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Foreword

We	 finally	 met	 across	 a	 room,	 not	 crowded,	 but	 large	 enough	 to	 hold	 the
entire	 Mathematics	 Department	 at	 Princeton	 on	 their	 occasions	 of	 great
celebration.	On	that	particular	afternoon,	there	were	not	so	very	many	people
around,	 but	 enough	 for	 me	 to	 be	 uncertain	 as	 to	 which	 one	 was	 Andrew
Wiles.	After	a	few	moments	I	picked	out	a	shy-looking	man,	listening	to	the
conversation	around	him,	sipping	tea,	and	indulging	in	the	ritual	gathering	of
minds	that	mathematicians	the	world	over	engage	in	at	around	four	o’clock	in
the	afternoon.	He	simply	guessed	who	I	was.
It	 was	 the	 end	 of	 an	 extraordinary	 week.	 I	 had	 met	 some	 of	 the	 finest

mathematicians	 alive,	 and	 begun	 to	 gain	 an	 insight	 into	 their	 world.	 But
despite	 every	 attempt	 to	 pin	 down	Andrew	Wiles,	 to	 speak	 to	 him,	 and	 to
convince	 him	 to	 take	 part	 in	 a	 BBC	 Horizon	 documentary	 film	 on	 his
achievement,	this	was	our	first	meeting.	This	was	the	man	who	had	recently
announced	 that	 he	 had	 found	 the	 holy	 grail	 of	 mathematics;	 the	 man	 who
claimed	 he	 had	 proved	 Fermat’s	 Last	 Theorem.	As	we	 spoke,	Wiles	 had	 a
distracted	 and	 withdrawn	 air	 about	 him,	 and	 although	 he	 was	 polite	 and
friendly,	it	was	clear	that	he	wished	me	as	far	away	from	him	as	possible.	He
explained	 very	 simply	 that	 he	 could	 not	 possibly	 focus	 on	 anything	 but	 his
work,	 which	 was	 at	 a	 critical	 stage,	 but	 perhaps	 later,	 when	 the	 current
pressures	had	been	resolved,	he	would	be	pleased	to	take	part.	I	knew,	and	he
knew	I	knew,	that	he	was	facing	the	collapse	of	his	 life’s	ambition,	and	that
the	holy	grail	he	had	held	was	now	being	revealed	as	no	more	than	a	rather
beautiful,	valuable,	but	straightforward	drinking	vessel.	He	had	found	a	flaw
in	his	heralded	proof.
The	 story	 of	 Fermat’s	 Last	 Theorem	 is	 unique.	 By	 the	 time	 I	 first	 met

Andrew	Wiles,	I	had	come	to	realise	that	it	is	truly	one	of	the	greatest	stories
in	the	sphere	of	scientific	or	academic	endeavour.	I	had	seen	the	headlines	in
the	 summer	 of	 1993,	 when	 the	 proof	 had	 put	 maths	 on	 the	 front	 pages	 of
national	 newspapers	 around	 the	 world.	 At	 that	 time	 I	 had	 only	 a	 vague
recollection	 of	 what	 the	 Last	 Theorem	 was,	 but	 saw	 that	 it	 was	 obviously
something	very	special,	and	something	that	had	the	smell	of	a	Horizon	film	to
it.	 I	 spent	 the	 next	 weeks	 talking	 to	 many	 mathematicians:	 those	 closely
involved	 in	 the	 story,	or	 close	 to	Andrew,	and	 those	who	 simply	 shared	 the
thrill	of	witnessing	a	great	moment	in	their	field.	All	generously	shared	their



insights	into	mathematical	history,	and	patiently	talked	me	through	what	little
understanding	 I	 could	 achieve	 of	 the	 concepts	 involved.	 Rapidly	 it	 became
clear	that	this	was	subject	matter	that	perhaps	only	half	a	dozen	people	in	the
world	could	fully	grasp.	For	a	while	I	wondered	if	I	was	insane	to	attempt	to
make	a	film.	But	from	those	mathematicians	I	also	learned	of	the	rich	history,
and	 the	 deeper	 significance	 of	 Fermat	 to	mathematics	 and	 its	 practitioners,
and	that,	I	realized,	was	where	the	real	story	lay.
I	 learned	 of	 the	 ancient	Greek	 origins	 of	 the	 problem,	 and	 that	 Fermat’s

Last	Theorem	was	the	Himalayan	peak	of	number	theory.	I	was	introduced	to
the	aesthetic	beauty	of	maths,	and	I	began	to	appreciate	what	it	is	to	describe
mathematics	 as	 the	 language	 of	 nature.	 Through	 Wiles’s	 contemporaries	 I
grasped	 the	 herculean	 nature	 of	 his	 work	 in	 pulling	 together	 all	 the	 most
recent	techniques	of	number	theory	to	apply	to	his	proof.	From	his	friends	in
Princeton	I	heard	of	the	intricate	progress	of	Andrew’s	years	of	isolated	study.
I	built	up	an	extraordinary	picture	around	Andrew	Wiles,	and	the	puzzle	that
dominated	his	life,	but	I	seemed	destined	never	to	meet	the	man	himself.
Although	the	maths	involved	in	Wiles’s	proof	is	some	of	the	toughest	in	the

world,	I	found	that	the	beauty	of	Fermat’s	Last	Theorem	lies	in	the	fact	that
the	 problem	 itself	 is	 supremely	 simple	 to	 understand.	 It	 is	 a	 puzzle	 that	 is
stated	in	terms	familiar	to	every	schoolchild.	Pierre	de	Fermat	was	a	man	in
the	Renaissance	tradition,	who	was	at	the	centre	of	the	rediscovery	of	ancient
Greek	 knowledge,	 but	 he	 asked	 a	 question	 that	 the	Greeks	would	 not	 have
thought	to	ask,	and	in	so	doing	produced	what	became	the	hardest	problem	on
earth	for	others	to	solve.	Tantalisingly,	he	left	a	note	for	posterity	suggesting
that	 he	 had	 an	 answer,	 but	 not	what	 it	was.	 That	was	 the	 beginning	 of	 the
chase	that	lasted	three	centuries.
That	 time-span	 underlies	 the	 significance	 of	 this	 puzzle.	 It	 is	 hard	 to

conceive	of	any	problem,	in	any	discipline	of	science,	so	simply	and	clearly
stated	that	could	have	withstood	the	test	of	advancing	knowledge	for	so	long.
Consider	the	leaps	in	understanding	in	physics,	chemistry,	biology,	medicine
and	 engineering	 that	 have	 occurred	 since	 the	 seventeenth	 century.	We	 have
progressed	 from	‘humours’	 in	medicine	 to	gene-splicing,	we	have	 identified
the	fundamental	atomic	particles,	and	we	have	placed	men	on	the	moon,	but
in	number	theory	Fermat’s	Last	Theorem	remained	inviolate.
For	some	time	in	my	research	I	looked	for	a	reason	why	the	Last	Theorem

mattered	 to	 anyone	but	 a	mathematician,	 and	why	 it	would	be	 important	 to
make	a	programme	about	it.	Maths	has	a	multitude	of	practical	applications,
but	 in	 the	 case	 of	 number	 theory	 the	most	 exciting	 uses	 that	 I	was	 offered
were	 in	 cryptography,	 in	 the	 design	 of	 acoustic	 baffling,	 and	 in
communication	from	distant	spacecraft.	None	of	these	seemed	likely	to	draw



in	 an	 audience.	 What	 was	 far	 more	 compelling	 were	 the	 mathematicians
themselves,	and	the	sense	of	passion	that	 they	all	expressed	when	talking	of
Fermat.
Maths	 is	 one	 of	 the	 purest	 forms	 of	 thought,	 and	 to	 outsiders

mathematicians	may	seem	almost	other-worldly.	The	thing	that	struck	me	in
all	 my	 discussions	 with	 them	 was	 the	 extraordinary	 precision	 of	 their
conversation.	 A	 question	 was	 rarely	 answered	 immediately,	 I	 would	 often
have	 to	 wait	 while	 the	 precise	 structure	 of	 the	 answer	 was	 resolved	 in	 the
mind,	 but	 it	 would	 then	 emerge,	 as	 articulate	 and	 careful	 a	 statement	 as	 I
could	have	wished	for.	When	I	tackled	Andrew’s	friend	Peter	Sarnak	on	this,
he	explained	 that	mathematicians	 simply	hate	 to	make	a	 false	 statement.	Of
course	 they	 use	 intuition	 and	 inspiration,	 but	 formal	 statements	 have	 to	 be
absolute.	 Proof	 is	what	 lies	 at	 the	 heart	 of	maths,	 and	 is	what	marks	 it	 out
from	 other	 sciences.	Other	 sciences	 have	 hypotheses	 that	 are	 tested	 against
experimental	evidence	until	 they	fail,	and	are	overtaken	by	new	hypotheses.
In	 maths,	 absolute	 proof	 is	 the	 goal,	 and	 once	 something	 is	 proved,	 it	 is
proved	 forever,	 with	 no	 room	 for	 change.	 In	 the	 Last	 Theorem,
mathematicians	 had	 their	 greatest	 challenge	 of	 proof,	 and	 the	 person	 who
found	the	answer	would	receive	the	adulation	of	the	entire	discipline.
Prizes	were	 offered,	 and	 rivalry	 flourished.	The	Last	Theorem	has	 a	 rich

history	 that	 touches	 death	 and	 deception,	 and	 it	 has	 even	 spurred	 on	 the
development	of	maths.	As	the	Harvard	mathematician	Barry	Mazur	has	put	it,
Fermat	added	a	certain	‘animus’	to	those	areas	of	maths	that	were	associated
with	early	attempts	at	the	proof.	Ironically,	it	turned	out	that	just	such	an	area
of	maths	was	central	to	Wiles’s	final	proof.
Gradually	picking	up	an	understanding	of	 this	unfamiliar	 field,	 I	 came	 to

appreciate	 Fermat’s	Last	 Theorem	 as	 central	 to,	 and	 even	 a	 parallel	 for	 the
development	of	maths	itself.	Fermat	was	the	father	of	modern	number	theory,
and	since	his	time	mathematics	had	evolved,	progressed	and	diversified	into
many	arcane	areas,	where	new	techniques	had	spawned	new	areas	of	maths,
and	become	ends	 in	 themselves.	As	 the	 centuries	passed,	 the	Last	Theorem
came	 to	 seem	 less	 and	 less	 relevant	 to	 the	 cutting	 edge	 of	 mathematical
research,	and	more	and	more	turned	into	a	curiosity.	But	it	is	now	clear	that	its
centrality	to	maths	never	diminished.
Problems	 around	 numbers,	 such	 as	 the	 one	 Fermat	 posed,	 are	 like

playground	 puzzles,	 and	 mathematicians	 like	 solving	 puzzles.	 To	 Andrew
Wiles	it	was	a	very	special	puzzle,	and	nothing	less	than	his	 life’s	ambition.
Thirty	 years	 before,	 as	 a	 child,	 he	 had	 been	 inspired	 by	 Fermat’s	 Last
Theorem,	having	stumbled	upon	it	in	a	public	library	book.	His	childhood	and
adulthood	dream	was	to	solve	the	problem,	and	when	he	first	revealed	a	proof



in	that	summer	of	1993,	it	came	at	the	end	of	seven	years	of	dedicated	work
on	the	problem,	a	degree	of	focus	and	determination	that	is	hard	to	imagine.
Many	of	the	techniques	he	used	had	not	been	created	when	he	began.	He	also
drew	 together	 the	 work	 of	 many	 fine	 mathematicians,	 linking	 ideas	 and
creating	concepts	that	others	had	feared	to	attempt.	In	a	sense,	reflected	Barry
Mazur,	 it	 turned	 out	 that	 everyone	 had	 been	 working	 on	 Fermat,	 but
separately	and	without	having	it	as	a	goal,	for	the	proof	had	required	all	 the
power	of	modern	maths	to	be	brought	to	bear	upon	its	solution.	What	Andrew
had	done	was	tie	together	once	again	areas	of	maths	that	had	seemed	far	apart.
His	work	therefore	seemed	to	be	a	justification	of	all	the	diversification	that
maths	had	undergone	since	the	problem	had	been	stated.
At	the	heart	of	his	proof	of	Fermat,	Andrew	had	proved	an	idea	known	as

the	 Taniyama-Shimura	 Conjecture,	 which	 created	 a	 new	 bridge	 between
wildly	 different	 mathematical	 worlds.	 For	 many,	 the	 goal	 of	 one	 unified
mathematics	 is	 supreme,	and	 this	was	a	glimpse	of	 just	 such	a	world.	So	 in
proving	 Fermat,	 Andrew	Wiles	 had	 cemented	 some	 of	 the	 most	 important
number	theory	of	the	post-war	period,	and	had	secured	the	base	of	a	pyramid
of	conjectures	that	were	built	upon	it.	This	was	no	longer	simply	solving	the
longest-standing	mathematical	puzzle,	but	was	pushing	the	very	boundaries	of
mathematics	itself.	It	was	as	if	Fermat’s	simple	problem,	born	at	a	time	when
maths	was	in	its	infancy,	had	been	waiting	for	this	moment.
The	story	of	Fermat	had	ended	in	the	most	spectacular	fashion.	For	Andrew

Wiles,	 it	 meant	 the	 end	 of	 professional	 isolation	 of	 a	 kind	 almost	 alien	 to
maths,	 which	 is	 usually	 a	 collaborative	 activity.	 Ritual	 afternoon	 tea	 in
mathematics	institutes	the	world	over	is	a	time	when	ideas	come	together,	and
sharing	 insight	 before	 publication	 is	 the	 norm.	Ken	Ribet,	 a	mathematician
who	was	himself	central	to	the	proof,	only	half	jokingly	suggested	to	me	that
it	 is	 the	 insecurity	 of	 mathematicians	 that	 requires	 the	 support	 structure	 of
their	colleagues.	Andrew	Wiles	had	eschewed	all	 that,	and	kept	his	work	 to
himself	in	all	but	the	final	stages.	That	too	was	a	measure	of	the	importance
of	 Fermat.	 He	 had	 a	 real	 driving	 passion	 to	 be	 the	 one	 who	 solved	 this
problem,	a	passion	strong	enough	to	devote	seven	years	of	his	life	and	keep
his	goal	 to	himself.	He	had	known	 that	however	 irrelevant	 the	problem	had
seemed,	competition	for	Fermat	had	never	lessened,	and	he	could	never	have
risked	revealing	what	he	was	doing.
After	 weeks	 of	 researching	 the	 field,	 I	 had	 arrived	 in	 Princeton.	 For

mathematicians,	 the	 level	 of	 emotion	 was	 intense.	 I	 had	 found	 a	 story	 of
competition,	 success,	 isolation,	 genius,	 triumph,	 jealousy,	 intense	 pressure,
loss	 and	 even	 tragedy.	 At	 the	 heart	 of	 that	 crucial	 Taniyama-Shimura
Conjecture	 lay	 the	 tragic	post-war	 life	 in	 Japan	of	Yutaka	Taniyama,	whose



story	 I	 was	 privileged	 to	 hear	 from	 his	 close	 friend	 Goro	 Shimura.	 From
Shimura	 too	 I	 learned	 of	 the	 notion	 of	 ‘goodness’	 in	 maths,	 where	 things
simply	 feel	 right,	 because	 they	 are	 good.	 Somehow,	 the	 sense	 of	 goodness
pervaded	 the	atmosphere	of	mathematics	 that	summer.	All	were	revelling	 in
the	glorious	moment.
With	 all	 this	 in	 train,	 small	 wonder	 at	 the	 weight	 of	 responsibility	 that

