he
took amphetamines almost every day to escape depression and foster
mathematical ideas and collaborations. Erdös traveled constantly and lived
out of a plastic bag, focusing totally on mathematics at the expense of
companionship, sex, and food.

Erdös made an early mark on mathematics at the age of 18, when he
discovered an elegant proof of the theorem that, for each integer n greater
than 1, there is always a prime number between n and double the number,
2n. For example, the prime number 3 lies between 2 and 4. Erdös later
formulated an elementary proof of the Prime Number Theorem, which
describes the distribution of prime numbers.



SEE ALSO Cicada-Generated Prime Numbers (c. 1 Million B.C.), Sieve of Eratosthenes (240 B.C.),
Goldbach Conjecture (1742), Gauss’s Disquisitiones Arithmeticae (1801), Riemann Hypothesis
(1859), Proof of the Prime Number Theorem (1896), Brun’s Constant (1919), Gilbreath’s Conjecture
(1958), and Ulam Spiral (1963).



Paul Erdös fuelled his superhuman work schedule through constant use of coffee,
caffeine tablets, and Benzedrine, and he believed that “a mathematician is a
machine for turning coffee into theorems.” He often put in 19-hour days, seven
days a week.



HP-35: First Scientific Pocket Calculator
1972

William Redington Hewlett (1913–2001) and team

In 1972, the Hewlett-Packard (HP) company, with headquarters in Palo
Alto, California, introduced the world’s first scientific pocket calculator—
that is, a handheld calculator with trigonometric and exponential functions.
The large numeric range of the HP-35 calculator, with its scientific notation,
was from 10−100 to 10+100. The HP-35 was introduced at a selling price of
US $395. (HP called the device the “35” because it had 35 keys.)

Company co-founder Bill Hewlett began to develop the compact
calculator despite market studies that suggested almost no market existed
for pocket-size calculators. How wrong they were! In the first few months
of sales, orders exceeded the company’s expectations with respect to the
entire market size. In the first year, 100,000 HP-35s were sold, and more
than 300,000 were sold by the time it was discontinued in 1975.

When the HP-35 was introduced, slide rules were available for
performing high-end scientific calculations. Existing pocket calculators at
the time performed addition, subtraction, multiplication, and division. The
HP-35 changed everything. The slide rule—which was typically accurate to
only three significant figures—“died” and was rarely taught again in many
U.S. schools. One wonders what the great mathematicians of yore would
have accomplished if they had had access to an HP-35 (along with an
endless supply of batteries).

Today, scientific calculators are inexpensive and have significantly
changed the mathematics curriculum taught in most countries. Educators no
longer teach paper-and-pencil methods for computing values of
transcendental functions. In the future, teachers will probably devote even
more time to mathematical applications and concepts instead of routine
computations.

Author Bob Lewis writes, “Bill Hewlett and Dave Packard founded
Silicon Valley in Hewlett’s garage. A coin toss made the company Hewlett-
Packard instead of Packard Hewlett….Hewlett never showed much interest
in being a celebrity. Throughout his life, he remained, at heart, an engineer.”



SEE ALSO Abacus (c. 1200), Slide Rule (1621), Babbage Mechanical Computer (1822),
Differential Analyzer (1927), ENIAC (1946), Curta Calculator (1948), and Mathematica (1988).



The HP-35 calculator was the world’s first scientific pocket calculator, with
trigonometric and exponential functions. Bill Hewlett began to develop the
compact calculator despite erroneous market studies that suggested almost no
market existed for pocket-size calculators.



Penrose Tiles
1973

Roger Penrose (b. 1931)

Penrose tiles refers to two simple geometric shapes that, when put side by
side, can cover a plane in a pattern with no gaps or overlaps and that do not
repeat periodically. In contrast, the simple hexagonal tile patterns found on
some bathroom floors exhibit a simple repeating pattern. Interestingly,
Penrose tilings, named after English mathematical physicist Roger Penrose,
have five-fold rotational symmetry, the same kind of symmetry exhibited by
a five-pointed star. If you rotate the entire tile pattern by 72 degrees, it looks
the same as the original. Author Martin Gardner writes, “Although it is
possible to construct Penrose patterns with a high degree of symmetry…
most patterns, like the universe, are a mystifying mixture of order and
unexpected deviations from order. As the patterns expand, they seem to be
always striving to repeat themselves but never quite managing it.”

Before Penrose’s discovery, most scientists believed that crystals based
on five-fold symmetry would be impossible to construct, but quasicrystals
resembling Penrose tile patterns have since been discovered, and they have
remarkable properties. For example, metal quasicrystals are poor
conductors of heat, and quasicrystals can be used as slippery nonstick
coatings.

In the early 1980s, scientists had speculated about the possibility that the
atomic structure of some crystals might be based on a nonperiodic lattice—
that is, a lattice that does not have periodic repeats. In 1982, Dan
Shechtman discovered a nonperiodic structure in the electron micrographs
of an aluminum-manganese alloy with an obvious five-fold symmetry
reminiscent of a Penrose tiling. At the time, this finding was so startling that
some said it was as shocking as finding a five-sided snowflake.

As an interesting aside, in 1997 Penrose filed a copyright lawsuit against
a company that had allegedly embossed Penrose tilings on Kleenex quilted
toilet paper in England. In 2007, researchers published evidence in Science
of a Penrose-like tiling in medieval Islamic art, five centuries before its
discovery in the West.



SEE ALSO Wallpaper Groups (1891), Thue-Morse Sequence (1906), Squaring a Rectangle (1925),
Voderberg Tilings (1936), and Outer Billiards (1959).



Penrose tiling with two geometric shapes that can cover a plane in a pattern with
no gaps or overlaps and that does not repeat periodically. (This rendering is by
Jos Leys.)



Art Gallery Theorem
1973

Václav (Vašek) Chvátal (b. 1946), Victor Klee (b. 1925)

Imagine that you are in an expensive art gallery room represented by a
polygon. If we were to place guards at some of the corners (vertices) of the
room, what is the minimum number of guards needed so that the entire
interior of a polygon can be viewed simultaneously? Assume that the
guards can see in all directions at once, but they can’t see through walls.
Also, the guards are placed in the corners of the gallery so they don’t block
anyone’s view of the art. The problem can be initially explored by drawing
polygonal rooms and shading the line of sight for guards placed at several
vertices.

Chvátal’s art gallery theorem, named after Czechoslovakian-born
mathematician and computer scientist Václav Chvátal, states that in an art
gallery with n corners, there needs to be at most n/3  guards at the corners
to watch the entire gallery, where the   symbols indicate the mathematical
floor function that returns the largest integer less than or equal to n/3. We
assume that the polygon is “simple,” which means that the art gallery walls
don’t self-intersect and that they only meet at their end points.

In 1973, mathematician Victor Klee posed the question about the
required number of guards to Chvátal, and Chvátal proved it shortly
thereafter. Interestingly, only n/4  guards are needed to watch a polygonal
art gallery having corners that are all right angles. Thus, for this kind of
gallery with 10 corners, only 2 rather than 3 guards are needed.

Researchers have since considered the art gallery problem using guards
who can move along straight lines rather than remain in fixed positions. The
problem has also been contemplated in three dimensions and with walls
with holes. Norman Do writes, “When Victor Klee first posed the art
gallery problem, he probably had little idea that it would motivate such a
wealth of research which still continues over thirty years later. The area is
[now] absolutely brimming with interesting problems….”



Three guards, positioned at the location of the three large spheres, can
simultaneously view the interior of this polygonal room with 11 vertices.

SEE ALSO Projective Geometry (1639) and Tokarsky’s Unilluminable Room (1969).



The art gallery theorem continues to stimulate a wealth of geometrical research
using unusual wall arrangements, mobile guards, and higher dimensions.



Rubik’s Cube
1974

Ernö Rubik (b. 1944)

Rubik’s Cube was invented by the Hungarian inventor Ernö Rubik in 1974,
patented in 1975, and placed on the Hungarian market in 1977. By 1982, as
many as 10 million cubes had been sold in Hungary, more than the
population of the country. It is estimated that more than 100 million have
been sold worldwide.

The cube is a 3 × 3 × 3 array of smaller cubes that are colored in such a
way that the six faces of the large cube have six distinct colors. The 26
external sub-cubes are internally hinged so that these six faces can be
rotated. The goal of the puzzle is to return a scrambled cube to a state in
which each side has a single color. There are

43,252,003,274,489,856,000

different arrangements of the small cubes, and only one of these
arrangements is the initial position where all colors match on each of the six
sides. If you had a cube for every one of these “legal” positions, then you
could cover the entire surface of the earth including oceans) about 250
times. A column consisting of all the cube positions would stretch about
250 light years. There are 1.0109 × 1038 combinations of the 3 × 3 × 3
Rubik’s Cube if you are allowed to remove the colored stickers and place
them on different sub-cube faces.

In 2008, Tomas Rokicki proved that all positions of Rubik’s cube can be
solved in 22 or fewer cube face turns. In 2010, using computer calculations,
researchers proved that no configuration requires more than 20 moves to
solve.

One natural variation that never appeared on toy store shelves is the four-
dimensional version of Rubik’s Cube—Rubik’s tesseract. The total number
of positions of Rubik’s tesseract is 1.76 × 10120. If either the cube or the
tesseract changed positions every second since the beginning of the
universe, they would still be turning today and not have exhibited every
possible configuration.



Zachary Paisley’s handmade speaker enclosure in the form of a Rubik’s Cube.
This direct-servo subwoofer weighs 150 pounds (68 kilograms). Paisely says that
the sounds are “capable of penetrating concrete—almost making it powerful
enough to solve itself!”

SEE ALSO Group Theory (1832), Fifteen Puzzle (1874), Tower of Hanoi (1883), Tesseract (1888),
and Instant Insanity (1966).