Andrew	felt	as	the	flaw	had	gradually	emerged	over	the	autumn	of	1993.	With
the	eyes	of	the	world	upon	him,	and	his	colleagues	calling	to	have	the	proof
made	 public,	 somehow,	 and	 only	 he	 knows	 how,	 he	 didn’t	 crack.	 He	 had
moved	from	doing	maths	in	privacy	and	at	his	own	pace	to	suddenly	working
in	public.	Andrew	 is	an	 intensely	private	man,	who	 fought	hard	 to	keep	his
family	 sheltered	 from	 the	 storm	 that	was	 breaking	 around	him.	Throughout
that	week	while	I	was	in	Princeton,	I	called,	I	 left	notes	at	his	office,	on	his
doorstep,	 and	 with	 his	 friends;	 I	 even	 provided	 a	 gift	 of	 English	 tea	 and
Marmite.	But	he	resisted	my	overtures,	until	that	chance	meeting	on	the	day
of	my	departure.	A	quiet,	intense	conversation	followed,	that	in	the	end	lasted
barely	fifteen	minutes.
When	we	parted	that	afternoon	there	was	an	understanding	between	us.	If

he	managed	to	repair	the	proof,	then	he	would	come	to	me	to	discuss	a	film;	I
was	prepared	to	wait.	But	as	I	 flew	home	to	London	that	night	 it	seemed	to
me	that	the	television	programme	was	dead.	No	one	had	ever	repaired	a	hole
in	 the	 many	 attempted	 proofs	 of	 Fermat	 in	 three	 centuries.	 History	 was
littered	 with	 false	 claims,	 and	 much	 as	 I	 wished	 that	 he	 would	 be	 the
exception,	it	was	hard	to	imagine	Andrew	as	anything	but	another	headstone
in	that	mathematical	graveyard.
A	year	later	I	received	the	call.	After	an	extraordinary	mathematical	twist,

and	a	flash	of	true	insight	and	inspiration,	Andrew	had	finally	brought	an	end
to	Fermat	in	his	professional	life.	A	year	after	that,	we	found	the	time	for	him
to	 devote	 to	 filming.	By	 this	 time	 I	 had	 invited	Simon	Singh	 to	 join	me	 in
making	the	film,	and	together	we	spent	time	with	Andrew,	learning	from	the
man	himself	the	full	story	of	those	seven	years	of	isolated	study,	and	his	year
of	hell	 that	 followed.	As	we	 filmed,	Andrew	 told	us,	 as	he	had	 told	no	one
before,	of	his	innermost	feelings	about	what	he	had	done;	how	for	thirty	years
he	had	hung	on	to	a	childhood	dream;	how	so	much	of	the	maths	he	had	ever
studied	had	been,	without	his	really	knowing	it	at	the	time,	really	a	gathering
of	tools	for	the	Fermat	challenge	that	had	dominated	his	career;	how	nothing
would	ever	be	 the	same;	of	his	 sense	of	 loss	 for	 the	problem	 that	would	no
longer	be	his	constant	companion;	and	of	the	uplifting	sense	of	release	that	he
now	 felt.	 For	 a	 field	 in	 which	 the	 subject	 matter	 is	 technically	 about	 as
difficult	 for	 a	 lay	 audience	 to	 understand	 as	 can	 be	 imagined,	 the	 level	 of



emotional	 charge	 in	 our	 conversations	 was	 greater	 than	 any	 I	 have
experienced	in	a	career	in	science	film	making.	For	Andrew	it	was	the	end	of
a	chapter	in	his	life.	For	me	it	was	a	privilege	to	be	close	to	it.
The	 film	 was	 transmitted	 on	 BBC	 Television	 as	Horizon:	 Fermat’s	 Last

Theorem.	 Simon	 Singh	 has	 now	 developed	 those	 insights	 and	 intimate
conversations,	 together	 with	 the	 full	 richness	 of	 the	 Fermat	 story	 and	 the
history	 and	 mathematics	 that	 have	 always	 hung	 around	 it,	 into	 this	 book,
which	is	a	complete	and	enlightening	record	of	one	of	the	greatest	stories	in
human	thinking.

John	Lynch
Editor	of	BBC	TV’s	Horizon	series

March	1997



Preface

The	story	of	Fermat’s	Last	Theorem	is	inextricably	linked	with	the	history	of
mathematics,	touching	on	all	the	major	themes	of	number	theory.	It	provides	a
unique	 insight	 into	what	drives	mathematics	and,	perhaps	more	 importantly,
what	 inspires	 mathematicians.	 The	 Last	 Theorem	 is	 at	 the	 heart	 of	 an
intriguing	 saga	 of	 courage,	 skulduggery,	 cunning	 and	 tragedy,	 involving	 all
the	greatest	heroes	of	mathematics.
Fermat’s	 Last	 Theorem	 has	 its	 origins	 in	 the	 mathematics	 of	 ancient

Greece,	two	thousand	years	before	Pierre	de	Fermat	constructed	the	problem
in	the	form	we	know	it	today.	Hence,	it	links	the	foundations	of	mathematics
created	by	Pythagoras	to	the	most	sophisticated	ideas	in	modern	mathematics.
In	 writing	 this	 book	 I	 have	 chosen	 a	 largely	 chronological	 structure	 which
begins	by	describing	the	revolutionary	ethos	of	the	Pythagorean	Brotherhood,
and	ends	with	Andrew	Wiles’s	personal	story	of	his	struggle	to	find	a	solution
to	Fermat’s	conundrum.
Chapter	 1	 tells	 the	 story	 of	 Pythagoras,	 and	 describes	 how	 Pythagoras’

theorem	 is	 the	 direct	 ancestor	 of	 the	 Last	 Theorem.	 This	 chapter	 also
discusses	some	of	the	fundamental	concepts	of	mathematics	which	will	recur
throughout	 the	 book.	 Chapter	 2	 takes	 the	 story	 from	 ancient	 Greece	 to
seventeenth-century	 France,	 where	 Pierre	 de	 Fermat	 created	 the	 most
profound	 riddle	 in	 the	 history	 of	mathematics.	 To	 convey	 the	 extraordinary
character	 of	 Fermat	 and	 his	 contribution	 to	 mathematics,	 which	 goes	 far
beyond	the	Last	Theorem,	I	have	spent	several	pages	describing	his	life,	and
some	of	his	other	brilliant	discoveries.
Chapters	 3	 and	 4	 describe	 some	 of	 the	 attempts	 to	 prove	 Fermat’s	 Last

Theorem	 during	 the	 eighteenth,	 nineteenth	 and	 early	 twentieth	 centuries.
Although	 these	 efforts	 ended	 in	 failure	 they	 led	 to	 a	marvellous	 arsenal	 of
mathematical	 techniques	and	tools,	some	of	which	have	been	integral	 to	 the
very	latest	attempts	to	prove	the	Last	Theorem.	In	addition	to	describing	the
mathematics	 I	 have	 devoted	 much	 of	 these	 chapters	 to	 the	 mathematicians
who	 became	 obsessed	 by	 Fermat’s	 legacy.	 Their	 stories	 show	 how
mathematicians	were	prepared	to	sacrifice	everything	in	the	search	for	truth,
and	how	mathematics	has	evolved	through	the	centuries.
The	remaining	chapters	of	the	book	chronicle	the	remarkable	events	of	the

last	 forty	 years	 which	 have	 revolutionised	 the	 study	 of	 Fermat’s	 Last



Theorem.	In	particular	Chapters	6	and	7	focus	on	the	work	of	Andrew	Wiles,
whose	 breakthroughs	 in	 the	 last	 decade	 astonished	 the	 mathematical
community.	 These	 later	 chapters	 are	 based	 on	 extensive	 interviews	 with
Wiles.	This	was	a	unique	opportunity	for	me	to	hear	at	first	hand	one	of	the
most	extraordinary	 intellectual	 journeys	of	 the	 twentieth	century	and	 I	hope
that	I	have	been	able	to	convey	the	creativity	and	heroism	that	was	required
during	Wiles’s	ten-year	ordeal.
In	telling	the	tale	of	Pierre	de	Fermat	and	his	baffling	riddle	I	have	tried	to

describe	 the	 mathematical	 concepts	 without	 resorting	 to	 equations,	 but
inevitably	x,	y	and	z	do	occasionally	rear	their	ugly	heads.	When	equations	do
appear	 in	 the	text	I	have	endeavoured	to	provide	sufficient	explanation	such
that	 even	 readers	 with	 no	 background	 in	 mathematics	 will	 be	 able	 to
understand	 their	 significance.	 For	 those	 readers	 with	 a	 slightly	 deeper
knowledge	 of	 the	 subject	 I	 have	 provided	 a	 series	 of	 appendices	 which
expand	on	 the	mathematical	 ideas	 contained	 in	 the	main	 text.	 In	 addition	 I
have	included	a	list	of	further	reading,	which	is	generally	aimed	at	providing
the	layperson	with	more	detail	about	particular	areas	of	mathematics.
This	book	would	not	have	been	possible	without	the	help	and	involvement

of	many	people.	In	particular	I	would	like	to	thank	Andrew	Wiles,	who	went
out	of	his	way	to	give	 long	and	detailed	 interviews	during	a	 time	of	 intense
pressure.	 During	 my	 seven	 years	 as	 a	 science	 journalist	 I	 have	 never	 met
anybody	with	a	greater	level	of	passion	and	commitment	to	their	subject,	and
I	 am	eternally	 grateful	 that	Professor	Wiles	was	prepared	 to	 share	 his	 story
with	me.
I	would	also	like	to	thank	the	other	mathematicians	who	helped	me	in	the

writing	of	this	book	and	who	allowed	me	to	interview	them	at	length.	Some	of
them	 have	 been	 deeply	 involved	 in	 tackling	 Fermat’s	 Last	 Theorem,	 while
others	were	witnesses	to	the	historic	events	of	the	last	forty	years.	The	hours	I
spent	 quizzing	 and	 chatting	 with	 them	 were	 enormously	 enjoyable	 and	 I
appreciate	 their	 patience	 and	 enthusiam	while	 explaining	 so	many	beautiful
mathematical	concepts	to	me.	In	particular	I	would	like	to	thank	John	Coates,
John	 Conway,	 Nick	 Katz,	 Barry	 Mazur,	 Ken	 Ribet,	 Peter	 Sarnak,	 Goro
Shimura	and	Richard	Taylor.
I	have	tried	to	illustrate	this	book	with	as	many	portraits	as	possible	to	give
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‘I	Think	I’ll	Stop	Here’

Archimedes	 will	 be	 remembered	 when	 Aeschylus	 is	 forgotten,	 because	 languages	 die	 and
mathematical	 ideas	do	not.	 ‘Immortality’	may	be	a	silly	word,	but	probably	a	mathematician	has
the	best	chance	of	whatever	it	may	mean.

G.H.	Hardy

23	June	1993,	Cambridge

It	was	 the	most	 important	mathematics	 lecture	of	 the	 century.	Two	hundred
mathematicians	were	transfixed.	Only	a	quarter	of	them	fully	understood	the
dense	mixture	of	Greek	symbols	and	algebra	that	covered	the	blackboard.	The
rest	were	 there	merely	 to	witness	what	 they	hoped	would	be	a	 truly	historic
occasion.
The	rumours	had	started	the	previous	day.	Electronic	mail	over	the	Internet

had	 hinted	 that	 the	 lecture	 would	 culminate	 in	 a	 solution	 to	 Fermat’s	 Last
Theorem,	 the	world’s	most	 famous	mathematical	problem.	Such	gossip	was
not	uncommon.	The	subject	of	Fermat’s	Last	Theorem	would	often	crop	up
over	tea,	and	mathematicians	would	speculate	as	to	who	might	be	doing	what.
Sometimes	mathematical	mutterings	in	the	senior	common	room	would	turn
the	 speculation	 into	 rumours	 of	 a	 breakthrough,	 but	 nothing	 had	 ever
materialised.
This	 time	 the	rumour	was	different.	One	Cambridge	research	student	was

so	 convinced	 that	 it	was	 true	 that	 he	 dashed	 to	 the	 bookies	 to	 bet	 £10	 that
Fermat’s	 Last	 Theorem	 would	 be	 solved	 within	 the	 week.	 However,	 the
bookie	smelt	a	rat	and	refused	to	accept	his	wager.	This	was	the	fifth	student
to	have	approached	him	that	day,	all	of	them	asking	to	place	the	identical	bet.
Fermat’s	Last	Theorem	had	baffled	the	greatest	minds	on	the	planet	for	over
three	centuries,	but	now	even	bookmakers	were	beginning	 to	 suspect	 that	 it
was	on	the	verge	of	being	proved.
The	 three	 blackboards	 became	 filled	 with	 calculations	 and	 the	 lecturer

paused.	The	 first	 board	was	 erased	 and	 the	 algebra	 continued.	Each	 line	 of
mathematics	 appeared	 to	 be	 one	 tiny	 step	 closer	 to	 the	 solution,	 but	 after



thirty	minutes	 the	 lecturer	had	still	not	announced	 the	proof.	The	professors
crammed	into	the	front	rows	waited	eagerly	for	the	conclusion.	The	students
standing	at	 the	back	 looked	to	 their	seniors	for	hints	of	what	 the	conclusion
might	be.	Were	they	watching	a	complete	proof	to	Fermat’s	Last	Theorem,	or
was	the	lecturer	merely	outlining	an	incomplete	and	anticlimactic	argument?
The	lecturer	was	Andrew	Wiles,	a	reserved	Englishman	who	had	emigrated

to	America	in	the	1980s	and	taken	up	a	professorship	at	Princeton	University
where	he	had	earned	a	reputation	as	one	of	the	most	talented	mathematicians
of	his	generation.	However,	in	recent	years	he	had	almost	vanished	from	the
annual	 round	 of	 conferences	 and	 seminars,	 and	 colleagues	 had	 begun	 to
assume	that	Wiles	was	finished.	It	is	not	unusual	for	brilliant	young	minds	to
burn	 out,	 a	 point	 noted	 by	 the	 mathematician	 Alfred	 Adler:	 ‘The
mathematical	life	of	a	mathematician	is	short.	Work	rarely	improves	after	the
age	of	twenty-five	or	thirty.	If	little	has	been	accomplished	by	then,	little	will
ever	be	accomplished.’
‘Young	men	should	prove	theorems,	old	men	should	write	books,’	observed

G.H.	 Hardy	 in	 his	 book	 A	 Mathematician’s	 Apology.	 ‘No	 mathematician
should	ever	forget	that	mathematics,	more	than	any	other	art	or	science,	is	a
young	man’s	game.	To	take	a	simple	illustration,	the	average	age	of	election
to	the	Royal	Society	is	lowest	in	mathematics.’	His	own	most	brilliant	student
Srinivasa	Ramanujan	was	elected	a	Fellow	of	the	Royal	Society	at	the	age	of
just	thirty-one,	having	made	a	series	of	outstanding	breakthroughs	during	his
youth.	 Despite	 having	 received	 very	 little	 formal	 education	 in	 his	 home
village	 of	 Kumbakonam	 in	 South	 India,	 Ramanujan	 was	 able	 to	 create
theorems	 and	 solutions	 which	 had	 evaded	 mathematicians	 in	 the	 West.	 In
mathematics	the	experience	that	comes	with	age	seems	less	important	than	the
intuition	 and	 daring	 of	 youth.	 When	 he	 posted	 his	 results	 to	 Hardy,	 the
Cambridge	professor	was	so	impressed	that	he	invited	him	to	abandon	his	job
as	 a	 lowly	 clerk	 in	 South	 India	 and	 attend	Trinity	College,	where	 he	 could
interact	with	some	of	the	world’s	foremost	number	theorists.	Sadly	the	harsh
East	 Anglian	 winters	 were	 too	 much	 for	 Ramanujan	 who	 contracted
tuberculosis	and	died	at	the	age	of	thirty-three.
Other	 mathematicians	 have	 had	 equally	 brilliant	 but	 short	 careers.	 The

nineteenth-century	 Norwegian	 Niels	 Henrik	 Abel	 made	 his	 greatest
contribution	 to	mathematics	 at	 the	 age	of	nineteen	 and	died	 in	poverty,	 just
eight	years	 later,	 also	of	 tuberculosis.	Charles	Hermite	 said	of	him,	 ‘He	has
left	mathematicians	something	to	keep	them	busy	for	five	hundred	years’,	and
it	 is	certainly	 true	 that	Abel’s	discoveries	still	have	a	profound	 influence	on
today’s	number	theorists.	Abel’s	equally	gifted	contemporary	Evariste	Galois
also	made	 his	 breakthroughs	while	 still	 a	 teenager	 and	 then	 died	 aged	 just



twenty-one.
These	 examples	 are	 not	 intended	 to	 show	 that	 mathematicians	 die

prematurely	 and	 tragically	 but	 rather	 that	 their	 most	 profound	 ideas	 are
generally	conceived	while	they	are	young,	and	as	Hardy	once	said,	‘I	do	not
know	an	 instance	 of	 a	major	mathematical	 advance	 initiated	 by	 a	man	past
fifty.’	 Middle-aged	 mathematicians	 often	 fade	 into	 the	 background	 and
occupy	 their	 remaining	 years	 teaching	 or	 administrating	 rather	 than
researching.	 In	 the	case	of	Andrew	Wiles	nothing	could	be	 further	 from	the
truth.	Although	he	had	reached	the	grand	old	age	of	forty	he	had	spent	the	last
seven	 years	 working	 in	 complete	 secrecy,	 attempting	 to	 solve	 the	 single
greatest	 problem	 in	 mathematics.	 While	 others	 suspected	 he	 had	 dried	 up,
Wiles	 was	 making	 fantastic	 progress,	 inventing	 new	 techniques	 and	 tools
which	he	was	now	ready	to	reveal.	His	decision	to	work	in	absolute	isolation
was	 a	 high-risk	 strategy	 and	 one	 which	 was	 unheard	 of	 in	 the	 world	 of
mathematics.
Without	inventions	to	patent,	the	mathematics	department	of	any	university

is	 the	least	secretive	of	all.	The	community	prides	itself	 in	an	open	and	free
exchange	of	ideas	and	tea-time	breaks	have	evolved	into	daily	rituals	during
which	 concepts	 are	 shared	 and	 explored	 over	 biscuits	 and	 Earl	 Grey.	 As	 a
result	it	is	increasingly	common	to	find	papers	being	published	by	co-authors
or	teams	of	mathematicians	and	consequently	the	glory	is	shared	out	equally.
However,	 if	 Professor	 Wiles	 had	 genuinely	 discovered	 a	 complete	 and
accurate	 proof	 of	 Fermat’s	 Last	 Theorem,	 then	 the	 most	 wanted	 prize	 in
mathematics	was	his	and	his	alone.	The	price	he	had	 to	pay	 for	his	 secrecy
was	 that	he	had	not	previously	discussed	or	 tested	any	of	his	 ideas	with	 the
mathematics	community	and	therefore	there	was	a	significant	chance	that	he
had	made	some	fundamental	error.
Ideally	Wiles	had	wanted	to	spend	more	time	going	over	his	work	to	allow

him	to	check	fully	his	final	manuscript.	Then	the	unique	opportunity	arose	to
announce	 his	 discovery	 at	 the	 Isaac	Newton	 Institute	 in	 Cambridge	 and	 he
abandoned	 caution.	 The	 sole	 aim	 of	 the	 institute’s	 existence	 is	 to	 bring
together	 the	 world’s	 greatest	 intellects	 for	 a	 few	 weeks	 in	 order	 to	 hold
seminars	 on	 a	 cutting-edge	 research	 topic	 of	 their	 choice.	 Situated	 on	 the
outskirts	 of	 the	 university,	 away	 from	 students	 and	 other	 distractions,	 the
building	is	especially	designed	to	encourage	the	academics	to	concentrate	on
collaboration	and	brainstorming.	There	are	no	dead-end	corridors	in	which	to
hide	and	every	office	faces	a	central	forum.	The	mathematicians	are	supposed
to	spend	time	in	this	open	area,	and	are	discouraged	from	keeping	their	office
doors	 closed.	 Collaboration	 while	 moving	 around	 the	 institute	 is	 also
encouraged	 –	 even	 the	 elevator,	 which	 only	 travels	 three	 floors,	 contains	 a



blackboard.	 In	 fact	 every	 room	 in	 the	 building	 has	 at	 least	 one	 blackboard,
including	 the	 bathrooms.	 On	 this	 occasion	 the	 seminars	 at	 the	 Newton
Institute	 came	 under	 the	 heading	 of	 ‘L-functions	 and	 Arithmetic’.	 All	 the
world’s	 top	number	 theorists	had	been	gathered	 together	 in	order	 to	discuss
problems	relating	to	this	highly	specialised	area	of	pure	mathematics,	but	only
Wiles	 realised	 that	L-functions	might	 hold	 the	key	 to	 solving	Fermat’s	Last
Theorem.
Although	 he	 had	 been	 attracted	 by	 having	 the	 opportunity	 to	 reveal	 his

work	 to	 such	 an	 eminent	 audience,	 the	 main	 reason	 for	 making	 the
announcement	 at	 the	 Newton	 Institute	 was	 that	 it	 was	 in	 his	 home	 town,
Cambridge.	This	was	where	Wiles	had	been	born,	it	was	here	he	grew	up	and
developed	 his	 passion	 for	 numbers,	 and	 it	 was	 in	 Cambridge	 that	 he	 had
alighted	on	the	problem	which	was	to	dominate	the	rest	of	his	life.

The	Last	Problem

In	1963,	when	he	was	ten	years	old,	Andrew	Wiles	was	already	fascinated	by
mathematics.	‘I	loved	doing	the	problems	in	school,	I’d	take	them	home	and
make	up	new	ones	of	my	own.	But	the	best	problem	I	ever	found	I	discovered
in	my	local	library.’
One	day,	while	wandering	home	from	school,	young	Wiles	decided	to	visit

the	 library	 in	Milton	 Road.	 It	 was	 rather	 impoverished	 compared	 with	 the
libraries	of	the	colleges,	but	nonetheless	it	had	a	generous	collection	of	puzzle
books	 and	 this	 is	what	 often	 caught	Andrew’s	 attention.	 These	 books	were
packed	with	all	sorts	of	scientific	conundrums	and	mathematical	riddles,	and
for	each	question	 the	solution	would	be	conveniently	 laid	out	somewhere	 in
the	final	few	pages.	But	this	time	Andrew	was	drawn	to	a	book	with	only	one
problem,	and	no	solution.
The	 book	 was	 The	 Last	 Problem	 by	 Eric	 Temple	 Bell,	 the	 history	 of	 a

mathematical	problem	which	has	its	roots	in	ancient	Greece,	but	which	only
reached	 full	 maturity	 in	 the	 seventeenth	 century.	 It	 was	 then	 that	 the	 great
French	mathematician	Pierre	de	Fermat	inadvertently	set	it	as	a	challenge	for
the	 rest	 of	 the	 world.	 One	 great	 mathematician	 after	 another	 had	 been
humbled	 by	 Fermat’s	 legacy	 and	 for	 three	 hundred	 years	 nobody	 had	 been
able	to	solve	it.	There	are	other	unsolved	questions	in	mathematics,	but	what
makes	 Fermat’s	 problem	 so	 special	 is	 its	 deceptive	 simplicity.	 Thirty	 years
after	 first	 reading	Bell’s	account,	Wiles	 told	me	how	he	 felt	 the	moment	he
was	introduced	to	Fermat’s	Last	Theorem:	‘It	looked	so	simple,	and	yet	all	the
great	mathematicians	in	history	couldn’t	solve	it.	Here	was	a	problem	that	I,	a



ten-year-old,	 could	 understand	 and	 I	 knew	 from	 that	 moment	 that	 I	 would
never	let	it	go.	I	had	to	solve	it.’
The	problem	looks	so	straightforward	because	it	is	based	on	the	one	piece

of	mathematics	that	everyone	can	remember	–	Pythagoras’	theorem:

In	a	right-angled	triangle	 the	square	on	the	hypotenuse	is	equal	 to	 the	sum	of	 the	squares	on	the
other	two	sides.

As	 a	 result	 of	 this	 Pythagorean	 ditty,	 the	 theorem	 has	 been	 scorched	 into
millions	 if	 not	 billions	 of	 human	 brains.	 It	 is	 the	 fundamental	 theorem	 that
every	innocent	schoolchild	is	forced	to	learn.	But	despite	the	fact	 that	 it	can
be	understood	by	a	ten-year-old,	Pythagoras’	creation	was	the	inspiration	for	a
problem	which	had	thwarted	the	greatest	mathematical	minds	of	history.
Pythagoras	 of	 Samos	was	 one	 of	 the	most	 influential	 and	 yet	mysterious

figures	 in	mathematics.	Because	 there	 are	 no	 first-hand	 accounts	 of	 his	 life
and	work,	he	is	shrouded	in	myth	and	legend,	making	it	difficult	for	historians
to	separate	fact	from	fiction.	What	seems	certain	is	that	Pythagoras	developed
the	 idea	 of	 numerical	 logic	 and	was	 responsible	 for	 the	 first	 golden	 age	 of
mathematics.	Thanks	 to	 his	 genius	 numbers	were	 no	 longer	merely	 used	 to
count	and	calculate,	but	were	appreciated	 in	 their	own	 right.	He	studied	 the
properties	 of	 particular	 numbers,	 the	 relationships	 between	 them	 and	 the
patterns	 they	 formed.	 He	 realised	 that	 numbers	 exist	 independently	 of	 the
tangible	world	and	therefore	their	study	was	untainted	by	the	inaccuracies	of
perception.	This	meant	he	 could	discover	 truths	which	were	 independent	of
opinion	 or	 prejudice	 and	 which	 were	 more	 absolute	 than	 any	 previous
knowledge.
Living	in	the	sixth	century	BC,	Pythagoras	gained	his	mathematical	skills	on

his	 travels	 throughout	 the	 ancient	world.	Some	 tales	would	 have	us	 believe
that	he	travelled	as	far	as	India	and	Britain,	but	what	is	more	certain	is	that	he
gathered	 many	 mathematical	 techniques	 and	 tools	 from	 the	 Egyptians	 and
Babylonians.	Both	these	ancient	peoples	had	gone	beyond	the	limits	of	simple
counting	and	were	capable	of	performing	complex	calculations	which	enabled
them	 to	 create	 sophisticated	 accounting	 systems	 and	 construct	 elaborate
buildings.	Indeed	they	saw	mathematics	as	merely	a	tool	for	solving	practical
problems;	 the	 motivation	 behind	 discovering	 some	 of	 the	 basic	 rules	 of
geometry	was	to	allow	reconstruction	of	field	boundaries	which	were	lost	in
the	annual	flooding	of	the	Nile.	The	word	itself,	geometry,	means	‘to	measure
the	earth’.
Pythagoras	 observed	 that	 the	 Egyptians	 and	Babylonians	 conducted	 each

calculation	 in	 the	 form	 of	 a	 recipe	 which	 could	 be	 followed	 blindly.	 The



recipes,	which	would	have	been	passed	down	through	the	generations,	always
gave	the	correct	answer	and	so	nobody	bothered	to	question	them	or	explore
the	logic	underlying	the	equations.	What	was	important	for	these	civilisations
was	that	a	calculation	worked	–	why	it	worked	was	irrelevant.
After	 twenty	 years	 of	 travel	 Pythagoras	 had	 assimilated	 all	 the

mathematical	 rules	 in	 the	 known	world.	 He	 set	 sail	 for	 his	 home	 island	 of
Samos	in	the	Aegean	Sea	with	the	intention	of	founding	a	school	devoted	to
the	 study	 of	 philosophy	 and	 in	 particular	 concerned	 with	 research	 into	 his
newly	 acquired	mathematical	 rules.	 He	wanted	 to	 understand	 numbers,	 not
merely	 exploit	 them.	 He	 hoped	 to	 find	 a	 plentiful	 supply	 of	 free-thinking
students	who	could	help	him	develop	radical	new	philosophies,	but	during	his
absence	 the	 tyrant	 Polycrates	 had	 turned	 the	 once	 liberal	 Samos	 into	 an
intolerant	and	conservative	society.	Polycrates	 invited	Pythagoras	 to	 join	his
court,	but	 the	philosopher	 realised	 that	 this	was	only	a	manoeuvre	aimed	at
silencing	 him	 and	 therefore	 declined	 the	 honour.	 Instead	 he	 left	 the	 city	 in
favour	of	a	cave	 in	a	 remote	part	of	 the	 island,	where	he	could	contemplate
without	fear	of	persecution.
Pythagoras	did	not	relish	his	isolation	and	eventually	resorted	to	bribing	a

young	boy	to	be	his	first	pupil.	The	identity	of	the	young	boy	is	uncertain	but
some	historians	have	suggested	 that	his	name	was	also	Pythagoras,	and	 that
the	student	would	 later	gain	fame	as	 the	first	person	 to	suggest	 that	athletes
should	eat	meat	 to	 improve	 their	physique.	Pythagoras,	 the	 teacher,	paid	his
student	three	oboli	for	each	lesson	he	attended	and	noticed	that	as	the	weeks
passed	 the	 boy’s	 initial	 reluctance	 to	 learn	 was	 transformed	 into	 an
enthusiasm	 for	 knowledge.	 To	 test	 his	 pupil	 Pythagoras	 pretended	 that	 he
could	no	longer	afford	to	pay	the	student	and	that	the	lessons	would	have	to
stop,	at	which	point	the	boy	offered	to	pay	for	his	education	rather	than	have
it	ended.	The	pupil	had	become	a	disciple.	Unfortunately	this	was	Pythagoras’
only	conversion	on	Samos.	He	did	 temporarily	establish	a	school,	known	as
the	 Semicircle	 of	 Pythagoras,	 but	 his	 views	 on	 social	 reform	 were
unacceptable	 and	 the	 philosopher	 was	 forced	 to	 flee	 the	 colony	 with	 his
mother	and	his	one	and	only	disciple.
Pythagoras	 departed	 for	 southern	 Italy,	 which	was	 then	 a	 part	 of	Magna

Graecia,	 and	 settled	 in	 Croton	 where	 he	 was	 fortunate	 in	 finding	 the	 ideal
patron	in	Milo,	the	wealthiest	man	in	Croton	and	one	of	the	strongest	men	in
history.	Although	 Pythagoras’	 reputation	 as	 the	 sage	 of	 Samos	was	 already
spreading	across	Greece,	Milo’s	 fame	was	even	greater.	Milo	was	a	man	of
Herculean	proportions	who	had	been	champion	of	 the	Olympic	and	Pythian
Games	 a	 record	 twelve	 times.	 In	 addition	 to	 his	 athleticism	 Milo	 also
appreciated	and	studied	philosophy	and	mathematics.	He	set	aside	part	of	his



house	and	provided	Pythagoras	with	enough	room	to	establish	a	school.	So	it
was	 that	 the	 most	 creative	 mind	 and	 the	 most	 powerful	 body	 formed	 a
partnership.
Secure	in	his	new	home	Pythagoras	founded	the	Pythagorean	Brotherhood

–	 a	 band	 of	 six	 hundred	 followers	 who	 were	 capable	 not	 only	 of
understanding	his	teachings,	but	who	could	add	to	them	by	creating	new	ideas
and	 proofs.	Upon	 entering	 the	Brotherhood	 each	 follower	 had	 to	 donate	 all
their	worldly	possessions	 to	a	common	fund	and	should	anybody	ever	 leave
they	 would	 receive	 twice	 the	 amount	 they	 had	 originally	 donated	 and	 a
tombstone	 would	 be	 erected	 in	 their	 memory.	 The	 Brotherhood	 was	 an
egalitarian	school	and	 included	several	 sisters.	Pythagoras’	 favourite	 student
was	Milo’s	own	daughter,	the	beautiful	Theano,	and,	despite	the	difference	in
their	ages,	they	eventually	married.
Soon	 after	 founding	 the	 Brotherhood,	 Pythagoras	 coined	 the	 word

philosopher,	and	in	so	doing	defined	the	aims	of	his	school.	While	attending
the	Olympic	Games,	Leon,	Prince	of	Phlius,	asked	Pythagoras	how	he	would
describe	himself.	Pythagoras	replied,	‘I	am	a	philosopher,’	but	Leon	had	not
heard	the	word	before	and	asked	him	to	explain.

Life,	Prince	Leon,	may	well	be	compared	with	these	public	Games	for	in	the	vast	crowd	assembled
here	some	are	attracted	by	the	acquisition	of	gain,	others	are	led	on	by	the	hopes	and	ambitions	of
fame	and	glory.	But	among	them	there	are	a	few	who	have	come	to	observe	and	to	understand	all
that	passes	here.
It	is	the	same	with	life.	Some	are	influenced	by	the	love	of	wealth	while	others	are	blindly	led	on

by	 the	 mad	 fever	 for	 power	 and	 domination,	 but	 the	 finest	 type	 of	 man	 gives	 himself	 up	 to
discovering	the	meaning	and	purpose	of	life	itself.	He	seeks	to	uncover	the	secrets	of	nature.	This
is	the	man	I	call	a	philosopher	for	although	no	man	is	completely	wise	in	all	respects,	he	can	love
wisdom	as	the	key	to	nature’s	secrets.