In 2008, Hans Andersson built a robot with plastic pieces that can solve Rubik’s
Cube using a light sensor to detect colors on the cube. The robot does not
require a separate connection to a PC to perform calculations and cube
manipulations.



Chaitin’s Omega
1974

Gregory John Chaitin (b. 1947)

A computer program is said to “halt” when it accomplishes its task—for
example, when it has computed the thousandth prime number or the first
hundred digits of pi. On the other hand, a program will run forever if the
task is unending, such as computing every Fibonacci number.

What happens if we feed a random sequence of bits to a Turing Machine
for its program? (A Turing machine is an abstract symbol-manipulating
device that can simulate the logic of a computer.) When this program is
started, what is the probability that the machine will halt? The answer is
Chaitin’s number Ω (omega). The number varies depending on the machine,
but for a given machine, Ω is a well-defined irrational number with a value
between zero and one. For most computers, Ω is close to a value of 1
because a completely random program is likely to instruct a computer to do
something impossible. Argentine-American mathematician Gregory Chaitin
has shown that the digit sequence of Ω is patternless, that Ω is definable but
utterly incalculable, and that it has infinitely many digits. The features of Ω
have vast mathematical implications and place fundamental limits on what
we can know.

Quantum theorist Charles Bennett writes, “The most remarkable property
of Ω… is the fact that if the first few thousand digits of Ω were known, they
would, at least in principle, suffice to decide most of the interesting open
questions in mathematics….” David Darling says that the properties of Ω
show that solvable problems “form a tiny archipelago in a vast ocean of
undecidability.” According to Marcus Chown, Ω “reveals that
mathematics…is mostly made of gaping holes. Anarchy…is at the heart of
the universe.”

Time magazine explains, “The concept broadens…Gödel’s
incompleteness theorem, which says there will always be unprovable
statements in any system of math, and Turing’s halting problem, which says
it’s impossible to predict…whether a particular computer calculation can
ever be finished.”



SEE ALSO Gödel’s Theorem (1931) and Turing Machines (1936).



The features of Ω have vast mathematical implications and place fundamental
limits on what we can know. The number Ω has infinitely many digits, and its
properties show that solvable problems “form a tiny archipelago in a vast ocean
of undecidability.”



Surreal Numbers
1974

John Horton Conway (b. 1937)

Surreal numbers are a superset of the real numbers, invented by prolific
mathematician John Conway for the analysis of games, although the name
was coined by Donald Knuth in his popular 1974 novelette Surreal
Numbers, perhaps one of the few times that a major mathematical discovery
was published first in a work of fiction. Surreal numbers have numerous
bizarre properties. As background, real numbers include both rational
numbers, such as 1/2, and irrational numbers, such as pi, and they may be
visualized as points on an infinitely long number line.

Surreal numbers include the real numbers plus much more. Martin
Gardner writes in Mathematical Magic Show, “Surreal numbers are an
astonishing feat of legerdemain. An empty hat rests on a table made of a
few axioms of standard set theory. Conway waves two simple rules in the
air, then reaches into almost nothing and pulls out an infinitely rich tapestry
of numbers that form a real and closed field. Every real number is
surrounded by a host of new numbers that lie closer to it than any other
‘real’ value does. The system is truly ‘surreal.’ ”

A surreal number is a pair of sets {XL, XR} where the indices indicate the
relative position (left and right) of the sets in the pair. Surreal numbers are
fascinating because they are built upon an extremely small and simple
foundation. In fact, according to Conway and Knuth, surreal numbers
follow two rules: 1) Every number corresponds to two sets of previously
created numbers, such that no member of the left set is greater than or equal
to any member of the right set, and 2) one number is less than or equal to
another number if and only if no member of the first number’s left set is
greater than or equal to the second number, and no member of the second
number’s right set is less than or equal to the first number.

Surreal numbers include infinity and infinitesimals, numbers smaller than
any imaginable real numbers.



John H. Conway at the conference on Combinatorial Game Theory at Banff
International Research Station in Alberta, Canada, June 2005.

SEE ALSO Zeno’s Paradoxes (c. 445 B.C.), Discovery of Calculus (c. 1665), Transcendental
Numbers (1844), and Cantor’s Transfinite Numbers (1874).



The cover of Donald Knuth’s Surreal Numbers, an example of one of the few
times that a major mathematical discovery was published first in a work of
fiction. Surreal numbers include infinity and infinitesimals, numbers smaller
than any imaginable real numbers.



Perko Knots
1974

Kenneth A Perko, Jr. (1941–2002), Wolfgang Haken (b. 1928)

For centuries, mathematicians have searched for ways to distinguish knots.
As just one example, the two configurations shown here represent two
knots that for more than 75 years were thought to represent two distinct
knot types. In 1974, mathematicians discovered that it was possible to
simply change the point of view of one knot to demonstrate that both knots
were the same. Today, we call these Perko pair knots after the New York
lawyer and part-time topologist Kenneth Perko, who showed that they were
in fact the same knot, while he manipulated loops of rope on his living
room floor!

Two knots are considered to be the same if we can manipulate one of
them without cutting it so that it looks exactly like the other one with
respect to the locations of the over- and under-crossings. Knots are
classified by, among other characteristics, the arrangement and number of
their crossings and certain characteristics of their mirror images. Stated
more precisely, knots are classified using a variety of invariants, of which
their symmetries are one and their crossing number is another, and
characteristics of the mirror image play an indirect role in the classification.
No general, practical algorithm exists to determine if a tangled curve is a
knot or if two given knots are interlocked. Obviously, simply looking at a
knot projected onto a plane—while keeping the under-and over-crossing
apparent—is not an easy way to tell if a loop is a knot or an unknot. The
unknot is equivalent to a closed loop like a simple circle that has no
crossings.)

In 1961, mathematician Wolfgang Haken devised an algorithm to
determine if a knot projection on a plane (while preserving the under- and
over-crossings) is actually an unknot. However, the procedure is so
complicated that it has never been implemented. The paper describing the
algorithm in the journal Acta Mathematica is 130 pages long.

SEE ALSO Knots (c. 100,000 B.C.), Jones Polynomial (1984), and Murphy’s Law and Knots
(1988).



The two configurations shown here represent two knots that for more than 75
years were thought to represent two distinct knot types. In 1974, mathematicians
discovered that the knots were in fact the same. (This graphics rendering is by
Jos Leys.)



Fractals
1975

Benoît B. Mandelbrot (1924–2010)

Today, computer-generated fractal patterns are everywhere. From squiggly
designs on computer art posters to illustrations in the most serious of
physics journals, interest continues to grow among scientists and, rather
surprisingly, artists and designers. The word fractal was coined in 1975 by
mathematician Benoît Mandelbrot to describe an intricate-looking set of
curves, many of which were never seen before the advent of computers with
their ability to quickly perform massive calculations. Fractals often exhibit
self-similarity, which suggests that various exact or inexact copies of an
object can be found in the original object at smaller size scales. The detail
continues for many magnifications—like an endless nesting of Russian
dolls within dolls. Some of these shapes exist only in abstract geometric
space, but others can be used as models for complex natural objects such as
coastlines and blood vessel branching. The dazzling computer-generated
images can be intoxicating, motivating students’ interest in math more than
any other mathematical discovery in the last century.

Physicists are interested in fractals because they can sometimes describe
the chaotic behavior of real-world phenomena such as planetary motion,
fluid flow, the diffusion of drugs, the behavior of inter-industry
relationships, and the vibration of airplane wings. Chaotic behavior often
produces fractal patterns.) Traditionally, when physicists or mathematicians
saw complicated results, they often looked for complicated causes. In
contrast, many fractal shapes reveal the fantastically complicated behavior
of the simplest formulas.

Early explorers of fractal objects include Karl Weierstrass, who in 1872
considered functions that were everywhere continuous but nowhere
differentiable, and Helge von Koch, who in 1904 discussed geometric
shapes such as the Koch Snowflake. In the nineteenth and early twentieth
centuries, several mathematicians explored fractals in the complex plane;
however, they could not fully appreciate or visualize these objects without
the aid of the computer.



SEE ALSO Descartes’ La Géométrie (1637), Pascal’s Triangle (1654), Weierstrass Function (1872),
Peano Curve (1890), Koch Snowflake (1904), Thue-Morse Sequence (1906), Hausdorff Dimension
(1918), Antoine’s Necklace (1920), Alexander’s Horned Sphere (1924), Menger Sponge (1926),
Coastline Paradox (c. 1950), Chaos and the Butterfly Effect (1963), and Mandelbrot Set (1980).



Fractal structure by Jos Leys. Fractals often exhibit self-similarity, which
suggests that various structural themes are repeated at different size scales.



Feigenbaum Constant
1975

Mitchell Jay Feigenbaum (b. 1944)

Simple formulas can produce amazingly diverse and chaotic behaviors
while characterizing phenomena ranging from the rise and fall of animal
populations to the behavior of certain electronic circuits. One formula of
special interest is the logistic map, which models population growth and
was popularized by biologist Robert May in 1976 and based on the earlier
work of Belgian mathematician Pierre François Verhulst (1804–1849), who
researched models of population changes. The formula may be written as
xn+1 = rxn(1 − xn). Here, x represents the population at time n. The variable
x is defined relative to the maximum population size of the ecosystem and
therefore has values between 0 and 1. Depending on the value of r, which
controls the rate of growth and starvation, the population may undergo
many behaviors. For example, as r is increased, the population may
converge to a single value, or bifurcate so that it oscillates between two
values, then oscillates between four values, then eight values, and finally
becomes chaotic such that slight changes in the initial population yield very
different, unpredictable outcomes.

The ratio of the distances between two successive bifurcation intervals
approaches the Feigenbaum constant, 4.6692016091…, a number
discovered by American mathematical physicist Mitchell Feigenbaum in
1975. Interestingly, although Feigenbaum initially considered this constant
for a map similar to the logistic map, he also showed that it applied to all
one-dimensional maps of this kind. This means that multitudes of chaotic
systems will bifurcate at the same rate, and thus his constant can be used to
predict when chaos will be exhibited in systems. This kind of bifurcation
behavior has been discovered in many physical systems before they enter
the chaotic regime.