Although	many	were	aware	of	Pythagoras’	aspirations	nobody	outside	of	the
Brotherhood	knew	 the	details	 or	 extent	 of	his	 success.	Each	member	of	 the
school	was	forced	to	swear	an	oath	never	to	reveal	to	the	outside	world	any	of
their	mathematical	discoveries.	Even	after	Pythagoras’	death	a	member	of	the
Brotherhood	was	drowned	for	breaking	his	oath	–	he	publicly	announced	the
discovery	of	a	new	regular	solid,	the	dodecahedron,	constructed	from	twelve
regular	 pentagons.	 The	 highly	 secretive	 nature	 of	 the	 Pythagorean
Brotherhood	is	part	of	the	reason	that	myths	have	developed	surrounding	the
strange	 rituals	 which	 they	 might	 have	 practised,	 and	 similarly	 this	 is	 why
there	are	so	few	reliable	accounts	of	their	mathematical	achievements.
What	 is	 known	 for	 certain	 is	 that	 Pythagoras	 established	 an	 ethos	which



changed	 the	 course	 of	 mathematics.	 The	 Brotherhood	 was	 effectively	 a
religious	community	and	one	of	 the	 idols	 they	worshipped	was	Number.	By
understanding	 the	 relationships	 between	 numbers,	 they	 believed	 that	 they
could	uncover	the	spiritual	secrets	of	the	universe	and	bring	themselves	closer
to	the	gods.	In	particular	the	Brotherhood	focused	its	attention	on	the	study	of
counting	 numbers	 (1,	 2,	 3,	 …)	 and	 fractions.	 Counting	 numbers	 are
sometimes	called	whole	numbers,	and	together	with	fractions	(ratios	between
whole	numbers)	are	 technically	 referred	 to	as	rational	numbers.	Among	 the
infinity	 of	 numbers,	 the	 Brotherhood	 looked	 for	 those	 with	 special
significance,	 and	 some	 of	 the	 most	 special	 were	 the	 so-called	 ‘perfect’
numbers.
According	 to	 Pythagoras	 numerical	 perfection	 depended	 on	 a	 number’s

divisors	 (numbers	 which	 will	 divide	 perfectly	 into	 the	 original	 one).	 For
instance,	the	divisors	of	12	are	1,	2,	3,	4	and	6.	When	the	sum	of	a	number’s
divisors	 is	greater	 than	 the	number	 itself,	 it	 is	called	an	 ‘excessive’	number.
Therefore	12	is	an	excessive	number	because	its	divisors	add	up	to	16.	On	the
other	 hand,	 when	 the	 sum	 of	 a	 number’s	 divisors	 is	 less	 than	 the	 number
itself,	it	is	called	‘defective’.	So	10	is	a	defective	number	because	its	divisors
(1,	2	and	5)	add	up	to	only	8.
The	most	 significant	 and	 rarest	numbers	are	 those	whose	divisors	add	up

exactly	to	the	number	itself	and	these	are	the	perfect	numbers.	The	number	6
has	the	divisors	1,	2	and	3,	and	consequently	it	is	a	perfect	number	because	1
+	2	+	3	=	6.	The	next	perfect	number	is	28,	because	1	+	2	+	4	+	7	+	14	=	28.
As	 well	 as	 having	 mathematical	 significance	 for	 the	 Brotherhood,	 the

perfection	of	6	and	28	was	acknowledged	by	other	cultures	who	observed	that
the	moon	orbits	 the	earth	every	28	days	and	who	declared	 that	God	created
the	world	 in	6	days.	 In	The	City	of	God,	St	Augustine	 argues	 that	 although
God	could	have	created	the	world	in	an	instant	he	decided	to	take	six	days	in
order	 to	 reflect	 the	 universe’s	 perfection.	 St	Augustine	 observed	 that	 6	was
not	perfect	because	God	chose	it,	but	rather	that	the	perfection	was	inherent	in
the	nature	of	the	number:	‘6	is	a	number	perfect	in	itself,	and	not	because	God
created	all	things	in	six	days;	rather	the	inverse	is	true;	God	created	all	things
in	six	days	because	this	number	is	perfect.	And	it	would	remain	perfect	even
if	the	work	of	the	six	days	did	not	exist.’
As	the	counting	numbers	get	bigger	the	perfect	numbers	become	harder	to

find.	 The	 third	 perfect	 number	 is	 496,	 the	 fourth	 is	 8,128,	 the	 fifth	 is
33,550,336	and	the	sixth	is	8,589,869,056.	As	well	as	being	the	sum	of	their
divisors,	 Pythagoras	 noted	 that	 all	 perfect	 numbers	 exhibit	 several	 other
elegant	 properties.	 For	 example,	 perfect	 numbers	 are	 always	 the	 sum	 of	 a
series	of	consecutive	counting	numbers.	So	we	have



Pythagoras	was	entertained	by	perfect	numbers	but	he	was	not	satisfied	with
merely	collecting	these	special	numbers;	 instead	he	desired	to	discover	their
deeper	significance.	One	of	his	insights	was	that	perfection	was	closely	linked
to	‘twoness’.	The	numbers	4	(2	×	2),	8	(2	×	2	×	2),	16	(2	×	2	×	2	×	2),	etc.,	are
known	as	powers	of	2,	and	can	be	written	as	2n,	where	 the	n	 represents	 the
number	of	2’s	multiplied	 together.	All	 these	powers	of	2	only	 just	 fail	 to	be
perfect,	because	the	sum	of	their	divisors	always	adds	up	to	one	less	than	the
number	itself.	This	makes	them	only	slightly	defective:

Two	centuries	later	Euclid	would	refine	Pythagoras’	link	between	twoness	and
perfection.	Euclid	discovered	that	perfect	numbers	are	always	the	multiple	of
two	numbers,	one	of	which	is	a	power	of	2	and	the	other	being	the	next	power
of	2	minus	1.	That	is	to	say,

Today’s	 computers	 have	 continued	 the	 search	 for	 perfect	 numbers	 and	 find
such	enormously	 large	 examples	 as	2216’090	×	 (2216’091	 –	 1),	 a	 number	with
over	130,000	digits,	which	obeys	Euclid’s	rule.
Pythagoras	was	fascinated	by	the	rich	patterns	and	properties	possessed	by

perfect	 numbers	 and	 respected	 their	 subtlety	 and	 cunning.	 At	 first	 sight
perfection	is	a	relatively	simple	concept	to	grasp	and	yet	 the	ancient	Greeks
were	 unable	 to	 fathom	 some	 of	 the	 fundamental	 points	 of	 the	 subject.	 For
example,	although	there	are	plenty	of	numbers	whose	divisors	add	up	to	one
less	than	the	number	itself,	that	is	to	say	only	slightly	defective,	there	appear
to	 be	 no	 numbers	which	 are	 slightly	 excessive.	 The	Greeks	were	 unable	 to
find	 any	 numbers	 whose	 divisors	 added	 up	 to	 one	 more	 than	 the	 number



itself,	 but	 they	 could	 not	 explain	 why	 this	 was	 the	 case.	 Frustratingly,
although	 they	 failed	 to	 discover	 slightly	 excessive	 numbers,	 they	 could	 not
prove	 that	 no	 such	 numbers	 existed.	 Understanding	 the	 apparent	 lack	 of
slightly	excessive	numbers	was	of	no	practical	value	whatsoever;	nonetheless
it	was	a	problem	which	might	illuminate	the	nature	of	numbers	and	therefore
it	was	worthy	of	study.	Such	riddles	intrigued	the	Pythagorean	Brotherhood,
and	 two	 and	 a	 half	 thousand	 years	 later,	mathematicians	 are	 still	 unable	 to
prove	that	no	slightly	excessive	numbers	exist.

Everything	is	Number

In	addition	to	studying	the	relationships	within	numbers	Pythagoras	was	also
intrigued	 by	 the	 link	 between	 numbers	 and	 nature.	 He	 realised	 that	 natural
phenomena	are	governed	by	laws,	and	that	these	laws	could	be	described	by
mathematical	 equations.	 One	 of	 the	 first	 links	 he	 discovered	 was	 the
fundamental	relationship	between	the	harmony	of	music	and	the	harmony	of
numbers.
The	most	important	instrument	in	early	Hellenic	music	was	the	tetrachord

or	 four-stringed	 lyre.	 Prior	 to	 Pythagoras,	 musicians	 appreciated	 that
particular	 notes	when	 sounded	 together	 created	 a	 pleasant	 effect,	 and	 tuned
their	 lyres	 so	 that	 plucking	 two	 strings	 would	 generate	 such	 a	 harmony.
However,	 the	early	musicians	had	no	understanding	of	why	particular	notes
were	 harmonious	 and	 had	 no	 objective	 system	 for	 tuning	 their	 instruments.
Instead	 they	 tuned	 their	 lyres	 purely	 by	 ear	 until	 a	 state	 of	 harmony	 was
established	–	a	process	which	Plato	called	torturing	the	tuning	pegs.
Iamblichus,	 the	 fourth-century	 scholar	 who	 wrote	 nine	 books	 about	 the

Pythagorean	sect,	decribes	how	Pythagoras	came	 to	discover	 the	underlying
principles	of	musical	harmony:

Once	he	was	engrossed	in	the	thought	of	whether	he	could	devise	a	mechanical	aid	for	the	sense	of
hearing	 which	 would	 prove	 both	 certain	 and	 ingenious.	 Such	 an	 aid	 would	 be	 similar	 to	 the
compasses,	 rules	 and	 optical	 instruments	 designed	 for	 the	 sense	 of	 sight.	 Likewise	 the	 sense	 of
touch	 had	 scales	 and	 the	 concepts	 of	weights	 and	measures.	 By	 some	 divine	 stroke	 of	 luck	 he
happened	 to	walk	past	 the	forge	of	a	blacksmith	and	 listened	 to	 the	hammers	pounding	 iron	and
producing	a	variegated	harmony	of	 reverberations	between	 them,	except	 for	one	combination	of
sounds.

According	 to	 Iamblichus,	 Pythagoras	 immediately	 ran	 into	 the	 forge	 to



investigate	the	harmony	of	the	hammers.	He	noticed	that	most	of	the	hammers
could	be	struck	simultaneously	to	generate	a	harmonious	sound,	whereas	any
combination	 containing	 one	 particular	 hammer	 always	 generated	 an
unpleasant	 noise.	 He	 analysed	 the	 hammers	 and	 realised	 that	 those	 which
were	 harmonious	with	 each	 other	 had	 a	 simple	mathematical	 relationship	 –
their	masses	were	simple	ratios	or	fractions	of	each	other.	That	is	to	say	that
hammers	half,	two-thirds	or	three-quarters	the	weight	of	a	particular	hammer
would	all	generate	harmonious	sounds.	On	the	other	hand,	the	hammer	which
was	generating	disharmony	when	struck	along	with	any	of	the	other	hammers
had	a	weight	which	bore	no	simple	relationship	to	the	other	weights.
Pythagoras	 had	 discovered	 that	 simple	 numerical	 ratios	were	 responsible

for	 harmony	 in	 music.	 Scientists	 have	 cast	 some	 doubt	 on	 Iamblichus’
account	of	this	story,	but	what	is	more	certain	is	how	Pythagoras	applied	his
new	 theory	 of	 musical	 ratios	 to	 the	 lyre	 by	 examining	 the	 properties	 of	 a
single	 string.	 Simply	 plucking	 the	 string	 generates	 a	 standard	 note	 or	 tone
which	 is	produced	by	 the	entire	 length	of	 the	vibrating	string.	By	fixing	 the
string	 at	 particular	 points	 along	 its	 length,	 it	 is	 possible	 to	 generate	 other
vibrations	and	tones.	Crucially,	harmonious	tones	only	occur	at	very	specific
points.	For	example,	by	fixing	the	string	at	a	point	exactly	half-way	along	it,
plucking	generates	a	tone	which	is	one	octave	higher	and	in	harmony	with	the
original	 tone.	 Similarly,	 by	 fixing	 the	 string	 at	 points	 which	 are	 exactly	 a
third,	 a	 quarter	 or	 a	 fifth	 of	 the	 way	 along	 it,	 other	 harmonious	 notes	 are
produced.	 However,	 by	 fixing	 the	 string	 at	 a	 point	 which	 is	 not	 a	 simple
fraction	along	the	length	of	the	whole	string,	a	tone	is	generated	which	is	not
in	harmony	with	the	other	tones.
Pythagoras	 had	 uncovered	 for	 the	 first	 time	 the	mathematical	 rule	which

governs	 a	 physical	 phenomenon	 and	 demonstrated	 that	 there	 was	 a
fundamental	 relationship	 between	mathematics	 and	 science.	 Ever	 since	 this
discovery	scientists	have	searched	for	the	mathematical	rules	which	appear	to
govern	every	single	physical	process	and	have	found	that	numbers	crop	up	in
all	 manner	 of	 natural	 phenomena.	 For	 example,	 one	 particular	 number
appears	 to	 guide	 the	 lengths	 of	 meandering	 rivers.	 Professor	 Hans-Henrik
Stølum,	 an	 earth	 scientist	 at	 Cambridge	University,	 has	 calculated	 the	 ratio
between	 the	 actual	 length	 of	 rivers	 from	 source	 to	 mouth	 and	 their	 direct
length	 as	 the	 crow	 flies.	 Although	 the	 ratio	 varies	 from	 river	 to	 river,	 the
average	value	is	slightly	greater	than	3,	that	is	to	say	that	the	actual	length	is
roughly	 three	 times	 greater	 than	 the	 direct	 distance.	 In	 fact	 the	 ratio	 is
approximately	 3.14,	 which	 is	 close	 to	 the	 value	 of	 the	 number	 π,	 the	 ratio
between	the	circumference	of	a	circle	and	its	diameter.
The	number	π	was	originally	derived	from	the	geometry	of	circles	and	yet



it	reappears	over	and	over	again	in	a	variety	of	scientific	circumstances.	In	the
case	of	 the	 river	 ratio,	 the	 appearance	of	π	 is	 the	 result	 of	 a	 battle	 between
order	and	chaos.	Einstein	was	the	first	to	suggest	that	rivers	have	a	tendency
towards	an	ever	more	loopy	path	because	the	slightest	curve	will	lead	to	faster
currents	 on	 the	 outer	 side,	 which	will	 in	 turn	 result	 in	more	 erosion	 and	 a
sharper	bend.	The	sharper	the	bend,	the	faster	the	currents	on	the	outer	edge,
the	more	the	erosion,	the	more	the	river	will	twist,	and	so	on.	However,	there
is	 a	 natural	 process	 which	 will	 curtail	 the	 chaos:	 increasing	 loopiness	 will
result	 in	rivers	doubling	back	on	themselves	and	effectively	short-circuiting.
The	river	will	become	straighter	and	the	loop	will	be	left	to	one	side	forming
an	ox-bow	lake.	The	balance	between	these	two	opposing	factors	leads	to	an
average	ratio	of	π	between	the	actual	 length	and	the	direct	distance	between
source	and	mouth.	The	ratio	of	π	is	most	commonly	found	for	rivers	flowing
across	very	gently	sloping	plains,	such	as	those	found	in	Brazil	or	the	Siberian
tundra.
Pythagoras	 realised	 that	 numbers	 were	 hidden	 in	 everything,	 from	 the

harmonies	of	music	to	the	orbits	of	planets,	and	this	led	him	to	proclaim	that
‘Everything	 is	 Number’.	 By	 exploring	 the	 meaning	 of	 mathematics,
Pythagoras	was	developing	the	language	which	would	enable	him	and	others
to	 describe	 the	 nature	 of	 the	 universe.	 Henceforth	 each	 breakthrough	 in
mathematics	 would	 give	 scientists	 the	 vocabulary	 they	 needed	 to	 better
explain	 the	 phenomena	 around	 them.	 In	 fact	 developments	 in	 mathematics
would	inspire	revolutions	in	science.
As	well	 as	 discovering	 the	 law	 of	 gravity,	 Isaac	Newton	was	 a	 powerful

mathematician.	His	greatest	contribution	to	mathematics	was	his	development
of	calculus,	and	in	later	years	physicists	would	use	the	language	of	calculus	to
better	 describe	 the	 laws	 of	 gravity	 and	 to	 solve	 gravitational	 problems.
Newton’s	classical	theory	of	gravity	survived	intact	for	centuries	until	it	was
superseded	by	Albert	Einstein’s	general	theory	of	relativity,	which	developed
a	more	detailed	 and	 alternative	 explanation	of	 gravity.	Einstein’s	 own	 ideas
were	 only	 possible	 because	 of	 new	mathematical	 concepts	 which	 provided
him	with	a	more	sophisticated	language	for	his	more	complex	scientific	ideas.
Today	 the	 interpretation	 of	 gravity	 is	 once	 again	 being	 influenced	 by
breakthroughs	in	mathematics.	The	very	latest	quantum	theories	of	gravity	are
tied	 to	 the	 development	 of	 mathematical	 strings,	 a	 theory	 in	 which	 the
geometrical	 and	 topological	 properties	 of	 tubes	 seem	 to	 best	 explain	 the
forces	of	nature.
Of	all	 the	 links	between	numbers	and	nature	 studied	by	 the	Brotherhood,

the	most	 important	 was	 the	 relationship	 which	 bears	 their	 founder’s	 name.
Pythagoras’	 theorem	provides	us	with	an	equation	which	 is	 true	of	all	 right-



angled	triangles	and	which	therefore	also	defines	the	right	angle	itself.	In	turn,
the	right	angle	defines	the	perpendicular,	i.e.	the	relation	of	the	vertical	to	the
horizontal,	 and	 ultimately	 the	 relation	 between	 the	 three	 dimensions	 of	 our
familiar	universe.	Mathematics,	via	the	right	angle,	defines	the	very	structure
of	the	space	in	which	we	live.

Figure	1.	All	right-angled	triangles	obey	Pythagoras’	theorem.

It	 is	 a	 profound	 realisation	 and	 yet	 the	 mathematics	 required	 to	 grasp
Pythagoras’s	 theorem	is	relatively	simple.	To	understand	it,	simply	begin	by
measuring	the	length	of	 the	two	short	sides	of	a	right-angled	triangle	(x	and
y),	and	then	square	each	one	(x2,	y2).	Then	add	the	two	squared	numbers	(x2	+
y2)	 to	give	you	a	final	number.	 If	you	work	out	 this	number	for	 the	 triangle
shown	in	Figure	1,	then	the	answer	is	25.
You	 can	 now	 measure	 the	 longest	 side	 z,	 the	 so-called	 hypotenuse,	 and

square	this	length.	The	remarkable	result	is	that	this	number	z2	is	identical	to
the	one	you	just	calculated,	i.e.	52	=	25.	That	is	to	say,

In	a	right-angled	triangle	 the	square	on	the	hypotenuse	is	equal	 to	 the	sum	of	 the	squares	on	the
other	two	sides.

Or	in	other	words	(or	rather	symbols):

This	is	clearly	true	for	the	triangle	in	Figure	1,	but	what	is	remarkable	is	that
Pythagoras’	 theorem	 is	 true	 for	every	 right-angled	 triangle	you	can	possibly
imagine.	It	is	a	universal	law	of	mathematics,	and	you	can	rely	on	it	whenever
you	 come	 across	 any	 triangle	with	 a	 right	 angle.	 Conversely	 if	 you	 have	 a
triangle	 which	 obeys	 Pythagoras’	 theorem,	 then	 you	 can	 be	 absolutely
confident	that	it	is	a	right-angled	triangle.
At	this	point	it	is	important	to	note	that,	although	this	theorem	will	forever



be	 associated	with	Pythagoras,	 it	was	 actually	 used	 by	 the	Chinese	 and	 the
Babylonians	one	thousand	years	before.	However,	these	cultures	did	not	know
that	the	theorem	was	true	for	every	right-angled	triangle.	It	was	certainly	true
for	the	triangles	they	tested,	but	they	had	no	way	of	showing	that	it	was	true
for	 all	 the	 right-angled	 triangles	which	 they	 had	 not	 tested.	 The	 reason	 for
Pythagoras’	claim	to	the	theorem	is	that	it	was	he	who	first	demonstrated	its
universal	truth.
But	 how	 did	 Pythagoras	 know	 that	 his	 theorem	 is	 true	 for	 every	 right-

angled	triangle?	He	could	not	hope	to	test	the	infinite	variety	of	right-angled
triangles,	and	yet	he	could	still	be	one	hundred	per	cent	sure	of	the	theorem’s
absolute	 truth.	 The	 reason	 for	 his	 confidence	 lies	 in	 the	 concept	 of
mathematical	proof.	The	search	for	a	mathematical	proof	 is	 the	search	for	a
knowledge	which	 is	more	absolute	 than	 the	knowledge	accumulated	by	any
other	discipline.	The	desire	for	ultimate	truth	via	the	method	of	proof	is	what
has	driven	mathematicians	for	the	last	two	and	a	half	thousand	years.

Absolute	Proof

The	story	of	Fermat’s	Last	Theorem	revolves	around	the	search	for	a	missing
proof.	Mathematical	proof	is	far	more	powerful	and	rigorous	than	the	concept
of	 proof	we	 casually	 use	 in	 our	 everyday	 language,	 or	 even	 the	 concept	 of
proof	 as	 understood	 by	 physicists	 or	 chemists.	 The	 difference	 between
scientific	and	mathematical	proof	is	both	subtle	and	profound,	and	is	crucial
to	understanding	the	work	of	every	mathematician	since	Pythagoras.
The	idea	of	a	classic	mathematical	proof	is	to	begin	with	a	series	of	axioms,

statements	which	can	be	assumed	to	be	true	or	which	are	self-evidently	true.
Then	by	arguing	logically,	step	by	step,	it	is	possible	to	arrive	at	a	conclusion.
If	the	axioms	are	correct	and	the	logic	is	flawless,	then	the	conclusion	will	be
undeniable.	This	conclusion	is	the	theorem.
Mathematical	 theorems	 rely	 on	 this	 logical	 process	 and	 once	 proven	 are

true	until	the	end	of	time.	Mathematical	proofs	are	absolute.	To	appreciate	the
value	 of	 such	 proofs	 they	 should	 be	 compared	with	 their	 poor	 relation,	 the
scientific	proof.	 In	science	a	hypothesis	 is	put	 forward	 to	explain	a	physical
phenomenon.	 If	 observations	 of	 the	 phenomenon	 compare	 well	 with	 the
hypothesis,	this	becomes	evidence	in	favour	of	it.	Furthermore,	the	hypothesis
should	not	merely	describe	a	known	phenomenon,	but	predict	 the	 results	of
other	phenomena.	Experiments	may	be	performed	to	test	the	predictive	power
of	the	hypothesis,	and	if	 it	continues	to	be	successful	then	this	is	even	more
evidence	to	back	the	hypothesis.	Eventually	 the	amount	of	evidence	may	be



overwhelming	and	the	hypothesis	becomes	accepted	as	a	scientific	theory.
However,	 the	 scientific	 theory	 can	 never	 be	 proved	 to	 the	 same	 absolute

level	of	a	mathematical	 theorem:	it	 is	merely	considered	highly	likely	based
on	the	evidence	available.	So-called	scientific	proof	relies	on	observation	and
perception,	both	of	which	are	fallible	and	provide	only	approximations	to	the
truth.	As	Bertrand	Russell	pointed	out:	 ‘Although	 this	may	seem	a	paradox,
all	exact	science	is	dominated	by	the	idea	of	approximation.’	Even	the	most
widely	accepted	 scientific	 ‘proofs’	 always	have	a	 small	 element	of	doubt	 in
them.	 Sometimes	 this	 doubt	 diminishes,	 although	 it	 never	 disappears
completely,	 while	 on	 other	 occasions	 the	 proof	 is	 ultimately	 shown	 to	 be
wrong.	 This	 weakness	 in	 scientific	 proof	 leads	 to	 scientific	 revolutions	 in
which	one	theory	which	was	assumed	to	be	correct	 is	replaced	with	another
theory,	which	may	 be	merely	 a	 refinement	 of	 the	 original	 theory,	 or	which
may	be	a	complete	contradiction.
For	 example,	 the	 search	 for	 the	 fundamental	 particles	 of	matter	 involved

each	 generation	 of	 physicists	 overturning	 or,	 at	 the	 very	 least,	 refining	 the
theory	of	their	predecessors.	The	modern	quest	for	the	building	blocks	of	the
universe	 started	at	 the	beginning	of	 the	nineteenth	century	when	a	 series	of
experiments	 led	 John	 Dalton	 to	 suggest	 that	 everything	 was	 composed	 of
discrete	atoms,	and	that	atoms	were	fundamental.	At	the	end	of	the	century	J.
J.	Thomson	discovered	 the	electron,	 the	 first	known	subatomic	particle,	and
therefore	the	atom	was	no	longer	fundamental.
During	 the	 early	 years	 of	 the	 twentieth	 century,	 physicists	 developed	 a

‘complete’	picture	of	the	atom	–	a	nucleus	consisting	of	protons	and	neutrons,
orbited	by	electrons.	Protons,	neutrons	and	electrons	were	proudly	held	up	as
the	 complete	 ingredients	 for	 the	 universe.	 Then	 cosmic	 ray	 experiments
revealed	the	existence	of	other	fundamental	particles	–	pions	and	muons.	An
even	greater	 revolution	came	with	 the	discovery	 in	1932	of	antimatter	–	 the
existence	of	antiprotons,	antineutrons,	antielectrons,	etc.	By	this	time	particle
physicists	could	not	be	sure	how	many	different	particles	existed,	but	at	least
they	could	be	confident	that	these	entities	were	indeed	fundamental.	That	was
until	the	1960s	when	the	concept	of	the	quark	was	born.	The	proton	itself	is
apparently	 built	 from	 fractionally	 charged	 quarks,	 as	 is	 the	 neutron	 and	 the
pion.	 The	moral	 of	 the	 story	 is	 that	 physicists	 are	 continually	 altering	 their
picture	of	the	universe,	if	not	rubbing	it	out	and	starting	all	over	again.	In	the
next	decade	the	very	concept	of	a	particle	as	a	point-like	object	may	even	be
replaced	by	the	idea	of	particles	as	strings	–	the	same	strings	which	might	best
explain	 gravity.	 The	 theory	 is	 that	 strings	 a	 billionth	 of	 a	 billionth	 of	 a
billionth	of	a	billionth	of	a	metre	 in	 length	(so	small	 that	 they	appear	point-
like)	can	vibrate	in	different	ways,	and	each	vibration	gives	rise	to	a	different



particle.	This	is	analogous	to	Pythagoras’	discovery	that	one	string	on	a	lyre
can	give	rise	to	different	notes	depending	on	how	it	vibrates.
The	science	fiction	writer	and	futurologist	Arthur	C.	Clarke	wrote	that	if	an

eminent	professor	states	that	something	is	undoubtedly	true,	then	it	is	likely	to
be	proved	false	the	next	day.	Scientific	proof	is	inevitably	fickle	and	shoddy.
On	 the	 other	 hand	 mathematical	 proof	 is	 absolute	 and	 devoid	 of	 doubt.
Pythagoras	died	confident	in	the	knowledge	that	his	theorem,	which	was	true
in	500	BC,	would	remain	true	for	eternity.
Science	is	operated	according	to	the	judicial	system.	A	theory	is	assumed	to

be	true	if	there	is	enough	evidence	to	prove	it	‘beyond	all	reasonable	doubt’.
On	 the	 other	 hand	 mathematics	 does	 not	 rely	 on	 evidence	 from	 fallible
experimentation,	but	it	is	built	on	infallible	logic.	This	is	demonstrated	by	the
problem	of	the	‘mutilated	chessboard’,	illustrated	in	Figure	2.

Figure	2.	The	problem	of	the	mutilated	chessboard.

We	have	a	chessboard	with	the	two	opposing	corners	removed,	so	that	there
are	only	62	squares	 remaining.	Now	we	 take	31	dominoes	shaped	such	 that
each	 domino	 covers	 exactly	 two	 squares.	 The	 question	 is:	 is	 it	 possible	 to
arrange	 the	 31	 dominoes	 so	 that	 they	 cover	 all	 the	 62	 squares	 on	 the
chessboard?
There	are	two	approaches	to	the	problem:

(1)	The	scientific	approach
The	 scientist	 would	 try	 to	 solve	 the	 problem	 by	 experimenting,	 and	 after
trying	 out	 a	 few	 dozen	 arrangements	 would	 discover	 that	 they	 all	 fail.



Eventually	the	scientist	believes	that	there	is	enough	evidence	to	say	that	the
board	cannot	be	covered.	However,	the	scientist	can	never	be	sure	that	this	is
truly	the	case	because	there	might	be	some	arrangement	which	has	not	been
tried	which	might	do	 the	 trick.	There	are	millions	of	different	arrangements
and	it	is	only	possible	to	explore	a	small	fraction	of	them.	The	conclusion	that
the	 task	 is	 impossible	 is	a	 theory	based	on	experiment,	but	 the	scientist	will
have	to	live	with	the	prospect	that	one	day	the	theory	may	be	overturned.

(2)	The	mathematical	approach
The	 mathematician	 tries	 to	 answer	 the	 question	 by	 developing	 a	 logical
argument	which	will	 derive	 a	 conclusion	which	 is	 undoubtedly	 correct	 and
which	will	remain	unchallenged	forever.	One	such	argument	is	the	following:

•	 The	 corners	 which	 were	 removed	 from	 the	 chessboard	 were	 both	 white.
Therefore	there	are	now	32	black	squares	and	only	30	white	squares.

•	Each	 domino	 covers	 two	 neighbouring	 squares,	 and	 neighbouring	 squares
are	always	different	in	colour,	i.e.	one	black	and	one	white.

•	Therefore,	no	matter	how	they	are	arranged,	 the	 first	30	dominoes	 laid	on
the	board	must	cover	30	white	squares	and	30	black	squares.

•	Consequently,	 this	will	 always	 leave	 you	with	 one	 domino	 and	 two	black
squares	remaining.

•	 But	 remember	 all	 dominoes	 cover	 two	 neighbouring	 squares,	 and
neighbouring	 squares	 are	 opposite	 in	 colour.	 However,	 the	 two	 squares
remaining	are	the	same	colour	and	so	they	cannot	both	be	covered	by	the	one
remaining	domino.	Therefore,	covering	the	board	is	impossible!

This	 proof	 shows	 that	 every	 possible	 arrangement	 of	 dominoes	will	 fail	 to
cover	 the	 mutilated	 chessboard.	 Similarly	 Pythagoras	 constructed	 a	 proof
which	shows	that	every	possible	right-angled	triangle	will	obey	his	theorem.
For	 Pythagoras	 the	 concept	 of	 mathematical	 proof	 was	 sacred,	 and	 it	 was
proof	that	enabled	the	Brotherhood	to	discover	so	much.	Most	modern	proofs
are	 incredibly	 complicated	 and	 following	 the	 logic	would	be	 impossible	 for
the	layperson,	but	fortunately	in	the	case	of	Pythagoras’	theorem	the	argument
is	 relatively	 straightforward	 and	 relies	 on	 only	 senior	 school	 mathematics.
The	proof	is	outlined	in	Appendix	1.
Pythagoras’	 proof	 is	 irrefutable.	 It	 shows	 that	 his	 theorem	 holds	 true	 for

every	right-angled	triangle	in	the	universe.	The	discovery	was	so	momentous



that	one	hundred	oxen	were	sacrificed	as	an	act	of	gratitude	to	the	gods.	The
discovery	 was	 a	 milestone	 in	 mathematics	 and	 one	 of	 the	 most	 important
breakthroughs	in	the	history	of	civilisation.	Its	significance	was	twofold.	First,
it	 developed	 the	 idea	 of	 proof.	 A	 proven	mathematical	 result	 has	 a	 deeper
truth	 than	 any	 other	 truth	 because	 it	 is	 the	 result	 of	 step-by-step	 logic.
Although	 the	 philosopher	 Thales	 had	 already	 invented	 some	 primitive
geometrical	 proofs,	 Pythagoras	 took	 the	 idea	much	 further	 and	was	 able	 to
prove	far	more	ingenious	mathematical	statements.	The	second	consequence
of	 Pythagoras’	 theorem	 is	 that	 it	 ties	 the	 abstract	 mathematical	 method	 to
something	tangible.	Pythagoras	showed	that	the	truth	of	mathematics	could	be
applied	 to	 the	 scientific	 world	 and	 provide	 it	 with	 a	 logical	 foundation.
Mathematics	 gives	 science	 a	 rigorous	 beginning	 and	 upon	 this	 infallible
foundation	 scientists	 add	 inaccurate	 measurements	 and	 imperfect
observations.