Feigenbaum quickly realized that his “universal constant” was important,
remarking that “I called my parents that evening and told them that I had
discovered something truly remarkable, that, when I had understood it,
would make me a famous man.”



SEE ALSO Chaos and the Butterfly Effect (1963), Catastrophe Theory (1968), and Ikeda Attractor
(1979).



Bifurcation diagram (rotated clockwise by 90°), by Steven Whitney. This figure
reveals the incredibly rich behavior of a simple formula as a parameter r is
varied. Bifurcation “pitchforks” can be seen as small, thin, light branching
curves amidst the chaos.



Public-Key Cryptography
1977

Ronald Lorin Rivest (b. 1947), Adi Shamir (b. 1952), Leonard Max
Adleman (b. 1945), Bailey Whitfield Diffie (b. 1944), Martin Edward
Hellman (b. 1945), Ralph C. Merkle (b. 1952)

Throughout history, cryptologists have sought to invent a means for sending
secret messages without the use of cumbersome code books that contained
encryption and decryption keys that could easily fall into enemy hands. For
example, the Germans, between 1914 and 1918, lost four code books that
were recovered by British intelligence services. The British code-breaking
unit, known as Room Forty, deciphered German communications, giving
Allied forces a crucial strategic advantage in World War I.

In order to solve the key management problem, in 1976, Whitfield Diffie,
Martin Hellman, and Ralph Merkle at Stanford University, California,
worked on public-key cryptography, a mathematical method for distributing
coded messages through the use of a pair of cryptographic keys: a public
key and a private key. The private key is kept secret, while, remarkably, the
public key may be widely distributed without any loss of security. The keys
are related mathematically, but the private key cannot be derived from the
public key by any practical means. A message encrypted with the public
key can be decrypted only with the corresponding private key.

To better understand public-key encryption, imagine a mail slot in the
front door to a home. Anyone on the street can stuff something into the mail
slot; the public key is akin to the house address. However, only the person
who possesses the key to the house door can retrieve the mail and read it.

In 1977, MIT scientists Ronald Rivest, Adi Shamir, and Leonard
Adleman suggested that large prime numbers could be used to guard the
messages. Multiplication of two large prime numbers is easy for a
computer, but the reverse process of finding the two original prime numbers
given their product can be very difficult. It should be noted that computer
scientists had also developed public-key encryption for the British
intelligence at an earlier date; however, this work was kept secret for
reasons of national security.



SEE ALSO Cicada-Generated Prime Numbers (c. 1 Million B.C.), Sieve of Eratosthenes (240 B.C.),
Polygraphiae Libri Sex (1518), Goldbach Conjecture (1742), Gauss’s Disquisitiones Arithmeticae
(1801), and Proof of the Prime Number Theorem (1896).



Enigma machine, used to code and decode messages before the age of modern
cryptography. The Nazis used Enigma-produced ciphers, which had several
weaknesses, such as the fact that the messages could be decoded if a code book
was captured.



Szilassi Polyhedron
1977

Lajos Szilassi (b. 1942)

Polyhedra are three-dimensional solids with flat faces and straight edges.
Common examples include the cube and regular tetrahedron, which is a
pyramid that is composed of four faces in the shape of equilateral triangles.
If the polyhedron is regular, each face has the same size and shape.

The Szilassi polyhedron was discovered in 1977 by Hungarian
mathematician Lajos Szilassi. This polyhedron is a heptahedron with seven
6-sided faces, 14 vertexes, 21 edges, and a hole. If we were to smooth the
surface of the Szilassi polyhedron to make the edges less apparent, we
could see that, from a topological stand point, the Szilassi polyhedron is
equivalent to a doughnut (or torus). The polyhedron has an axis of 180-
degree symmetry. Three pairs of faces are congruent—that is, they have the
same shape and size. The other unpaired face is a symmetrical hexagon.

Remarkably, the tetrahedron and the Szilassi polyhedron are the only two
known polyhedra in which each face shares an edge with each other face.
Gardner writes that “until Szilassi’s computer program found the structure,
it was not known that it could exist.”

The Szilassi polyhedron also provides insight into the problem of
coloring maps. A traditional map may be colored with a minimum of four
colors so that no two adjacent regions are the same color. For a map on the
surface of a torus, the number is seven. This means that each face of the
Szilassi polyhedron must be a different color to ensure that no two adjacent
faces have the same color. For comparison, a tetrahedron demonstrates that
four colors are necessary for a map on a surface that is topologically
equivalent to a sphere. The properties of the two polyhedra may be
summarized like this:

SEE ALSO Platonic Solids (350 B.C.), Archimedean Semi-Regular Polyhedra (c. 240 B.C.), Euler’s
Formula for Polyhedra (1751), Four-Color Theorem (1852), Icosian Game (1857), Pick’s Theorem



(1899), Geodesic Dome (1922), Császár Polyhedron (1949), Spidrons (1979), and Solving of the
Holyhedron (1999).



The Szilassi polyhedron forms the basis for this lamp, created by Hans Schepker.



Ikeda Attractor
1979

Kensuke S. Ikeda (b. 1949)

A deep reservoir for striking images is the dynamical system. Dynamical
systems are models comprising the rules that describe the way some
quantity undergoes a change through time. For example, the motion of
planets about the sun can be modeled as a dynamical system in which the
planets move according to Newton’s Laws. The figure shown here
represents the behavior of mathematical expressions called differential
equations. One way of understanding the behavior of differential equations
involves us imagining a machine that takes in values for variables at an
initial time and then generates the new values at some later time. Just as one
can track the path of a jet by the smoke path it leaves behind, computer
graphics provide a way to follow paths of particles whose motion is
determined by simple differential equations. The practical side of dynamical
systems is that they can sometimes be used to describe real-world behaviors
such as fluid flows, the vibration of bridges, the orbital motion of satellites,
the control of robotic arms, and the response of electrical circuits. Often the
resulting graphic patterns resemble smoke, swirls, candle flames, and windy
mists.

The Ikeda attractor, shown here, is an example of a strange attractor,
which has an irregular, unpredictable behavior. An attractor is a set to which
a dynamical system evolves, or settles to, after some amount of time. With
“tame” attractors, initially close points stay together as they approach the
attractor. With strange attractors, initially adjacent points eventually follow
widely divergent trajectories. As with leaves in a turbulent stream, it is
impossible to predict where the leaves will end up given their initial
positions.

In 1979, Japanese theoretical physicist Kensuke Ikeda published
“Multiple-Valued Stationary State and Its Instability of the Transmitted
Light by a Ring Cavity System,” which describes a variation of this
attractor. Numerous other famous attractors and related mathematical
mappings exist in the mathematical literature, including the Lorenz



attractor, logistic map, Arnold’s cat map, horseshoe map, Hénon map, and
Rössler map.

SEE ALSO Harmonograph (1857), Differential Analyzer (1927), Chaos and the Butterfly Effect
(1963), and Feigenbaum Constant (1975).



Dynamical systems are models comprising the rules that describe the way some
quantity undergoes a change through time. The Ikeda attractor, shown here, is an
example of a strange attractor, which has an irregular, unpredictable behavior.



Spidrons
1979

Dániel Erdély (b. 1956)

Journalist Ivars Peterson writes of Spidrons, “A field of triangles crumples
and twists into a wavy crystalline sea. A crystal ball sprouts spiraling,
labyrinthine passages. Faceted bricks stack snugly into a tidy, compact
structure. Underlying each of these objects is a remarkable geometric shape
made up of a sequence of triangles—a spiral polygon that resembles a
seahorse’s tail.”

In 1979, graphic artist Dániel Erdély created an example of the Spidron
system, as a part of his homework for Ernö Rubik’s theory of form class at
the Budapest University of Art and Design. Erdély had experimented with
earlier versions of this work as early as 1975.

To create a Spidron, draw an equilateral triangle, and then draw lines
from the three corners of the triangle to a point at its center, creating three
identical isosceles triangles. Next, draw a reflection of one of these
isosceles triangles so that it juts from the side of the original triangle. Create
a new, smaller equilateral triangle, using one of the two short sides of the
jutting isosceles triangle as a base. By repeating the procedure, you’ll create
a spiraling triangulated structure that gets increasingly small. Finally, you
can erase the original equilateral triangle, and join two of the triangulated
structures along the long side of the largest isosceles triangle to create the
seahorse shape.

The Spidron’s significance arises from its remarkable spatial properties,
including its ability to form various space-filling polyhedra and tiling
patterns. If we crawl like an ant along the deeper regions of the seahorse’s
tail, we find that the area of any equilateral triangle equals the sum of the
areas of all the smaller triangles. The infinite collection of smaller triangles
could all be crammed into such an equilateral triangle without overlap.
When crinkled in just the right manner, Spidrons provide an infinite
reservoir for magnificent 3-D sculptures. Possible practical examples of
Spidrons include acoustic tiles and shock absorbers for machinery.



Spidron, a spiraling triangulated structure that grows increasingly small at its
two tips.

SEE ALSO Platonic Solids (350 B.C.), Archimedean Semi-Regular Polyhedra (c. 240 B.C.),
Archimedes’ Spiral (225 B.C.), Logarithmic Spiral (1638), and Voderberg Tilings (1936).



Spidrons have the ability to form various tiling patterns and space-filling
polyhedra, such as this sculpture, courtesy of Dániel Erdély.



Mandelbrot Set
1980

Benoît B. Mandelbrot (1924–2010)

David Darling writes that the Mandelbrot set, or M-set for short, is the “best
known fractal and one of the most…beautiful mathematical objects
known.” The Guinness Book of World Records called it “the most
complicated object in mathematics.” Arthur C. Clarke emphasizes the
degree to which the computer is useful for gaining insight: “In principle,
[the Mandelbrot set] could have been discovered as soon as men learned to
count. But even if they never grew tired, and never made a mistake, all the
human beings who have ever existed would not have sufficed to do the
elementary arithmetic required to produce a Mandelbrot set of quite modest
magnification.”