An	Infinity	of	Triples

The	 Pythagorean	 Brotherhood	 invigorated	 mathematics	 with	 its	 zealous
search	for	truth	via	proof.	News	of	their	success	spread	and	yet	the	details	of
their	 discoveries	 remained	 a	 closely	 guarded	 secret.	 Many	 requested
admission	 to	 the	 inner	 sanctum	 of	 knowledge,	 but	 only	 the	 most	 brilliant
minds	were	accepted.	One	of	those	who	was	blackballed	was	a	candidate	by
the	 name	 of	 Cylon.	 Cylon	 took	 exception	 to	 his	 humiliating	 rejection	 and
twenty	years	later	he	took	his	revenge.
During	 the	 sixty-seventh	 Olympiad	 (510	 BC)	 there	 was	 a	 revolt	 in	 the

nearby	 city	 of	 Sybaris.	 Telys,	 the	 victorious	 leader	 of	 the	 revolt,	 began	 a
barbaric	 campaign	 of	 persecution	 against	 the	 supporters	 of	 the	 former
government,	which	 drove	many	of	 them	 to	 seek	 sanctuary	 in	Croton.	Telys
demanded	 that	 the	 traitors	 be	 returned	 to	 Sybaris	 to	 suffer	 their	 due
punishment,	 but	 Milo	 and	 Pythagoras	 persuaded	 the	 citizens	 of	 Croton	 to
stand	 up	 to	 the	 tyrant	 and	 protect	 the	 refugees.	 Telys	 was	 furious	 and
immediately	gathered	an	army	of	300,000	men	and	marched	on	Croton,	where
Milo	 defended	 the	 city	with	 100,000	 armed	 citizens.	After	 seventy	 days	 of
war	Milo’s	supreme	generalship	led	him	to	victory	and	as	an	act	of	retribution
he	turned	the	course	of	the	river	Crathis	upon	Sybaris	to	flood	and	destroy	the
city.
Despite	the	end	of	the	war,	the	city	of	Croton	was	still	in	turmoil	because	of

arguments	over	what	should	be	done	with	 the	spoils	of	war.	Fearful	 that	 the
lands	would	 be	 given	 to	 the	 Pythagorean	 elite,	 the	 ordinary	 folk	 of	Croton



began	 to	 grumble.	 There	 had	 already	 been	 growing	 resentment	 among	 the
masses	 because	 the	 secretive	 Brotherhood	 continued	 to	 withold	 their
discoveries,	 but	nothing	came	of	 it	 until	Cylon	emerged	as	 the	voice	of	 the
people.	Cylon	preyed	on	the	fear,	paranoia	and	envy	of	the	mob	and	led	them
on	a	mission	to	destroy	the	most	brilliant	school	of	mathematics	the	world	had
ever	 seen.	Milo’s	 house	 and	 the	 adjoining	 school	 were	 surrounded,	 all	 the
doors	were	locked	and	barred	to	prevent	escape	and	then	the	burning	began.
Milo	fought	his	way	out	of	 the	 inferno	and	fled,	but	Pythagoras,	along	with
many	of	his	disciples,	was	killed.
Mathematics	 had	 lost	 its	 first	 great	 hero,	 but	 the	Pythagorean	 spirit	 lived

on.	 The	 numbers	 and	 their	 truths	 were	 immortal.	 Pythagoras	 had
demonstrated	 that	 more	 than	 any	 other	 discipline	 mathematics	 is	 a	 subject
which	is	not	subjective.	His	disciples	did	not	need	their	master	 to	decide	on
the	 validity	 of	 a	 particular	 theory.	 A	 theory’s	 truth	 was	 independent	 of
opinion.	 Instead	 the	 construction	 of	 mathematical	 logic	 had	 become	 the
arbiter	 of	 truth.	 This	 was	 the	 Pythagoreans’	 greatest	 contribution	 to
civilisation	 –	 a	 way	 of	 achieving	 truth	 which	 is	 beyond	 the	 fallibility	 of
human	judgement.
Following	 the	 death	 of	 their	 founder	 and	 the	 attack	 by	 Cylon,	 the

Brotherhood	left	Croton	for	other	cities	in	Magna	Graecia,	but	the	persecution
continued	 and	 eventually	many	 of	 them	had	 to	 settle	 in	 foreign	 lands.	This
enforced	migration	encouraged	the	Pythagoreans	to	spread	their	mathematical
gospel	throughout	the	ancient	world.	Pythagoras’	disciples	set	up	new	schools
and	 taught	 their	 students	 the	 method	 of	 logical	 proof.	 In	 addition	 to	 their
proof	of	Pythagoras’	 theorem,	 they	also	explained	to	 the	world	 the	secret	of
finding	so-called	Pythagorean	triples.	

Figure	3.	Finding	whole	number	solutions	to	Pythagoras’	equation	can	be	thought	of	in	terms	of	finding
two	squares	which	can	be	added	together	to	form	a	third	square.	For	example,	a	square	made	of	9	tiles

can	be	added	to	a	square	of	16	tiles,	and	rearranged	to	form	a	third	square	made	of	25	tiles.

Pythagorean	 triples	 are	 combinations	 of	 three	 whole	 numbers	 which
perfectly	 fit	 Pythagoras’	 equation:	 x2	 +	 y2	 =	 z2	 For	 example,	 Pythagoras’



equation	holds	true	if	x	=	3,	y	=	4	and	z	=	5:

Another	 way	 to	 think	 of	 Pythagorean	 triples	 is	 in	 terms	 of	 rearranging
squares.	If	one	has	a	3	×	3	square	made	of	9	tiles,	and	a	4	×	4	square	made	of
16	tiles,	then	all	the	tiles	can	be	rearranged	to	form	a	5	×	5	square	made	of	25
tiles,	as	shown	in	Figure	3.
The	Pythagoreans	wanted	 to	 find	other	Pythagorean	 triples,	other	 squares

which	 could	 be	 added	 to	 form	 a	 third,	 larger	 square.	 Another	 Pythagorean
triple	is	x	=	5,	y	=	12	and	z	=	13:

A	larger	Pythagorean	triple	is	x	=	99,	y	=	4,900	and	z	=	4,901.	Pythagorean
triples	 become	 rarer	 as	 the	 numbers	 increase,	 and	 finding	 them	 becomes
harder	 and	 harder.	 To	 discover	 as	many	 triples	 as	 possible	 the	 Pythgoreans
invented	 a	 methodical	 way	 of	 finding	 them,	 and	 in	 so	 doing	 they	 also
demonstrated	that	there	are	an	infinite	number	of	Pythagorean	triples.

From	Pythagoras’	Theorem	to	Fermat’s	Last	Theorem

Pythagoras’	theorem	and	its	infinity	of	triples	was	discussed	in	E.T.	Bell’s	The
Last	 Problem,	 the	 library	 book	 which	 caught	 the	 attention	 of	 the	 young
Andrew	Wiles.	Although	 the	Brotherhood	had	achieved	an	almost	complete
understanding	 of	 Pythagorean	 triples,	 Wiles	 soon	 discovered	 that	 this
apparently	 innocent	 equation,	 x2	 +	y2	 =	 z2,	 has	 a	 darker	 side	 –	Bell’s	 book
described	the	existence	of	a	mathematical	monster.
In	Pythagoras’	equation	the	three	numbers,	x,	y	and	z,	are	all	squared	(i.e.	x2

=	x	×	x):

However,	 the	 book	 described	 a	 sister	 equation	 in	 which	 x,	 y	 and	 z	 are	 all
cubed	(i.e.	x3	=	x	×	x	 ×	x).	The	 so-called	power	of	x	 in	 this	 equation	 is	 no
longer	2,	but	rather	3:



Finding	 whole	 number	 solutions,	 i.e.	 Pythagorean	 triples,	 to	 the	 original
equation	 was	 relatively	 easy,	 but	 changing	 the	 power	 from	 ‘2’	 to	 ‘3’	 (the
square	 to	a	cube)	and	 finding	whole	number	 solutions	 to	 the	sister	equation
appears	 to	 be	 impossible.	 Generations	 of	 mathematicians	 scribbling	 on
notepads	have	failed	to	find	numbers	which	fit	the	equation	perfectly.	

Figure	4.	Is	it	possible	to	add	the	building	blogs	from	one	cube	to	another	cube,	to	form	a	third,	larger
cube?	In	this	case	a	6	×	6	×	6	cube	added	to	an	8	×	8	×	8	cube	does	not	have	quite	enough	building

blocks	to	form	a	9	×	9	×	9	cube.	There	are	216	(63)	building	blocks	in	the	first	cube,	and	512	(83)	in	the
second.	The	total	is	728	building	blogs,	which	is	1	short	of	93.

With	 the	 original	 ‘squared’	 equation,	 the	 challenge	 was	 to	 rearrange	 the
tiles	in	two	squares	to	form	a	third,	larger	square.	The	‘cubed’	version	of	the
challenge	is	to	rearrange	two	cubes	made	of	building	blocks,	to	form	a	third,
larger	cube.	Apparently,	no	matter	what	cubes	are	chosen	to	begin	with,	when
they	are	combined	the	result	is	either	a	complete	cube	with	some	extra	blocks
left	 over,	 or	 an	 incomplete	 cube.	 The	 nearest	 that	 anyone	 has	 come	 to	 a
perfect	rearrangement	is	one	in	which	there	is	one	building	block	too	many	or
too	 few.	 For	 example,	 if	 we	 begin	 with	 the	 cubes	 63	 (x3)	 and	 83	 (y3)	 and
rearrange	 the	 building	 blocks,	 then	 we	 are	 only	 one	 short	 of	 making	 a
complete	9	×	9	×	9	cube,	as	shown	in	Figure	4.
Finding	three	numbers	which	fit	 the	cubed	equation	perfectly	seems	 to	be

impossible.	That	 is	 to	 say,	 there	appear	 to	be	no	whole	number	 solutions	 to
the	equation

Furthermore,	if	the	power	is	changed	from	3	(cubed)	to	any	higher	number
n	(i.e.	4,	5,	6,	…),	then	finding	a	solution	still	seems	to	be	impossible.	There
appear	to	be	no	whole	number	solutions	to	the	more	general	equation



By	 merely	 changing	 the	 2	 in	 Pythagoras’	 equation	 to	 any	 higher	 number,
finding	whole	number	 solutions	 turns	 from	being	 relatively	 simple	 to	 being
mind-bogglingly	 difficult.	 In	 fact,	 the	 great	 seventeenth-century	 Frenchman
Pierre	 de	 Fermat	 made	 the	 astonishing	 claim	 that	 the	 reason	 why	 nobody
could	find	any	solutions	was	that	no	solutions	existed.
Fermat	 was	 one	 of	 the	 most	 brilliant	 and	 intriguing	 mathematicians	 in

history.	 He	 could	 not	 have	 checked	 the	 infinity	 of	 numbers,	 but	 he	 was
absolutely	 sure	 that	 no	 combination	 existed	 which	 would	 fit	 the	 equation
perfectly	because	his	claim	was	based	on	proof.	Like	Pythagoras,	who	did	not
have	 to	 check	 every	 triangle	 to	 demonstrate	 the	 validity	 of	 his	 theorem,
Fermat	 did	 not	 have	 to	 check	 every	 number	 to	 show	 the	 validity	 of	 his
theorem.	Fermat’s	Last	Theorem,	as	it	is	known,	stated	that

has	no	whole	number	solutions	for	n	greater	than	2.

As	Wiles	read	each	chapter	of	Bell’s	book,	he	learnt	how	Fermat	had	become
fascinated	 by	 Pythagoras’	 work	 and	 had	 eventually	 come	 to	 study	 the
perverted	 form	 of	 Pythagoras’	 equation.	 He	 then	 read	 how	 Fermat	 had
claimed	that	even	if	all	the	mathematicians	in	the	world	spent	eternity	looking
for	 a	 solution	 to	 the	 equation	 they	 would	 fail	 to	 find	 one.	 He	 must	 have
eagerly	 turned	 the	 pages,	 relishing	 the	 thought	 of	 examining	 the	 proof	 of
Fermat’s	 Last	 Theorem.	 However,	 the	 proof	 was	 not	 there.	 It	 was	 not
anywhere.	Bell	 ended	 the	book	by	 stating	 that	 the	proof	had	been	 lost	 long
ago.	There	was	no	hint	of	what	it	might	have	been,	no	clues	as	to	the	proof’s
construction	 or	 derivation.	 Wiles	 found	 himself	 puzzled,	 infuriated	 and
intrigued.	He	was	in	good	company.
For	 over	 300	 years	 many	 of	 the	 greatest	 mathematicians	 had	 tried	 to

rediscover	Fermat’s	lost	proof	and	failed.	As	each	generation	failed,	the	next
became	even	more	frustrated	and	determined.	In	1742,	almost	a	century	after
Fermat’s	 death,	 the	 Swiss	 mathematician	 Leonhard	 Euler	 asked	 his	 friend
Clêrot	 to	 search	 Fermat’s	 house	 in	 case	 some	 vital	 scrap	 of	 paper	 still
remained.	No	 clues	were	 ever	 found	 as	 to	what	 Fermat’s	 proof	might	 have
been.	 In	 Chapter	 2	 we	 shall	 find	 out	 more	 about	 the	 mysterious	 Pierre	 de
Fermat	 and	 how	 his	 theorem	 came	 to	 be	 lost,	 but	 for	 the	 time	 being	 it	 is
enough	 to	know	 that	Fermat’s	Last	Theorem,	a	problem	 that	had	captivated
mathematicians	 for	 centuries,	 had	 captured	 the	 imagination	 of	 the	 young
Andrew	Wiles.



Sat	 in	 Milton	 Road	 Library	 was	 a	 ten-year-old	 boy	 staring	 at	 the	 most
infamous	 problem	 in	 mathematics.	 Usually	 half	 the	 difficulty	 in	 a
mathematics	 problem	 is	 understanding	 the	 question,	 but	 in	 this	 case	 it	 was
simple	–	prove	that	xn	+	yn	=	zn	has	no	whole	number	solutions	for	n	greater
than	 2.	 Andrew	 was	 not	 daunted	 by	 the	 knowledge	 that	 the	 most	 brilliant
minds	on	the	planet	had	failed	to	rediscover	the	proof.	He	immediately	set	to
work	using	all	his	textbook	techniques	to	try	and	recreate	the	proof.	Perhaps
he	could	 find	something	 that	everyone	else,	except	Fermat,	had	overlooked.
He	dreamed	he	could	shock	the	world.
Thirty	years	later	Andrew	Wiles	was	ready.	Standing	in	the	auditorium	of

the	Isaac	Newton	Institute,	he	scribbled	on	the	board	and	then,	struggling	to
contain	his	glee,	 stared	at	his	audience.	The	 lecture	was	 reaching	 its	climax
and	the	audience	knew	it.	One	or	two	of	them	had	smuggled	cameras	into	the
lecture	room	and	flashes	peppered	his	concluding	remarks.
With	the	chalk	in	his	hand	he	turned	to	the	board	for	the	last	time.	The	final

few	 lines	 of	 logic	 completed	 the	 proof.	 For	 the	 first	 time	 in	 over	 three
centuries	Fermat’s	 challenge	had	been	met.	A	 few	more	 cameras	 flashed	 to
capture	 the	historic	moment.	Wiles	wrote	up	 the	 statement	of	Fermat’s	Last
Theorem,	 turned	 towards	 the	 audience,	 and	 said	modestly:	 ‘I	 think	 I’ll	 stop
here.’
Two	 hundred	 mathematicians	 clapped	 and	 cheered	 in	 celebration.	 Even

those	who	had	anticipated	the	result	grinned	in	disbelief.	After	three	decades
Andrew	Wiles	believed	he	had	achieved	his	dream,	and	after	seven	years	of
isolation	 he	 could	 reveal	 his	 secret	 calculation.	 However,	 while	 euphoria
filled	the	Newton	Institute	tragedy	was	about	to	strike.	As	Wiles	was	enjoying
the	moment,	he,	along	with	everyone	else	 in	 the	room,	was	oblivious	of	 the
horrors	to	come.



2
The	Riddler

‘Do	you	know,’	 the	Devil	 confided,	 ‘not	even	 the	best	mathematicians	on	other	planets	–	all	 far
ahead	 of	 yours	 –	 have	 solved	 it?	 Why,	 there’s	 a	 chap	 on	 Saturn	 –	 he	 looks	 something	 like	 a
mushroom	on	stilts	–	who	solves	partial	differential	equations	mentally;	and	even	he’s	given	up.’

Arthur	Porges,	‘The	Devil	and	Simon	Flagg’

Pierre	de	Fermat	was	born	on	20	August	1601	in	the	town	of	Beaumont-de-
Lomagne	 in	 south-west	 France.	 Fermat’s	 father,	 Dominique	 Fermat,	 was	 a
wealthy	 leather	 merchant,	 and	 so	 Pierre	 was	 fortunate	 enough	 to	 enjoy	 a
privileged	education	at	the	Franciscan	monastery	of	Grandselve,	followed	by
a	stint	at	the	University	of	Toulouse.	There	is	no	record	of	the	young	Fermat
showing	any	particular	brilliance	in	mathematics.
Pressure	 from	 his	 family	 steered	 Fermat	 towards	 a	 career	 in	 the	 civil

service,	and	in	1631	he	was	appointed	conseiller	au	Parlement	de	Toulouse,	a
councillor	at	 the	Chamber	of	Petitions.	 If	 locals	wanted	 to	petition	 the	King
on	any	matter	they	first	had	to	convince	Fermat	or	one	of	his	associates	of	the
importance	of	 their	 request.	The	councillors	provided	 the	vital	 link	between
the	 province	 and	 Paris.	 As	 well	 as	 liaising	 between	 the	 locals	 and	 the
monarch,	 the	 councillors	 made	 sure	 that	 royal	 decrees	 emanating	 from	 the
capital	were	 implemented	back	 in	 the	 regions.	Fermat	was	an	efficient	 civil
servant,	 who	 by	 all	 accounts	 carried	 out	 his	 duties	 in	 a	 considerate	 and
merciful	manner.
Fermat’s	 additional	 duties	 included	 service	 in	 the	 judiciary	 and	 he	 was

senior	enough	to	deal	with	the	most	severe	cases.	An	account	of	his	work	is
given	by	the	English	mathematician,	Sir	Kenelm	Digby.	Digby	had	requested
to	 see	Fermat,	but	 in	a	 letter	 to	a	mutual	 colleague,	 John	Wallis,	he	 reveals
that	 the	 Frenchman	 had	 been	 occupied	 with	 pressing	 judicial	 matters,	 thus
excluding	the	possibility	of	a	meeting:

It	 is	 true	that	I	had	exactly	hit	 the	date	of	the	displacement	of	the	judges	of	Castres	to	Toulouse,
where	he	[Fermat]	is	the	Supreme	Judge	to	the	Sovereign	Court	of	Parliament;	and	since	then	he
has	been	occupied	with	capital	cases	of	great	importance,	in	which	he	has	finished	by	imposing	a
sentence	that	has	made	a	great	stir;	it	concerned	the	condemnation	of	a	priest,	who	had	abused	his



functions,	to	be	burned	at	the	stake.	This	affair	has	just	finished	and	the	execution	has	followed.