The Mandelbrot set is a fractal, an object that continues to exhibit similar
structural details no matter how much the edge of the object is magnified.
Think of the beautiful M-set images as being produced by mathematical
feedback loops. In fact, the set is produced by iteration, or repetition, of the
very simple formula zn + 1 = zn

2 + c, for complex values of z and c, and for
z0 = 0. The set contains all points for which the formula does not produce
values that diverge to infinity. The first crude pictures of the M-set were
drawn in 1978 by Robert Brooks and Peter Matelski, followed by the
landmark paper by Mandelbrot in 1980 on its fractal aspects and the wealth
of geometric and algebraic information it conveys.

The M-set structure contains super-thin spiral and crinkly paths,
connecting an infinite number of island shapes. Computer magnifications of
the M-set will easily yield pictures never seen before by human eyes. The
incredible vastness of the M-set led authors Tim Wegner and Mark Peterson
to remark: “You may have heard of a company that for a fee will name a
star after you and record it in a book. Maybe the same thing will soon be
done with the Mandelbrot set!”

SEE ALSO Imaginary Numbers (1572) and Fractals (1975).



The Mandelbrot set is a fractal and continues to exhibit similar structural details
no matter how much the edge of the object is magnified. Computer
magnifications of the M-set will easily yield pictures never seen before by human
eyes. (This rendering is by Jos Leys.)



Monster Group
1981

Robert L. Griess, Jr. (b. 1945)

In 1981, American mathematician Robert Griess constructed the Monster—
the largest and one of the most mysterious of the so-called sporadic groups,
a particular set of groups in the field of Group Theory. The quest to
comprehend the Monster has helped mathematicians understand some of
the basic building blocks of symmetry and how such building blocks, along
with some of their exceptional subfamilies, can be used to solve deep
problems involving symmetry in mathematics and in mathematical physics.
We can think of the Monster group as a mind-boggling snowflake with
more than 1053 symmetries that exists in a space of 196,884 dimensions!

Griess said that he became “addicted” to Monster construction in 1979,
the year he was married—and his wife was “very understanding” during his
intense pursuit, when he took time off only on Thanksgiving and Christmas
Day. In 1982, his 102-page paper on the Monster was finally published.
Mathematicians marveled that Griess could construct the Monster without
using a computer.

More than a mere curiosity, the structure of the Monster suggests deep
connections between symmetry and physics, and it may even have a
connection with string theory, which posits that all of the fundamental
particles in the universe are made of tiny vibrating loops of energy. Mark
Ronan, in his book Symmetry and the Monster, writes that the Monster has
“arrived before its time—a piece of twenty-second-century mathematics
that slipped by chance into the 20th century.” In 1983, physicist Freeman
Dyson wrote that the Monster may be “built in some unsuspected way into
the structure of the universe.”

In 1973, Griess and Bernd Fischer predicted the existence of the Monster,
and John Conway gave the object its name. In 1998, Richard Borcherds was
awarded a Fields Medal for his work on understanding the Monster and its
profound connections with other areas of mathematics and physics.



SEE ALSO Group Theory (1832), Wall Paper Groups (1891), Fields Medal (1936), and The Quest
for Lie Group E8 (2007).



American mathematician Robert Griess (pictured here) constructed the Monster
in 1981. The quest to comprehend the Monster has helped mathematicians
understand some of the basic building blocks of symmetry. The Monster group
involves a space of 196,884 dimensions!



Ball Triangle Picking
1982

Glen Richard Hall (b. 1954)

In 1982, Glen Hall published his famous research paper “Acute Triangles in
the n-Ball.” This was Hall’s first published mathematics paper, and it
discusses work he conducted while taking a graduate school class on
geometric probability, taught at the University of Minnesota. Imagine
picking three points at random in a circle to create a triangle. Hall wondered
what the probability would be for obtaining an “acute triangle,” not just for
triangles inside a circle but also in higher dimensions, such as inside
spheres and hyperspheres. These generalizations of a circle are called n-
dimensional balls. An acute triangle is one in which each of the three angles
is less than 90 degrees.

Below are several values for Pn, the probability of picking an acute
triangle in an n-ball if the three points on the triangle are chosen
independently and uniformly:

P2 = 4/π2 − 1/8 ≈ 0.280285 (circle)
P3 = 33/70 ≈ 0.471429 (sphere)
P4 = 256/(45π2) + 1/32 ≈ 0.607655 (four-dimensional hypersphere)
P5 = 1415/2002 ≈ 0.706793 (five-dimensional hypersphere)
P6 = 2048/(315π2) + 31/256 ≈ 0.779842 (six-dimensional

hypersphere)

Hall noticed that as the dimension of the sphere increased, the probability of
choosing an acute triangle also increased. By the time we reach the ninth
dimension, we have a probability of 0.905106 of selecting an acute triangle.
The triangle work is notable in that mathematicians had no generalization of
triangle picking to higher dimensions until the early 1980s. Hall, in a
personal communication to me, notes that he was amazed by the potential
alternation of probabilities between rational and irrational solutions
according to the dimension of the ball, a dimensional oscillation that



mathematicians would probably never have conjectured before this
research. Rational numbers are those that can be expressed by a ratio of two
integers. Note that mathematician Christian Buchta in 1986 was responsible
for providing closed-form evaluations for Hall’s integrals.

SEE ALSO Viviani’s Theorem (1659), Buffon’s Needle (1777), Laplace’s Théorie Analytique des
Probabilités (1812), and Morley’s Trisector Theorem (1899).



Select three points at random in a circle to create a triangle. What is the
probability of obtaining a triangle in which each of the three angles is less than
90°?



Jones Polynomial
1984

Vaughan Frederick Randal Jones (b. 1952)

In mathematics, even the most tangled loop in three dimensions can be
represented as a projection, or shadow, on a flat surface. When
mathematical knots are diagrammed, tiny breaks in the lines often indicate
when a strand crosses over or under another strand.

One of the goals of knot theory is to find invariants of knots, where the
term invariant refers to a mathematical characteristic or value that is the
same for equivalent knots so that it can be used to show that two knots are
different. In 1984, knot theorists were all abuzz with a startling invention of
New Zealand mathematician Vaughan Jones, an invariant, now called the
Jones polynomial, that could distinguish more knots than any previous
invariant. Jones had made his breakthrough discovery by chance, while
working on a physics problem. Mathematician Keith Devlin writes,
“Sensing that he had stumbled onto an unexpected, hidden connection,
Jones consulted knot theorist Joan Birman, and the rest, as they say, is
history….” Jones’s research “opened the way to a whole array of new
polynomial invariants, and led to a dramatic rise in research in knot theory,
some of it spurred on by the growing awareness of exciting new
applications in both biology and physics….” Biologists who study DNA
strands are interested in knots and how they can help elucidate the
functioning of genetic material in cells or even aid in resistance to viral
attacks. A systematic procedure, or algorithm, allows mathematicians to
express the Jones polynomial for any knot, based on its pattern of crossings.

The use of knot invariants has had a long history. Around 1928, James W.
Alexander (1888–1971) introduced the first polynomial associated with
knots. Alas, the Alexander polynomial was not useable for detecting the
difference between a knot and its mirror image, something that the Jones
polynomial could do. Four months after Jones announced his new
polynomial, the more general HOMFLY polynomial was announced.

SEE ALSO Knots (c. 100,000 B.C.), Perko Knots (1974), and Murphy’s Law and Knots (1988).



Knot with 10 crossings, rendered by Jos Leys. One of the goals of knot theory is
to find a mathematical characteristic that is the same for equivalent knots so that
it can be used to show that two knots are different.



Weeks Manifold
1985

Jeffrey Renwick Weeks (b. 1956)

Hyperbolic geometry is a Non-Euclidean Geometry in which Euclid’s
parallel postulate does not hold. In this geometry for two dimensions, for
any line and any point not on it, many other lines pass through the point
without intersecting the first line. Hyperbolic geometry is sometimes
visualized using saddle-shaped surfaces on which the sum of angles of a
triangle is less than 180 degrees. Such strange geometries have implications
for mathematicians and even cosmologists who ponder possible properties
and shapes for our universe.

In 2007, David Gabai of Princeton University, Robert Meyerhoff of
Boston College, and Peter Milley of the University of Melbourne in
Australia proved that a particular hyperbolic three-dimensional space, or 3-
manifold, has least volume. This shape, called the Weeks manifold after its
discoverer American mathematician Jeffrey Weeks, holds immense interest
to topologists who catalogue shapes of this kind.

In traditional Euclidean geometry, the concept of a “least volume” for a
three-dimensional space is meaningless. Shapes and volumes can be scaled
to any size. However, the spatial curvature of hyperbolic geometry provides
an intrinsic unit for length, area, and volume. In 1985, Weeks had found a
small manifold with a volume of approximately 0.94270736. (The Weeks
manifold is related to the space around a pair of intertwined loops, known
as the Whitehead link.) Until 2007, no one knew for sure if the Weeks
manifold was the smallest.

MacArthur Fellow Jeffrey Weeks received his Ph.D. in mathematics from
Princeton University in 1985, under the supervision of William Thurston.
One of his main passions is the use of topology to bridge the gap between
geometry and observational cosmology. He has also developed interactive
software to introduce geometry to young students and to let them explore
universes that are finite yet have no boundaries.

SEE ALSO Euclid’s Elements (300 B.C.), Non-Euclidean Geometry (1829), Boy’s Surface (1901),
and Poincaré Conjecture (1904).



This model of a Weeks manifold contains only one galaxy, but we see images of
that galaxy repeating in a crystalline pattern, giving the illusion of an infinite
space. The effect is similar to a hall of mirrors, which also gives an illusion of
infinite space.