Fermat	corresponded	regularly	with	Digby	and	Wallis.	Later	we	will	see	that
the	 letters	were	 often	 less	 than	 friendly,	 but	 they	 provide	 vital	 insights	 into
Fermat’s	daily	life,	including	his	academic	work.
Fermat	 rose	 rapidly	 within	 the	 ranks	 of	 the	 civil	 service	 and	 became	 a

member	of	 the	 social	 élite,	 entitling	him	 to	use	de	 as	part	of	his	name.	His
promotion	was	not	necessarily	 the	 result	of	ambition,	but	 rather	a	matter	of
health.	 The	 plague	 was	 raging	 throughout	 Europe	 and	 those	 who	 survived
were	 elevated	 to	 fill	 the	 places	 of	 those	who	 died.	 Even	 Fermat	 suffered	 a
serious	bout	of	plague	in	1652,	and	was	so	ill	that	his	friend	Bernard	Medon
announced	his	death	to	several	colleagues.	Soon	after	he	corrected	himself	in
a	report	to	the	Dutchman	Nicholas	Heinsius:

I	informed	you	earlier	of	the	death	of	Fermat.	He	is	still	alive,	and	we	no	longer	fear	for	his	health,
even	 though	we	had	counted	him	among	 the	dead	a	 short	 time	ago.	The	plague	no	 longer	 rages
among	us.

In	addition	 to	 the	health	 risks	of	 seventeenth-century	France,	Fermat	had	 to
survive	the	political	dangers.	His	appointment	to	the	Parliament	of	Toulouse
came	just	three	years	after	Cardinal	Richelieu	was	promoted	to	first	minister
of	France.	This	was	an	era	of	plotting	and	intrigue,	and	everyone	involved	in
the	running	of	the	state,	even	at	local	government	level,	had	to	take	care	not	to
become	 embroiled	 in	 the	machinations	 of	 the	Cardinal.	 Fermat	 adopted	 the
strategy	of	performing	duties	efficiently	without	drawing	attention	to	himself.
He	had	no	great	political	 ambition,	 and	did	his	best	 to	 avoid	 the	 rough	and
tumble	of	parliament.	Instead	he	devoted	all	his	spare	energy	to	mathematics
and,	when	not	 sentencing	 priests	 to	 be	 burnt	 at	 the	 stake,	 Fermat	 dedicated
himself	to	his	hobby.	Fermat	was	a	true	amateur	academic,	a	man	whom	E.T.
Bell	called	the	‘Prince	of	Amateurs’.	But	so	great	were	his	talents	that	when
Julian	Coolidge	wrote	Mathematics	of	Great	Amateurs,	 he	 excluded	Fermat
on	 the	 grounds	 that	 he	 was	 ‘so	 really	 great	 that	 he	 should	 count	 as	 a
professional’.
At	 the	 start	 of	 the	 seventeenth	 century,	mathematics	was	 still	 recovering

from	 the	 Dark	 Ages	 and	 was	 not	 a	 highly	 regarded	 subject.	 Similarly
mathematicians	were	not	treated	with	great	respect	and	most	of	them	had	to
fund	their	own	studies.	For	example,	Galileo	was	unable	to	study	mathematics
at	 the	University	of	Pisa	and	was	 forced	 to	 seek	private	 tuition.	 Indeed,	 the
only	 institute	 in	 Europe	 to	 actively	 encourage	 mathematicians	 was	 Oxford
University	which	had	established	the	Savilian	Chair	of	Geometry	in	1619.	It



is	 true	 to	 say	 that	most	 seventeenth-century	mathematicians	were	 amateurs,
but	Fermat	was	an	extreme	case.	Living	far	from	Paris	he	was	isolated	from
the	 small	 community	of	mathematicians	 that	did	exist,	which	 included	 such
figures	 as	 Pascal,	 Gassendi,	 Roberval,	 Beaugrand	 and	 most	 notably	 Father
Marin	Mersenne.
Father	Mersenne	made	only	minor	contributions	to	number	theory	and	yet

he	 played	 a	 role	 in	 seventeenth-century	 mathematics	 which	 was	 arguably
more	 important	 than	any	of	his	more	esteemed	colleagues.	After	 joining	 the
order	of	Minims	in	1611,	Mersenne	studied	mathematics	and	then	taught	the
subject	 to	 other	monks	 and	 to	 nuns	 at	 the	Minim	 convent	 at	Nevers.	 Eight
years	later	he	moved	to	Paris	to	join	the	Minims	de	l’Annociade,	close	to	the
Place	Royale,	a	natural	gathering	place	for	intellectuals.	Inevitably	Mersenne
met	 the	 other	 mathematicians	 of	 Paris,	 but	 he	 was	 saddened	 by	 their
reluctance	to	talk	to	him	or	to	each	other.
The	secretive	nature	of	the	Parisian	mathematicians	was	a	tradition	which

had	been	passed	down	from	the	cossists	of	the	sixteenth	century.	The	cossists
were	experts	in	calculations	of	all	kinds	and	were	employed	by	merchants	and
businessmen	to	solve	complex	accounting	problems.	Their	name	derives	from
the	 Italian	 word	 cosa,	 meaning	 ‘thing’,	 because	 they	 used	 symbols	 to
represent	 an	 unknown	 quantity,	 similar	 to	 the	 way	 mathematicians	 use	 x
today.	All	professional	problem-solvers	of	this	era	invented	their	own	clever
methods	for	performing	calculations	and	would	do	their	utmost	to	keep	these
methods	secret	in	order	to	maintain	their	reputation	as	the	only	person	capable
of	 solving	 a	 particular	 problem.	 On	 one	 exceptional	 occasion	 Niccolò
Tartaglia,	 who	 had	 found	 a	 method	 for	 quickly	 solving	 cubic	 equations,
revealed	 his	 discovery	 to	 Girolamo	 Cardano	 and	 swore	 him	 to	 absolute
secrecy.	Ten	years	later	Cardano	broke	his	promise	and	published	Tartaglia’s
method	 in	 his	Ars	Magna,	 an	 act	which	 Tartaglia	would	 never	 forgive.	He
broke	off	all	relations	with	Cardano	and	a	bitter	public	dispute	ensued,	which
only	served	to	further	encourage	other	mathematicians	to	guard	their	secrets.
The	secretive	nature	of	mathematicians	continued	right	up	until	the	end	of	the
nineteenth	century,	and	as	we	shall	see	later	there	are	even	examples	of	secret
geniuses	working	in	the	twentieth	century.
When	Father	Mersenne	arrived	in	Paris	he	was	determined	to	fight	against

the	ethos	of	secrecy	and	tried	to	encourage	mathematicians	to	exchange	their
ideas	and	build	upon	each	other’s	work.	The	monk	arranged	regular	meetings
and	 his	 group	 later	 formed	 the	 core	 of	 the	 French	Academy.	When	 anyone
refused	to	attend,	Mersenne	would	pass	on	to	the	group	whatever	he	could	by
revealing	letters	and	papers	–	even	if	they	had	been	sent	to	him	in	confidence.
It	was	not	ethical	behaviour	for	a	man	of	the	cloth,	but	he	justified	it	on	the



grounds	 that	 the	 exchange	 of	 information	 would	 benefit	 mathematics	 and
mankind.	These	acts	of	indiscretion	naturally	caused	bitter	arguments	between
the	 well-meaning	 monk	 and	 the	 taciturn	 prima	 donnas,	 and	 eventually
destroyed	Mersenne’s	relationship	with	Descartes	which	had	lasted	since	the
two	men	had	 studied	 together	 at	 the	 Jesuit	College	of	La	Flèche.	Mersenne
had	revealed	philosophical	writings	by	Descartes	which	were	liable	to	offend
the	 Church,	 but	 to	 his	 credit	 he	 did	 defend	 Descartes	 against	 theological
attacks,	 as	 in	 fact	 he	 had	 done	 earlier	 in	 the	 case	 of	 Galileo.	 In	 an	 era
dominated	by	religion	and	magic	Mersenne	stood	up	for	rational	thought.
Mersenne	travelled	throughout	France	and	further	afield,	spreading	news	of

the	latest	discoveries.	In	his	travels	he	would	make	a	point	of	meeting	up	with
Pierre	 de	 Fermat	 and,	 indeed,	 seems	 to	 have	 been	 Fermat’s	 only	 regular
contact	 with	 other	 mathematicians.	 Mersenne’s	 influence	 on	 this	 Prince	 of
Amateurs	 must	 have	 been	 second	 only	 to	 the	 Arithmetica,	 a	 mathematical
treatise	handed	down	 from	 the	ancient	Greeks	which	was	Fermat’s	constant
companion.	Even	when	he	was	unable	to	travel	Mersenne	would	maintain	his
relationship	with	Fermat	and	others	by	writing	prolifically.	After	Mersenne’s
death	 his	 room	 was	 found	 stacked	 with	 letters	 written	 by	 seventy-eight
different	correspondents.
Despite	the	encouragement	of	Father	Mersenne,	Fermat	steadfastly	refused

to	reveal	his	proofs.	Publication	and	recognition	meant	nothing	to	him	and	he
was	satisfied	with	 the	simple	pleasure	of	being	able	 to	create	new	 theorems
undisturbed.	 However,	 the	 shy	 and	 retiring	 genius	 did	 have	 a	 mischievous
streak,	 which,	 when	 combined	 with	 his	 secrecy,	 meant	 that	 when	 he	 did
sometimes	communicate	with	other	mathematicians	it	was	only	to	tease	them.
He	would	write	letters	stating	his	most	recent	theorem	without	providing	the
accompanying	proof.	Then	he	would	challenge	his	contemporaries	to	find	the
proof.	The	fact	that	he	would	never	reveal	his	own	proofs	caused	a	great	deal
of	frustration.	Rene	Descartes	called	Fermat	a	‘braggart’	and	the	Englishman
John	Wallis	referred	to	him	as	‘That	damned	Frenchman’.	Unfortunately	for
the	English,	Fermat	took	particular	pleasure	in	toying	with	his	cousins	across
the	Channel.
As	 well	 as	 having	 the	 satisfaction	 of	 annoying	 his	 colleagues,	 Fermat’s

habit	 of	 stating	 a	 problem	 but	 hiding	 its	 solution	 did	 have	 more	 practical
motivations.	First,	 it	meant	 that	he	did	not	have	to	waste	 time	fully	fleshing
out	 his	 methods;	 instead	 he	 could	 rapidly	 proceed	 to	 his	 next	 conquest.
Furthermore,	 he	 did	 not	 have	 to	 suffer	 jealous	 nit-picking.	Once	 published,
proofs	 would	 be	 examined	 and	 argued	 over	 by	 everyone	 and	 anyone	 who
knew	anything	about	the	subject.	When	Blaise	Pascal	pressed	him	to	publish
some	 of	 his	 work,	 the	 recluse	 replied:	 ‘Whatever	 of	 my	 work	 is	 judged



worthy	of	publication,	 I	do	not	want	my	name	 to	appear	 there.’	Fermat	was
the	secretive	genius	who	sacrificed	fame	in	order	not	to	be	distracted	by	petty
questions	from	his	critics.
This	 exchange	 of	 letters	 with	 Pascal,	 the	 only	 occasion	 when	 Fermat

discussed	 ideas	 with	 anyone	 but	 Mersenne,	 concerned	 the	 creation	 of	 an
entirely	 new	branch	 of	mathematics	 –	 probability	 theory.	The	mathematical
hermit	was	introduced	to	the	subject	by	Pascal,	and	so,	despite	his	desire	for
isolation,	he	felt	obliged	to	maintain	a	dialogue.	Together	Fermat	and	Pascal
would	discover	the	first	proofs	and	cast-iron	certainties	in	probability	theory,
a	 subject	 which	 is	 inherently	 uncertain.	 Pascal’s	 interest	 in	 the	 subject	 had
been	 sparked	 by	 a	 professional	 Parisian	 gambler,	 Antoine	 Gombaud,	 the
Chevalier	 de	Méré,	 who	 had	 posed	 a	 problem	which	 concerned	 a	 game	 of
chance	called	points.	The	game	involves	winning	points	on	the	roll	of	a	dice,
and	 whichever	 player	 is	 the	 first	 to	 earn	 a	 certain	 number	 of	 points	 is	 the
winner	and	takes	the	prize	money.
Gombaud	 had	 been	 involved	 in	 a	 game	 of	 points	 with	 a	 fellow-gambler

when	 they	were	 forced	 to	 abandon	 the	 game	 half-way	 through,	 owing	 to	 a
pressing	engagement.	The	problem	then	arose	as	to	what	to	do	with	the	prize
money.	The	simple	solution	would	have	been	to	have	given	all	the	money	to
the	competitor	with	the	most	points,	but	Gombaud	asked	Pascal	if	there	was	a
fairer	way	to	divide	the	money.	Pascal	was	asked	to	calculate	the	probability
of	 each	 player	 winning	 had	 the	 game	 continued	 and	 assuming	 that	 both
players	would	have	had	an	equal	chance	of	winning	subsequent	points.	The
prize	money	could	then	be	split	according	to	these	calculated	probabilities.
Prior	to	the	seventeenth	century	the	laws	of	probability	were	defined	by	the

intuition	and	experience	of	gamblers,	but	Pascal	entered	into	an	exchange	of
letters	with	Fermat	with	the	aim	of	discovering	the	mathematical	rules	which
more	accurately	describe	 the	 laws	of	 chance.	Three	 centuries	 later	Bertrand
Russell	would	comment	on	this	apparent	oxymoron:	‘How	dare	we	speak	of
the	laws	of	chance?	Is	not	chance	the	antithesis	of	all	law?’
The	Frenchmen	analysed	Gombaud’s	question	and	soon	realised	that	it	was

a	relatively	trivial	problem	which	could	be	solved	by	rigorously	defining	all
the	potential	outcomes	of	the	game	and	assigning	an	individual	probability	to
each	 one.	 Both	 Pascal	 and	 Fermat	 were	 capable	 of	 independently	 solving
Gombaud’s	 problem,	 but	 their	 collaboration	 speeded	 up	 the	 discovery	 of	 a
solution	 and	 led	 them	 to	 a	 deeper	 exploration	 of	 other	 more	 subtle	 and
sophisticated	questions	related	to	probability.
Probability	 problems	 are	 sometimes	 controversial	 because	 the

mathematical	 answer,	 the	 true	 answer,	 is	 often	 contrary	 to	 what	 intuition
might	suggest.	This	failure	of	intuition	is	perhaps	surprising	because	‘survival



of	 the	 fittest’	ought	 to	provide	a	 strong	evolutionary	pressure	 in	 favour	of	a
brain	naturally	capable	of	analysing	questions	of	probability.	You	can	imagine
our	ancestors	stalking	a	young	deer,	and	weighing	up	whether	or	not	to	attack.
What	is	the	risk	that	a	stag	is	nearby	ready	to	defend	its	offspring	and	injure
its	assailant?	On	 the	other	hand	what	 is	 the	chance	 that	a	better	opportunity
for	a	meal	might	arise	if	 this	one	is	judged	too	risky?	A	talent	for	analysing
probability	should	be	part	of	our	genetic	makeup	and	yet	often	our	 intuition
misleads	us.
One	 of	 the	 most	 counterintuitive	 probability	 problems	 concerns	 the

likelihood	of	sharing	birthdays.	Imagine	a	football	pitch	with	23	people	on	it,
the	players	and	the	referee.	What	is	the	probability	that	any	two	of	those	23
people	share	 the	same	birthday?	With	23	people	and	365	birthdays	 to	chose
from,	 it	 would	 seem	 highly	 unlikely	 that	 anybody	 would	 share	 the	 same
birthday.	If	asked	to	put	a	figure	on	it	most	people	would	guess	a	probability
of	perhaps	10%	at	most.	In	fact,	the	actual	answer	is	just	over	50%	–	that	is	to
say,	on	the	balance	of	probability,	it	is	more	likely	than	not	that	two	people	on
the	pitch	will	share	the	same	birthday.
The	 reason	 for	 this	 high	 probability	 is	 that	 what	 matters	 more	 than	 the

number	of	people	is	the	number	of	ways	people	can	be	paired.	When	we	look
for	 a	 shared	 birthday,	 we	 need	 to	 look	 at	 pairs	 of	 people	 not	 individuals.
Whereas	there	are	only	23	people	on	the	pitch,	there	are	253	pairs	of	people.
For	example,	 the	 first	person	can	be	paired	with	any	of	 the	other	22	people
giving	22	pairings	 to	start	with.	Then,	 the	second	person	can	be	paired	with
any	of	the	remaining	21	people	(we	have	already	counted	the	second	person
paired	with	the	first	person	so	the	number	of	possible	pairings	is	reduced	by
one),	 giving	 an	 additional	21	pairings.	Then,	 the	 third	person	 can	be	paired
with	any	of	the	remaining	20	people,	giving	an	additional	20	pairings,	and	so
on	until	we	reach	a	total	of	253	pairs.
The	 fact	 that	 the	 probability	 of	 a	 shared	 birthday	 within	 a	 group	 of	 23