Andrica’s Conjecture
1985

Dorin Andrica (b. 1956)

A prime number is an integer that has exactly two distinct integer divisors:
1 and itself. Examples of prime numbers include 2, 3, 5, 7, 11, 13, 17, 19,
23, 29, 31, and 37. The great Swiss mathematician Leonhard Euler (1707–
1783) remarked, “Mathematicians have tried in vain to this day to discover
some order in the sequence of prime numbers, and we have reason to
believe that it is a mystery into which the mind will never penetrate.”
Mathematicians have long searched for patterns in the sequence of prime
numbers and also in the gaps between them, where the term gap refers to
the difference between two successive prime numbers. The value of the
average gap between primes increases as the natural logarithm of the prime
number at either end of the gap. As an example of a known large gap,
consider the gap of 879 non-prime numbers after the prime
277,900,416,100,927. In 2009, the largest known prime gap had a length of
337,446.

In 1985, Romanian mathematician Dorin Andrica published “Andrica’s
Conjecture,” which concerns the gaps between prime numbers. In
particular, the conjecture states that √pn+1 − √pn < 1, where pn is the nth
prime number. For example, consider the prime numbers 23 and 29.
Applying Andrica’s conjecture, we have √29 − √23 < 1. Another way of
writing this is gn < 2√pn + 1, where gn is the nth prime gap, and gn = pn + 1
− pn. As of 2008, the conjecture has been shown to hold true for n up to
1.3002 × 1016.

If we examine the left side of the inequality in Andrica’s conjecture, An =
√pn+1 − √pn, the highest value for An ever found is at n = 4, where An is
approximately equal to 0.67087. Andrica’s conjecture was stated just at the
time when computers were becoming ubiquitous, which encouraged an
ongoing flurry of activity in an attempt to understand and find
counterexamples that might defeat the conjecture. So far, Andrica’s
conjecture still stands, although it also remains unproven.



SEE ALSO Cicada-Generated Prime Numbers (c. 1 Million B.C.), Sieve of Eratosthenes (240 B.C.),
Goldbach Conjecture (1742), Gauss’s Disquisitiones Arithmeticae (1801), Möbius Function (1831),
Riemann Hypothesis (1859), Proof of the Prime Number Theorem (1896), Brun’s Constant (1919),
Gilbreath’s Conjecture (1958), Sierpinski Numbers (1960), Ulam Spiral (1963), and Erdös and
Extreme Collaboration (1971).



The function An for the first 100 primes. The highest vertical point in this graph
(the bar near the left of the plot) is at 0.67087, and the x-axis range is from 1 to
100.



The ABC Conjecture
1985

David Masser (b. 1948), Joseph Oesterlé (b. 1954)

The ABC conjecture is considered to be one of the most important unsolved
problems in number theory, the study of the properties of whole numbers. If
the conjecture is correct, mathematicians will be able to prove many other
famous theorems in just a few lines.

The conjecture was first advanced in 1985 by mathematicians Joseph
Oesterlé and David Masser. To understand the conjecture, we define a
square-free number as an integer that is not divisible by the square of any
number. For example, 13 is square-free, but 9 (divisible by 32) is not. The
square-free part of an integer n, denoted sqp(n), is the largest square-free
number that can be formed by multiplying the prime factors of n. Thus, for
n = 15, the prime factors are 5 and 3, and 3 × 5 = 15, a square-free number.
So sqp(15) = 15. On the other hand, for n = 8, the prime factors are all 2,
which means that sqp(8) = 2. Similarly, sqp(18) = 6, which is found by
multiplying its factors 3 and 2, and sqp(13) = 13.

Next, consider numbers A and B that have no factors in common, and C
is their sum. For example, consider A = 3 and B = 7 and C = 10. The
square-free part of the product ABC is 210. Notice that sqp(ABC) is greater
than C, but this is not always the case. It is possible to prove that the ratio
sqp(ABC)/C can get arbitrarily small for the appropriate selection of A, B,
and C. However, the ABC conjecture states that [sqp(ABC)]n/C does reach a
minimum value if n is any real number greater than 1.

Dorian Goldfeld writes, “The ABC conjecture…is more than utilitarian;
to mathematicians it is also a thing of beauty. Seeing so many Diophantine
[integer-solution] problems unexpectedly encapsulated into a single
equation drives home the feeling that all the subdisciplines of mathematics
are aspects of a single underlying unity….”

SEE ALSO Cicada-Generated Prime Numbers (c. 1 Million B.C.), Sieve of Eratosthenes (240 B.C.),
Goldbach Conjecture (1742), Constructing a Regular Heptadecagon (1796), Gauss’s Disquisitiones
Arithmeticae (1801), Riemann Hypothesis (1859), Proof of the Prime Number Theorem (1896),



Brun’s Constant (1919), Gilbreath’s Conjecture (1958), Ulam Spiral (1963), and Andrica’s
Conjecture (1985).



The ABC conjecture is considered to be one of the most important unsolved
problems in number theory. The conjecture was first advanced in 1985 by
mathematicians David Masser (pictured here) and Joseph Oesterlé.



Audioactive Sequence
1986

John Horton Conway (b. 1937)

Consider the following sequence of numbers: 1, 11, 21, 1211, 111221,… To
appreciate how the sequence is formed, it helps to speak the entries in each
row out loud. Note that the second entry has two “ones,” thereby giving the
21 for the third entry. The third entry has one “two” and one “one.”
Extending this pattern, an entire sequence can be generated. The sequence
was extensively studied by mathematician John Conway, who called the
process “audioactive.”

The sequence grows rather rapidly. For example, row 16 is

1321132132211331121321133112111312211
2132113121113222112311311222113111231

1332111213211322211312113211

If you were to carefully study the sequence, you would find a
predominance of 1s, with 2s and 3s less common, and no numbers greater
than 3. Is it possible to prove that 333 can never occur? You can see from
the following representation of Row 11 (in which 3s are represented by )
that the occurrence of 3 seems erratic, like lost ships on an infinite sea:

.

The number of digits in the nth term of this sequence is roughly
proportional to Conway’s constant:

(1.3035772690342693912570991121
525518907307025046594…)n.

Mathematicians have found it remarkable that the “bizarre” audioactive
construction process yields this constant that turns out to be a unique



positive real root of a polynomial equation. Interestingly, the constant
applies to all starting sequences, with the exception of 22.

Many variants exist. British researcher Roger Hargrave has extended the
idea to a variation in which a row takes into account all occurrences of each
character in a previous row. For example, the sequence starting with 123 is
123, 111213, 411213, 14311213, … Interestingly, he believes that all his
sequences finally oscillate between 23322114 and 32232114. Can you
prove this? What are the properties of reverse likeness-sequences? Starting
from a particular row, can one work backward and compute the starting
string of symbols?

SEE ALSO Thue-Morse Sequence (1906), Collatz Conjecture (1937), and The On-Line
Encyclopedia of Integer Sequences (1996).



The strange construction method for the audioactive process yields Conway’s
constant, 1.3035…, which turns out to be a unique positive real root of a 69-term
polynomial equation. This root is at the location of the yellow sphere. Other
roots of this polynomial are shown as + symbols.



Mathematica
1988

Stephen Wolfram (b. 1959)

A shift has taken place in the way mathematics has been practiced over the
last 20 years—a transition from pure theory and proof to the use of
computers and experimentation. This shift is due, in part, to computational
software packages like Mathematica, sold by Wolfram Research of
Champaign, Illinois, and developed by mathematician and theorist Stephen
Wolfram. The first version of Mathematica was released in 1988, and today
it provides a general computing environment that organizes numerous
algorithmic, visualization, and user-interface capabilities. Mathematica is
one example of numerous packages available today for experimental
mathematics, including Maple, Mathcad, MATLAB, and Maxima.

Since the 1960s, individual software packages have existed for specific
numerical, algebraic, graphical, and other tasks, and researchers interested
in chaos and fractals have long used computers for their explorations.
Mathematica helped unite various features of specialized packages in a
convenient fashion. Today, Mathematica is used in engineering, science,
finance, education, art, clothing design, and other fields that require
visualization and experimentation.

In 1992, the journal Experimental Mathematics was launched and helped
to show how computation can be used to investigate mathematical
structures and identify important properties and patterns. Educator and
author David Berlinski writes, “The computer has…changed the very
nature of mathematical experience, suggesting for the first time that
mathematics, like physics, may yet become an empirical discipline, a place
where things are discovered because they are seen.”

Mathematicians Jonathan Borwein and David Bailey write, “Perhaps the
most important advancement along this line is the development of broad
spectrum mathematical software products such as Mathematica and Maple.
These days, many mathematicians are highly skilled with these tools and
use them as part of their day-today research work. As a result, we are



starting to see a wave of new mathematical results discovered partly or
entirely with the aid of computer-based tools.”

SEE ALSO Abacus (c. 1200), Slide Rule (1621), Babbage Mechanical Computer (1822), Ritty
Model I Cash Register (1879), Differential Analyzer (1927), Curta Calculator (1948), and HP-35:
First Scientific Pocket Calculator (1972).



Mathematica provides a general computing environment that organizes
numerous algorithmic, visualization, and user-interface capabilities. This sample
3-D graphic is produced by Mathematica and is courtesy of Michael Trott, an
expert in symbolic computation and computer graphics.



Murphy’s Law and Knots
1988

De Witt L. Sumners (b. 1941), Stuart G. Whittington (b. 1942)

Since ancient days, frustrated sailors and weavers have observed the
apparent tendency of ropes and strings to tangle and knot—a manifestation
of Murphy’s famous law that states, if something can go wrong, it will go
wrong. However, until recently, no rigorous theory existed that explained
this maddening phenomenon. Consider just one practical ramification: A
single knot in a mountain climber’s rope can reduce the amount of stress the
rope can withstand without breaking by as much as 50 percent.

In 1988, mathematician De Witt L. Sumners and chemist Stuart G.
Whittington clearly elucidated the phenomena by modeling ropes and other
string-like objects, such as chemical polymer chains, as self-avoiding
random walks. Imagine an ant resting at a point in a cubic grid. It can
randomly walk in any of six directions as it traces a path through the lattice
(meaning backward or forward in any of three directions). In order to mimic
physical objects that cannot occupy the same space at once, the ant’s walk
is self-avoiding so that no point in space is visited more than once. Based
on their research, Sumners and Whittington proved a general result: Nearly
all sufficiently long self-avoiding random walks contain a knot.

Not only does their research help to explain why the longer a garden hose
in your garage is, the more likely it is to be knotted—or why a knotted rope
found at a crime scene may have no forensic significance—this work has
vast implications for our understanding of the tangling of DNA and protein
backbones. Long ago, protein folding experts believed that forming a knot
was beyond the ability of a protein, but today a number of such knots have
been found. Some of the knots may stabilize the protein structure. If
scientists can accurately predict protein structure, they may be able to better
understand diseases and develop new drugs that rely on a 3-D shape of the
protein.



Tangled fishing nets.

SEE ALSO Knots (c. 100,000 B.C.), Borromean Rings (834), Lost in Hyperspace (1921), Perko
Knots (1974), and Jones Polynomial (1984).



A single knot in a mountain climber’s rope can severely reduce the breaking
strength of the rope.



Butterfly Curve
1989

Temple H. Fay (b. 1940)

Parameterizations are sets of equations that express a set of quantities as
functions of a number of independent variables. A curve in the plane is
often said to be parameterized if the set of coordinates (x, y) on the curve is
represented as functions of a variable t. For example, in the usual Cartesian
coordinates, we have the standard equation of a circle: x2 + y2 = r2, where r
is the radius of the circle. We can also define a circle in terms of parametric
equations: x = r·cos(t), y = r·sin(t), where 0 < t ≤ 360 degrees or 0 < t ≤ 2π
radians. To create a graph, computer programmers increment the value for t
and connect the resultant (x, y) points.

Mathematicians and computer artists often resort to parametric
representations because certain geometric forms are very difficult to
describe as a single equation, the way one could for a circle. For example,
to draw a conical helix, try x = a·z·sin(t), y = a·z·cos(t), and z = t/(2πc),
where a and c are constants. Conical helices are used today in certain kinds
of antennas.

Many algebraic and transcendental curves express beauty in their
symmetry, leaves and lobes, and asymptotic behavior. Butterfly curves,
developed by Temple Fay while at the University of Southern Mississippi,
are one such class of beautiful, intricate shapes. The equation for the
butterfly curve can be expressed in polar coordinates by ρ = ecos  − 2cos(4
) + sin5( /12). This formula describes the trajectory of a point as it traces
out the butterfly’s body. The variable ρ is the radial distance of the point to
the origin. The butterfly curve is significant because of the degree to which
it has fascinated both students and mathematicians since 1989 when it was
first presented, and it has encouraged students to experiment with variants
with longer periods of repetition such as ρ = ecos  − 2.1cos(6 ) + sin7( /30).

SEE ALSO Harmonograph (1857).



Many algebraic and transcendental curves express beauty in their symmetry,
lobes, and asymptotic behaviors. This butterfly curve, developed by Temple Fay,
can be expressed in polar coordinates by ρ = ecos  − 2cos(4 ) + sin5( /12).



The On-Line Encyclopedia of Integer
Sequences

1996

Neil James Alexander Sloane (b. 1939)

The On-Line Encyclopedia of Integer Sequences (OEIS) is an extremely
large, search able database of integer sequences used by mathematicians,
scientists, and laypeople who are intrigued by number sequences in
disciplines ranging from game theory, puzzles, and number theory to
chemistry, communications, and physics. The astonishing diversity of the
OEIS is exemplified by two sample entries: the number of ways to lace a
shoe that has n pairs of eyelets, and the winning positions of the ancient
board game Tchoukaillon solitaire, as a function of the number of stones.
The Web site for the OEIS (www.research.att.com/~njas/sequences/)
contains more than 150,000 sequences, making it the largest database of its
kind.

Each entry includes the first several terms of the sequence, keywords,
mathematical motivations, and literature references. Neil Sloane, British-
born American mathematician, started collecting integer sequences in 1963,
as a graduate student at Cornell University, and his first incarnation of the
OEIS was stored on punched cards—and then in the form of a 1973 book
called A Handbook of Integer Sequences, containing 2,400 sequences, and a
1995 follow-up with 5,487 sequences. The Web version became available in
1996, and it continues to add about 10,000 new entries a year. If it were
published as a book today, it would occupy 750 volumes the size of the
1995 book.

The OEIS is a monumental achievement and is frequently used to
identify sequences or to determine the current status of a known sequence.
However, its most profound use may be as an aid for suggesting new
conjectures. For example, mathema tician Ralf Stephan recently formulated
more than 100 conjectures in many fields simply through a study of the
OEIS number sequences. By comparing sequences with the same leading
terms (or sequences related by simple transformations), mathematicians

http://www.research.att.com/~njas/sequences


may start to consider new conjectures concerning power series expansions,
number theory, combinatorics, nonlinear recurrences, binary
representations, and other areas of mathematics.

SEE ALSO Thue-Morse Sequence (1906), Collatz Conjecture (1937), Audioactive Sequence (1986),
and Bed Sheet Problem (2001).



The OEIS includes a sequence that characterizes the number of ways to lace a
shoe that has n pairs of eyelets such that each eyelet has at least one direct
connection to the opposite side: 1, 2, 20, 396, 14976, 907200….The path must
begin and end at the extreme pair of eyelets.



Eternity Puzzle
1999

Christopher Walter Monckton, 3rd Viscount Monckton of Brenchley
(b. 1952)

The extremely difficult jigsaw puzzle known as the Eternity Puzzle became
a craze in 1999 and 2000 and has been subject to serious mathematical and
computer analysis. The 209 puzzle pieces, all different, are constructed
from equilateral triangles and half triangles with the same total areas as six
triangles. The task is to fit the pieces together into one large, almost regular
dodecagon (12-sided polygon).

Christopher Monckton, inventor of the puzzle, announced a prize of 1
million pounds when the puzzle was released commercially by Ertl Toys in
June, 1999. Monckton’s initial computer experiments suggested to him that
the puzzle would not be solved for several years or perhaps much longer.
Indeed, exhaustively searching all possibilities would take so long that the
fastest computer would have required many millions of years to find a
solution using simple-minded searches.

Perhaps to Monckton’s disappointment, two British mathematicians,
Alex Selby and Oliver Riordan, revealed a correct tiling on May 15, 2000,
which they obtained with the help of computers, and they claimed the prize.
Interestingly, they discovered that as the number of pieces in an Eternity-
like puzzle increased, the difficulty increased up to about 70 pieces.
However, beyond 70 pieces, the number of possible correct solutions begins
to increase. The official Eternity Puzzle is thought to have at least 1095

solutions—far more than the number of atoms in our galaxy. Nevertheless,
the puzzle is still fiendishly difficult because far more non-solutions exist.

Because Selby and Riordan realized that many solutions should be
possible, they decided to deliberately discard Monckton’s clues for his own
solution in order to consider possibly easier solutions. In 2007, Monckton
released the Eternity II Puzzle with 256 square puzzle pieces, whose
colored edges must match when the pieces are fit into a 16 × 16 grid. The
possible number of configurations is estimated to be 1.115 × 10557.



SEE ALSO Squaring a Rectangle (1925), Voderberg Tilings (1936), and Penrose Tiles (1973).



An example single piece of the Eternity Puzzle, shown here in the yellow
triangulated polygon. Every piece is made up of triangles and “half triangles.”



Perfect Magic Tesseract
1999

John Robert Hendricks (1929–2007)

The traditional Magic Square contains integers arranged in the form of a
square grid so that the numbers in each row, column, and diagonal add up to
the same total. If the integers are consecutive numbers from 1 to N2, the
square is said to be of Nth order.

In a magic tesseract (a four-dimensional cube), the object contains the
numbers 1 through N4 arranged in such a way that the sum of the numbers
in each of the N3 rows, N3 columns, N3 pillars, N3 files (a term used to
imply a fourth spatial direction), and in the 8 major quadragonals (that pass
through the center and join opposite corners) is a constant sum S = N(1 +
N4)/2, where N is the order of the tesseract. A total of 22,272 magic
tesseracts exist of order 3.

The term perfect magic tesseract implies that a magic sum is achieved
not only in the rows, columns, pillars, files, and quadragonals, but also in
all the diagonals and triagonals (space diagonals of the cubes of the
tesseract). A perfect magic tesseract requires all cubes to be perfect, and all
squares must be perfect (that is, pandiagonal so that all of the broken
diagonals of the square add up to the magic constant).

Canadian researcher John Hendricks was one of the world’s foremost
experts in higher-dimensional magic objects, and he proved that a perfect
magic tesseract cannot be achieved with any orders below 16 and that a
perfect magic tesseract of order 16 exists. This perfect magic tesseract of
order 16 contains the numbers 1, 2, 3,…65,536 and has the magic sum of
534,296. In 1999, he and I computed the first-known perfect 16th-order
magic tesseract. We can summarize what is known today: The smallest
perfect tesseract is of order 16, the smallest perfect cube is of order 8, and
the smallest perfect (pandiagonal) magic square is of order 4.

SEE ALSO Magic Squares (2200 B.C.), Franklin Magic Square (1769), and Tesseract (1888).



An order-16 perfect magic tesseract is difficult to visualize, so we display one of
John Hendrick’s third-order magic tesseracts, showing a sample row (yellow),
column (green), pillar (red), file (light blue), and quadragonal (formed by the
three magenta numbers) that sum to 123.



Parrondo’s Paradox
1999

Juan Manuel Rodríguez Parrondo (b. 1964)

In the late 1990s, Spanish physicist Juan Parrondo showed how two games
guaranteed to make a player lose all his money can be played in alternating
sequence to make the player rich. Science writer Sandra Blakeslee writes
that Parrondo “discovered what appears to be a new law of nature that may
help explain, among other things, how life arose out of a primordial soup,
why President Clinton’s popularity rose after he was caught in a sex
scandal, and why investing in losing stocks can sometimes lead to greater
capital gains.” The mind-boggling paradox has applications ranging from
population dynamics to the assessment of financial risk.

To understand the paradox, imagine you are playing two gambling games
that involve biased coins. In game A, each time the coin is tossed, you have
a probability P1 of winning that is less than 50 percent, expressed as P1 =
0.5 − x. If you win, you get $1; otherwise, you lose $1. In game B, you first
examine your earnings to see if they are a multiple of 3. If no, you toss
another biased coin with the probability of winning P2 = (3/4 − x). If yes,
you toss a third biased coin with the probability of winning a mere P3 =
(1/10) − x. In game A or game B played separately, for example with x =
0.005, you are guaranteed to lose in the long run. However, if you play
them alternately (or even if you randomly switch between the games),
you’ll eventually be rich beyond your wildest dreams! Note that the
outcome of game A affects game B during this alternation of play.

Parrondo initially devised his paradoxical game in 1996. Biomedical
engineer Derek Abbott at the University of Adelaide, Australia, coined the
term Parrondo’s paradox, and, in 1999, he published his work that verified
Parrondo’s counterintuitive result.

SEE ALSO Zeno’s Paradoxes (c. 445 B.C.), Aristotle’s Wheel Paradox (c. 320 B.C.), Law of Large
Numbers (1713), St. Petersburg Paradox (1738), Barber Paradox (1901), Banach-Tarski Paradox
(1924), Hilbert’s Grand Hotel (1925), Birthday Paradox (1939), Coastline Paradox (c. 1950), and
Newcomb’s Paradox (1960).



Physicist Juan Parrondo was inspired by ratchets such as this, the behavior of
which can lead to counterintuitive behavior especially when considered for use
in microscopic devices. Parrondo extended insights relating to physical devices
to games.



Solving of the Holyhedron
1999

John Horton Conway (b. 1937), Jade P. Vinson (b. 1976)

Consider a traditional polyhedral solid constructed from a collection of
polygons joined at their edges. A holyhedron is a polyhedron with each face
containing at least one polygon-shaped hole. The boundaries of the holes
share no point with each other or the boundary of the faces. For example,
consider a solid cube with its 6 faces. Next, imagine thrusting a pentagonal
rod through 1 face, all the way through the cube to the other side to produce
(for example) a pentagonal tunnel. At this point in the construction, we
have created an object with 11 faces (the 6 original faces and the 5 new
faces of the pentagonal tunnel), and only 2 of those 11 faces have holes
punched in them. Each time we punch a hole, we are also creating more
faces. The immense challenge to finding a holyhedron is to make the holes
such that they eventually punch through more than one face to reduce the
number of faces that have no holes.

The holyhedron concept was first introduced by Princeton mathematician
John H. Conway in the 1990s, who offered a prize of $10,000 to anyone
who could find such an object. He also stipulated that his cash reward
would be divided by the number of faces in such an object. In 1997, David
W. Wilson coined the word holyhedron to indicate a hole-filled polyhedron.

Finally, in 1999, American mathematician Jade P. Vinson discovered the
world’s first holyhedron specimen with a total of 78,585,627 faces (which,
obviously, made Vinson’s monetary award rather small)! In 2003, computer
graphics specialist Don Hatch discovered a holyhedron with 492 faces. The
search continues.



An example of thrusting a triangular rod through a cube.

SEE ALSO Platonic Solids (350 B.C.), Archimedean Semi-Regular Polyhedra (c. 240 B.C.), Euler’s
Formula for Polyhedra (1751), Prince Rupert’s Problem (1816), Icosian Game (1857), Pick’s
Theorem (1899), Geodesic Dome (1922), Császár Polyhedron (1949), Szilassi Polyhedron (1977),
and Spidrons (1979).



The holes and tunnels within an Antarctic ice cave are reminiscent of the
gorgeous, porous structures of a holyhedron. Of course, a holyhedron must have
tunnels bounded by polygons, and each of the holyhedron’s flat tunnel walls must
contain at least one polygon-shaped hole.



Bed Sheet Problem
2001

Britney Gallivan (b. 1985)

You have insomnia one night and decide to remove your bed sheet, which is
only about 0.4 millimeter thick. You fold it up once, and it becomes 0.8 mm
thick. How many times do you fold it if you want to make the bed sheet
thickness equal to the distance between the Earth and the moon? The
remarkable answer is that if you fold your sheet only 40 times, then you
will sleep on the moon! In another version of the problem, you are handed a
sheet of paper with a typical thickness of 0.1 millimeter. If you could fold it
51 times, the stack would reach further than the sun!

Alas, it is not physically possible to create many folds in physical objects
like these. The prevailing wisdom throughout much of the 1900s was that a
sheet of real paper could not be folded in half more than 7 or 8 times, even
if the starting paper sheet was large. However, in 2002, high school student
Britney Gallivan shocked the world by folding a sheet in half an unexpected
12 times.

In 2001, Gallivan determined equations that characterize the limit on the
number of times we can fold a sheet of paper of a given size in a single
direction. For the case of a sheet with thickness t, we can estimate the initial
minimal length L of a paper that is required in order to achieve n folds: L =
[(πt)/6] × (2n + 4) × (2n − 1). We may study the behavior of (2n + 4) × (2n −
1). Starting with n = 0, we have the integer sequence 0, 1, 4, 14, 50, 186,
714, 2,794, 11,050, 43,946, 175,274, 700,074….This means that for the
eleventh act of folding the paper in half, 700,074 times as much material
has been lost to folding, at the curved edges along the folds, as was lost on
the first fold.

SEE ALSO Zeno’s Paradoxes (c. 445 B.C.) and The On-Line Encyclopedia of Integer Sequences
(1996).



In 2001, Britney Gallivan determined equations that characterize the limit on the
number of times we can fold a bed sheet or piece of paper of a given size in a
single direction.



Solving the Game of Awari
2002

John W. Romein (b. 1970) and Henri E. Bal (b. 1958)

Awari is a 3,500-year-old African board game. Today, Awari is the national
game of Ghana, and it is played throughout West Africa and the Caribbean.
Classified as a count-and-capture game, Awari is a member of a set of
strategy games called Mancala games.

The Awari board consists of two rows of six cup-like hollows, with four
markers beans, seeds, or pebbles) in each hollow. Six cups belong to each
player, who takes turns moving the seeds. On a turn, a player chooses one
of his six cups, withdraws all seeds from that cup, and drops one seed in
each cup counterclockwise from this cup. The second player then takes the
seeds from one of the six cups on his side and does the same. When a player
drops his last seed into a cup on the opponent’s side containing only one or
two seeds (making a total of two or three seeds), that player removes all the
seeds from this cup, removing them from the game. The same player also
takes any seeds in cups immediately before the emptied cup if they now
also total two or three. Players take seeds only from their opponent’s side of
the board. The game ends when one player has no seeds left in the cups on
his side. Whoever captures the majority of seeds wins.

Awari has been of immense attraction to researchers in the field of
artificial intelligence, in which algorithms are sometimes developed to
solve puzzles or play games, but until 2002, no one knew if the game was
like Tic Tac Toe in which perfect players always ended a game in a draw.
Finally, computer scientists John W. Romein and Henri E. Bal of the Free
University in Amsterdam wrote a computer program that calculated the
outcome for all 889,063,398,406 positions that can occur in the game, and
proved that Awari must end in a draw for perfect players. The massive
computation required about 51 hours on a computer cluster with 144
processors.

SEE ALSO Tic Tac Toe (c. 1300 B.C.), Go (548 B.C.), Donald Knuth and Mastermind (1970),
Eternity Puzzle (1999), and Checkers Is Solved (2007).



Awari has been of immense attraction to researchers in the field of artificial
intelligence. In 2002, computer scientists calculated the outcome for all
889,063,398,406 positions that can occur in the game, and proved that Awari
must end in a draw for perfect players.



Tetris Is NP-Complete
2002

Erik D. Demaine (b. 1981), Susan Hohenberger (b. 1978), and David
Liben-Nowell (b. 1977)

Tetris is a very popular falling-blocks puzzle video game, invented in 1985
by Russian computer engineer Alexey Pajitnov. In 2002, American
computer scientists quantified the difficulty of the game and showed that it
has similarities with the hardest problems in mathematics that do not have
simple solutions but instead require exhaustive analysis to find optimal
solutions.

In Tetris, playing pieces start at the top of the game board and move
downward. As a piece descends, a player can rotate the piece or slide it
sideways. The pieces are shapes called tetrominoes, consisting of four
squares stuck together into a group that has a shape like the letter T or other
simple pattern. When one piece reaches a resting spot at the bottom, the
next piece at the top falls. Whenever a row at the bottom is filled with no
gaps, that row is removed, and all higher rows drop down one row. The
game ends when a new piece cannot fall because it is blocked. The player’s
goal is to make the game last as long as possible in order to increase his
score.

In 2002, Erik D. Demaine, Susan Hohenberger, and David Liben-Nowell
researched a generalized version of the game that used a game board grid
that could be any number of squares wide and high. The team discovered
that if they tried to maximize the number of rows cleared while playing a
given sequence of pieces, then the game was NP-complete. (“NP” stands
for “nondeterministically polynomial.”) Although this class of problems can
be checked to determine if a solution is correct, the solution may actually
require an outrageously long time to find. The classic example of an NP-
complete problem is the traveling salesman problem, which involves the
extremely challenging task of determining the most efficient route for a
salesman or delivery man who must visit many different towns. These kinds
of problems are difficult because no shortcut or smart algorithm exists for
quick solutions.



SEE ALSO Tic Tac Toe (c. 1300 B.C.), Go (548 B.C.), Eternity Puzzle (1999), Solving the Game of
Awari (2002), and Checkers Is Solved (2007).



In 2002, computer scientists quantified the difficulty of Tetris and showed that it
has similarities with the hardest problems in mathematics that do not have
simple solutions but instead require exhaustive analysis to find optimal solutions.



NUMB3RS
2005

Nicolas Falacci and Cheryl Heuton

NUMB3RS is an American television show created by husband-and-wife
writing team Nicolas Falacci and Cheryl Heuton. This crime drama
concerns a brilliant mathematician, Charlie Epps, who helps the FBI solve
crimes using his genius ability in mathematics.

Although it may seem inappropriate to place a TV show in a book along
with such famous concepts as Fermat’s Last Theorem or the work of Euclid,
NUMB3RS is significant because it was the first very popular weekly drama
that revolved around mathematics, had a team of mathematician advisors,
and also received acclaim from mathematicians. The equations seen in the
show are real and relevant to the episodes. The mathematical content of the
show ranges from cryptanalysis, probability theory, and Fourier analysis to
Bayesian analysis and basic geometry.

NUMB3RS has also proven to be significant because it has created many
learning opportunities for students. For example, mathematics teachers have
employed the lessons of NUMB3RS in their classrooms, and in 2007, the
show and its creators received a National Science Board group Public
Service Award for contributions toward increasing scientific and
mathematical literacy. Famous mathematicians mentioned in NUMB3RS
include Archimedes, Paul Erdös, Pierre-Simon Laplace, John von
Neumann, Bernhard Riemann, and Stephen Wolfram—the kinds of people
discussed throughout this book! Kendrick Frazier writes, “Science, reason,
and rational thinking play such a prominent role in the stories that the
American Association for the Advancement of Science hosted an entire
afternoon symposium at its 2006 annual meeting on the program’s role in
changing the public’s perception of mathematics.”

Episodes begin with a spoken tribute about the importance of
mathematics: “We all use math everywhere. To tell time, to predict the
weather, to handle money….Math is more than formulas and equations.
Math is more than numbers. It is logic. It is rationality. It is using your mind
to solve the biggest mysteries we know.”



SEE ALSO Martin Gardner’s Mathematical Recreations (1957) and Erdös and Extreme
Collaboration (1971).



Scene from NUMB3RS, an American television show featuring a brilliant
mathematician who helps the FBI solve crimes using his genius ability in
mathematics. The show was the first very popular weekly drama that revolved
around mathematics and had a team of mathematician advisors.



Checkers Is Solved
2007

Jonathan Schaeffer (b. 1957)

In 2007, computer scientist Jonathan Schaeffer and colleagues used
computers to finally prove that checkers, when played perfectly, is a no-win
game. This means that checkers resembles Tic Tac Toe—a game that also
can’t be won if both players make no wrong moves. Both games end in a
draw.

Schaeffer’s proof was executed by hundreds of computers over 18 years,
making checkers the most complex game ever solved. This also means that
it is theoretically possible to build a machine that will never lose to a
human.

Checkers, which makes use of an 8 × 8 board, was hugely popular in
Europe in the sixteenth century, and early variations of the game have been
discovered in the ruins of the ancient city of Ur (c. 3000 B.C.) in modern-
day Iraq. The checkers pieces are often in the form of black and red disks
that slide diagonally. Players take turns and capture each other’s pieces by
hopping over them. Of course, given that there are roughly 5 × 1020

possible positions, proving that checkers is a guaranteed draw is far harder
than proving that Tic Tac Toe can’t be won.

The checkers research team considered 39,000 billion arrangements with
10 or fewer pieces on the board and then determined if red or black would
win. The team also used a specialized search algorithm to study the start of
the game and to see how these moves “funneled” into the 10-checker
configurations. The solving of checkers represented a major benchmark in
the field of artificial intelligence, which often involves complex problem-
solving strategies for computers.

In 1994, Schaeffer’s program called Chinook played the world champion,
Marion Tinsley, to a series of draws. Tinsley died of cancer eight months
later, and some chided Schaeffer for accelerating the death due to the stress
Chinook placed on Tinsley!

SEE ALSO Tic Tac Toe (c. 1300 B.C.), Go (548 B.C.), Sprouts (1967), and Solving the Game of
Awari (2002).



French artist Louis-Léopold Boilly (1761–1845) painted this scene of a family
game of checkers around the year 1803. In 2007, computer scientists proved that
checkers, when played perfectly, is a no-win game.



The Quest for Lie Group E8
2007

Marius Sophus Lie (1842–1899), Wilhelm Karl Joseph Killing (1847–
1923)

For more than a century, mathematicians have sought to understand a vast,
248-dimensional entity, known to them only as E8. Finally, in 2007, an
international team of mathematicians and computer scientists made use of a
supercomputer to tame the intricate beast.

As background, consider the Mysterium Cosmographicum (The Sacred
Mystery of the Cosmos) of Johannes Kepler (1571–1630), who was so
enthralled with symmetry that he suggested the entire solar system and
planetary orbits could be modeled by Platonic Solids, such as the cube and
dodecahedron, nestled in each other forming layers as if in a gigantic
crystalline onion. These kinds of Keplerian symmetries were limited in
scope and number; however, symmetries that Kepler could have hardly
imagined may indeed rule the universe.

In the late nineteenth century, the Norwegian mathematician Sophus Lie
pronounced “Lee”) studied objects with smooth rotational symmetries, like
the sphere or doughnut in our ordinary three-dimensional space. In three
and higher dimensions, these kinds of symmetries are expressed by Lie
groups. The German mathematician Wilhelm Killing suggested the
existence of the E8 group in 1887. Simpler Lie groups control the shape of
electron orbital and symmetries of subatomic quarks. Larger groups, like
E8, may someday hold the key to a unified theory of physics and help
scientists understand string theory and gravity.

Fokko du Cloux, a Dutch mathematician and computer scientist who was
one of the E8 team members, wrote the software for the supercomputer and
pondered the ramifications of E8 while he was dying of amyotrophic lateral
sclerosis and breathing with a respirator. He died in November 2006, never
living to see the end of the quest for E8.



On January 8, 2007, a supercomputer computed the last entry in the table
for E8, which describes the symmetries of a 57-dimensional object that can
be imagined as rotating in 248 ways without changing its appearance. The
work is significant as an advance in mathematical knowledge and in the use
of large-scale computing to solve profound mathematical problems.

SEE ALSO Platonic Solids (c. 350 B.C.), Group Theory (1832), Wall Paper Groups (1891), Monster
Group (1981), and Mathematical Universe Hypothesis (2007).



Graph of E8. For more than a century, mathematicians have sought to
understand this vast, 248-dimensional entity. In 2007, a supercomputer
computed the last entry in the table for E8, which describes the symmetries of a
57-dimensional object.



Mathematical Universe Hypothesis
2007

Max Tegmark (b. 1967)

In this book, we have encountered various geometries that have been
thought to hold the keys to the universe. Johannes Kepler modeled the solar
system with Platonic Solids such as the dodecahedron. Large Lie groups,
like E8, may someday help us create a unified theory of physics. Even
Galileo in the seventeenth century suggested that “nature’s great book is
written in mathematical symbols.” In the 1960s, physicist Eugene Wigner
was impressed with the “unreasonable effectiveness of mathematics in the
natural sciences.”

In 2007, Swedish-American cosmologist Max Tegmark published
scientific and popular articles on the Mathematical Universe Hypothesis
(MUH) that states that our physical reality is a mathematical structure and
that our universe is not just described by mathematics—it is mathematics.
Tegmark is a professor of physics at the Massachusetts Institute of
Technology and scientific director of the Foundational Questions Institute.
He notes that when we consider equations like 1 + 1 = 2, the notations for
the numbers are relatively unimportant when compared to the relationships
that are being described. He believes that “we don’t invent mathematical
structures—we discover them, and invent only the notation for describing
them.”

Tegmark’s hypothesis implies that “we all live in a gigantic mathematical
object—one that is more elaborate than a dodecahedron, and probably also
more complex than objects with intimidating names like Calabi-Yau
manifolds, tensor bundles, and Hilbert spaces, which appear in today’s most
advanced theories. Everything in our world is purely mathematical—
including you.” If this idea seems counterintuitive, this shouldn’t be
surprising, because many modern theories, like quantum theory and
relativity, can defy intuition. As mathematician Ronald Graham once said,
“Our brains have evolved to get us out of the rain, find where the berries
are, and keep us from getting killed. Our brains did not evolve to help us



grasp really large numbers or to look at things in a hundred thousand
dimensions.”

SEE ALSO Cellular Automata (1952) and The Quest for Lie Group E8 (2007).



According to the Mathematical Universe Hypothesis, our physical reality is a
mathematical structure. Our universe is not just described by mathematics—it is
mathematics.



Notes and Further Reading
I’ve compiled the following list that identifies some of the material I used to
research and write this book. As many readers are aware, Internet Web sites
come and go. Sometimes they change addresses or completely disappear.
The Web site addresses listed here provided valuable background
information when this book was written.

If I have overlooked an interesting or pivotal moment in mathematics that
you feel has never been fully appreciated, please let me know about it. Just
visit my web site pickover.com, and send me an e-mail explaining the idea
and how you feel it influenced the mathematical world. Perhaps future
editions of the book will include mathematical marvels such as the
Gömböc, the Suàn Shù Shu, the Frobenius postage stamp problem,
tangrams, and additional ideas of Sophie Germain.

Due to space constraints, many references were removed from the printed
edition of this book. However, additional references and notes, as well as
fuller citations, can be found at pickover.com/mathbook.html.
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Simon & Schuster, NY; TMP: Thunder’s Mouth Press, NY; UBM: The
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