people	is	more	than	50%	seems	intuitively	wrong,	and	yet	it	is	mathematically
undeniable.	 Strange	 probabilities	 such	 as	 this	 are	 exactly	what	 bookmakers
and	gamblers	rely	on	in	order	to	exploit	the	unwary.	The	next	time	you	are	at
a	party	with	more	than	23	people	you	might	want	to	make	a	wager	that	two
people	in	the	room	will	share	a	birthday.	Please	note	that	with	a	group	of	23
people	 the	 probability	 is	 only	 slightly	 more	 than	 50%,	 but	 the	 probability
rapidly	rises	as	the	group	increases	in	size.	Hence,	with	a	party	of	30	people	it
is	certainly	worth	betting	that	two	of	them	will	share	the	same	birthday.
Fermat	and	Pascal	 founded	 the	essential	 rules	which	govern	all	games	of

chance	 and	 which	 can	 be	 used	 by	 gamblers	 to	 define	 perfect	 playing	 and
betting	 strategies.	 Furthermore,	 these	 laws	 of	 probability	 have	 found



applications	 in	a	whole	series	of	situations,	 ranging	from	speculating	on	 the
stock	market	 to	estimating	 the	probability	of	 a	nuclear	 accident.	Pascal	was
even	convinced	 that	he	could	use	his	 theories	 to	 justify	a	belief	 in	God.	He
stated	that	‘the	excitement	that	a	gambler	feels	when	making	a	bet	is	equal	to
the	amount	he	might	win	multiplied	by	the	probability	of	winning	it’.	He	then
argued	 that	 the	possible	prize	of	eternal	happiness	has	an	 infinite	value	and
that	 the	probability	 of	 entering	heaven	by	 leading	 a	 virtuous	 life,	 no	matter
how	 small,	 is	 certainly	 finite.	 Therefore,	 according	 to	 Pascal’s	 definition,
religion	was	 a	 game	 of	 infinite	 excitement	 and	 one	worth	 playing,	 because
multiplying	an	infinite	prize	by	a	finite	probability	results	in	infinity.
As	well	as	sharing	the	parentage	of	probability	theory,	Fermat	was	deeply

involved	in	the	founding	of	another	area	of	mathematics,	calculus.	Calculus	is
the	 ability	 to	 calculate	 the	 rate	 of	 change,	 known	 as	 the	 derivative,	 of	 one
quantity	with	respect	to	another.	For	example,	the	rate	of	change	of	distance
with	 respect	 to	 time	 is	better	known	simply	as	velocity.	For	mathematicians
the	 quantities	 tend	 to	 be	 abstract	 and	 intangible	 but	 the	 consequences	 of
Fermat’s	work	were	 to	 revolutionise	 science.	Fermat’s	mathematics	 enabled
scientists	to	better	understand	the	concept	of	velocity	and	its	relation	to	other
fundamental	quantities	 such	as	acceleration	–	 the	 rate	of	 change	of	velocity
with	respect	to	time.
Economics	is	a	subject	heavily	influenced	by	calculus.	Inflation	is	the	rate

of	 change	 of	 price,	 known	 as	 the	 derivative	 of	 price,	 and	 furthermore
economists	are	often	interested	in	the	rate	of	change	of	inflation,	known	as	the
second	derivative	of	price.	These	terms	are	frequently	used	by	politicians	and
the	mathematician	Hugo	Rossi	 once	 observed	 the	 following:	 ‘In	 the	 fall	 of
1972	 President	 Nixon	 announced	 that	 the	 rate	 of	 increase	 of	 inflation	 was
decreasing.	This	was	the	first	time	a	sitting	president	used	a	third	derivative	to
advance	his	case	for	re-election.’
For	 centuries	 Isaac	 Newton	 was	 thought	 to	 have	 discovered	 calculus

independently	 and	 without	 any	 knowledge	 of	 Fermat’s	 work,	 but	 in	 1934
Louis	Trenchard	Moore	discovered	a	note	which	 set	 the	 record	 straight	 and
gave	 Fermat	 the	 credit	 he	 deserves.	 Newton	 wrote	 that	 he	 developed	 his
calculus	 based	 on	 ‘Monsieur	 Fermat’s	 method	 of	 drawing	 tangents’.	 Ever
since	 the	 seventeenth	 century	 calculus	 has	 been	 used	 to	 describe	Newton’s
law	of	gravity	and	his	laws	of	mechanics,	which	depend	on	distance,	velocity
and	acceleration.
The	 discovery	 of	 calculus	 and	 probability	 theory	would	 have	 been	more

than	enough	to	earn	Fermat	a	place	in	the	mathematicians’	hall	of	fame,	but
his	 greatest	 achievement	 was	 in	 yet	 another	 branch	 of	 mathematics.	While
calculus	 has	 since	 been	 used	 to	 send	 rockets	 to	 the	 moon,	 and	 while



probability	theory	has	been	used	for	risk	assessment	by	insurance	companies,
Fermat’s	greatest	love	was	for	a	subject	which	is	largely	useless	–	the	theory
of	numbers.	Fermat	was	driven	by	an	obsession	to	understand	the	properties
of	and	the	relationships	between	numbers.	This	is	the	purest	and	most	ancient
form	of	mathematics	and	Fermat	was	building	on	a	body	of	knowledge	 that
had	been	handed	down	to	him	from	Pythagoras.

The	Evolution	of	Number	Theory

After	 Pythagoras’	 death	 the	 concept	 of	 mathematical	 proof	 rapidly	 spread
across	the	civilised	world,	and	two	centuries	after	his	School	was	burnt	to	the
ground	the	hub	of	mathematical	study	had	moved	from	Croton	to	the	city	of
Alexandria.	 In	 332	 BC,	 having	 conquered	 Greece,	 Asia	 Minor	 and	 Egypt,
Alexander	the	Great	decided	that	he	would	build	a	capital	city	that	would	be
the	 most	 magnificent	 in	 the	 world.	 Alexandria	 was	 indeed	 a	 spectacular
metropolis	 but	 not	 immediately	 a	 centre	 of	 learning.	 It	 was	 only	 when
Alexander	died	and	his	half-brother	Ptolemy	I	ascended	the	throne	of	Egypt
that	 Alexandria	 became	 home	 to	 the	 world’s	 first-ever	 university.
Mathematicians	 and	 other	 intellectuals	 flocked	 to	 Ptolemy’s	 city	 of	 culture,
and	although	they	were	certainly	drawn	by	the	reputation	of	the	university,	the
main	attraction	was	the	Alexandrian	Library.
The	Library	was	the	idea	of	Demetrius	Phalaerus,	an	unpopular	orator	who

had	 been	 forced	 to	 flee	 Athens,	 and	 who	 eventually	 found	 sanctuary	 in
Alexandria.	 He	 persuaded	 Ptolemy	 to	 gather	 together	 all	 the	 great	 books,
assuring	him	that	the	great	minds	would	follow.	Once	the	tomes	of	Egypt	and
Greece	had	been	installed,	agents	scoured	Europe	and	Asia	Minor	in	search	of
further	volumes	of	knowledge.	Even	tourists	to	Alexandria	could	not	escape
the	voracious	appetite	of	the	Library.	Upon	entering	the	city,	their	books	were
confiscated	and	taken	to	the	scribes.	The	books	were	copied	so	that	while	the
original	was	donated	to	the	Library,	a	duplicate	could	graciously	be	given	to
the	original	owner.	This	meticulous	 replication	service	 for	ancient	 travellers
gives	today’s	historians	some	hope	that	a	copy	of	a	great	lost	text	will	one	day
turn	up	in	an	attic	somewhere	in	the	world.	In	1906	J.L.	Heiberg	discovered	in
Constantinople	just	such	a	manuscript,	The	Method,	which	contained	some	of
Archimedes’	original	writings.
Ptolemy’s	dream	of	building	a	treasure	house	of	knowledge	lived	on	after

his	death,	and	by	the	time	a	few	more	Ptolemys	had	ascended	the	throne	the
Library	 contained	 over	 600,000	 books.	 Mathematicians	 could	 learn
everything	in	the	known	world	by	studying	at	Alexandria,	and	there	to	teach



them	 were	 the	 most	 famous	 academics.	 The	 first	 head	 of	 the	 mathematics
department	was	none	other	than	Euclid.
Euclid	was	born	 in	about	330	BC.	Like	Pythagoras,	Euclid	believed	 in	 the

search	 for	 mathematical	 truth	 for	 its	 own	 sake	 and	 did	 not	 look	 for
applications	 in	 his	 work.	 One	 story	 tells	 of	 a	 student	 who	 questioned	 him
about	 the	 use	 of	 the	 mathematics	 he	 was	 learning.	 Upon	 completing	 the
lesson,	Euclid	 turned	 to	 his	 slave	 and	 said,	 ‘Give	 the	boy	 a	 penny	 since	he
desires	to	profit	from	all	that	he	learns.’	The	student	was	then	expelled.
Euclid	 devoted	 much	 of	 his	 life	 to	 writing	 the	 Elements,	 the	 most

successful	textbook	in	history.	Until	this	century	it	was	also	the	second	best-
selling	 book	 in	 the	world	 after	 the	Bible.	The	Elements	 consists	 of	 thirteen
books,	some	of	which	are	devoted	to	Euclid’s	own	work,	and	the	remainder
being	a	compilation	of	all	the	mathematical	knowledge	of	the	age,	including
two	volumes	devoted	entirely	 to	 the	works	of	 the	Pythagorean	Brotherhood.
In	 the	 centuries	 since	Pythagoras,	mathematicians	had	 invented	 a	variety	of
logical	 techniques	 which	 could	 be	 applied	 in	 different	 circumstances,	 and
Euclid	 skilfully	 employed	 them	 all	 in	 the	 Elements.	 In	 particular	 Euclid
exploited	 a	 logical	 weapon	 known	 as	 reductio	 ad	 absurdum,	 or	 proof	 by
contradiction.	 The	 approach	 revolves	 around	 the	 perverse	 idea	 of	 trying	 to
prove	 that	a	 theorem	is	 true	by	first	assuming	that	 the	 theorem	is	false.	The
mathematician	 then	 explores	 the	 logical	 consequences	of	 the	 theorem	being
false.	At	some	point	along	the	chain	of	logic	there	is	a	contradiction	(e.g.	2	+
2	=	5).	Mathematics	abhors	a	contradiction	and	therefore	the	original	theorem
cannot	be	false,	i.e.	it	must	be	true.
The	English	mathematician	G.H.	Hardy	encapsulated	the	spirit	of	proof	by

contradiction	 in	 his	 book	 A	 Mathematician’s	 Apology:	 ‘Reductio	 ad
absurdum,	which	 Euclid	 loved	 so	much,	 is	 one	 of	 a	mathematician’s	 finest
weapons.	It	is	a	far	finer	gambit	than	any	chess	play:	a	chess	player	may	offer
the	sacrifice	of	a	pawn	or	even	a	piece,	but	a	mathematician	offers	the	game.’
One	 of	 Euclid’s	 most	 famous	 proofs	 by	 contradiction	 established	 the

existence	 of	 so-called	 irrational	 numbers.	 It	 is	 suspected	 that	 irrational
numbers	 were	 originally	 discovered	 by	 the	 Pythagorean	 Brotherhood
centuries	 earlier,	 but	 the	 concept	 was	 so	 abhorrent	 to	 Pythagoras	 that	 he
denied	their	existence.
When	 Pythagoras	 claimed	 that	 the	 universe	 is	 governed	 by	 numbers	 he

meant	 whole	 numbers	 and	 ratios	 of	 whole	 numbers	 (fractions)	 together
known	as	rational	numbers.	An	irrational	number	is	a	number	that	is	neither	a
whole	 number	 nor	 a	 fraction,	 and	 this	 is	 what	 made	 it	 so	 horrific	 to
Pythagoras.	 In	 fact,	 irrational	 numbers	 are	 so	 strange	 that	 they	 cannot	 be
written	down	as	decimals,	even	recurring	decimals.	A	recurring	decimal	such



as	0.111111	…	is	in	fact	a	fairly	straightforward	number,	and	is	equivalent	to
the	 fraction	 1⁄9.	 The	 fact	 that	 the	 ‘1’	 repeats	 itself	 forever	 means	 that	 the
decimal	has	a	very	simple	and	regular	pattern.	This	regularity,	despite	the	fact
that	 it	 continues	 to	 infinity,	 means	 that	 the	 decimal	 can	 be	 rewritten	 as	 a
fraction.	However,	if	you	attempt	to	express	an	irrational	number	as	a	decimal
you	 end	 up	 with	 a	 number	 which	 continues	 forever	 with	 no	 regular	 or
consistent	pattern.
The	 concept	 of	 an	 irrational	 number	 was	 a	 tremendous	 breakthrough.

Mathematicians	 were	 looking	 beyond	 the	 whole	 numbers	 and	 fractions
around	 them,	 and	 discovering,	 or	 perhaps	 inventing,	 new	 ones.	 The
nineteenth-century	 mathematician	 Leopold	 Kronecker	 said,	 ‘God	 made	 the
integers;	all	the	rest	is	the	work	of	man.’
The	 most	 famous	 irrational	 number	 is	 π.	 In	 schools	 it	 is	 sometimes

approximated	 by	 31⁄7	 or	 3.14;	 however,	 the	 true	 value	 of	 π	 is	 nearer
3.14159265358979323846,	but	even	this	is	only	an	approximation.	In	fact,	π
can	never	be	written	down	exactly	because	the	decimal	places	go	on	forever
without	any	pattern.	A	beautiful	feature	of	this	random	pattern	is	that	it	can	be
computed	using	an	equation	which	is	supremely	regular:

By	calculating	 the	 first	 few	 terms,	you	can	obtain	a	very	 rough	value	 for	π,
but	 by	 calculating	 more	 and	 more	 terms	 an	 increasingly	 accurate	 value	 is
achieved.	Although	knowing	π	to	39	decimal	places	is	sufficient	to	calculate
the	circumference	of	the	universe	accurate	to	the	radius	of	a	hydrogen	atom,
this	 has	 not	 prevented	 computer	 scientists	 from	 calculating	 π	 to	 as	 many
decimal	places	as	possible.	The	current	record	is	held	by	Yasumasa	Kanada	of
the	 University	 of	 Tokyo	 who	 calculated	 π	 to	 six	 billion	 decimal	 places	 in
1996.	 Recently	 rumours	 have	 suggested	 that	 the	 Russian	 Chudnovsky
brothers	 in	New	York	have	 calculated	π	 to	 eight	 billion	decimal	 places	 and
that	 they	 are	 aiming	 to	 reach	 a	 trillion	 decimal	 places.	 However,	 even	 if
Kanada	 or	 the	 Chudnovsky	 brothers	 carried	 on	 calculating	 until	 their
computers	 sapped	 all	 the	 energy	 in	 the	 universe,	 they	 would	 still	 not	 have
found	the	exact	value	of	π.	It	is	easy	to	appreciate	why	Pythagoras	conspired
to	hide	the	existence	of	these	mathematical	beasts.
	



The	value	of	π	to	over	1500	decimal	places

When	Euclid	dared	to	confront	the	issue	of	irrationality	in	the	tenth	volume
of	 the	Elements	 the	 goal	was	 to	 prove	 that	 there	 could	 be	 a	 number	which
could	 never	 be	 written	 as	 a	 fraction.	 Instead	 of	 trying	 to	 prove	 that	 π	 is
irrational,	he	examined	the	square	root	of	two,	√2	–	the	number	which	when
multiplied	 by	 itself	 is	 equal	 to	 two.	 In	 order	 to	 prove	 that	 √2	 could	 not	 be
written	 as	 a	 fraction	 Euclid	 used	 reductio	 ad	 absurdum	 and	 began	 by
assuming	that	it	could	be	written	as	a	fraction.	He	then	demonstrated	that	this
hypothetical	fraction	could	be	simplified.	Simplification	of	a	fraction	means,
for	example,	that	the	fraction	8⁄12	can	be	simplified	to	4⁄6	by	dividing	top	and
bottom	by	2.	 In	 turn	4⁄6	can	be	simplified	 to	2⁄3,	which	cannot	be	 simplified
any	further	and	therefore	 the	fraction	is	 then	said	 to	be	 in	 its	simplest	form.
However,	Euclid	showed	that	his	hypothetical	fraction,	which	was	supposed
to	represent	√2,	could	be	simplified	not	just	once,	but	over	and	over	again	an



infinite	number	of	 times	without	 ever	 reducing	 to	 its	 simplest	 form.	This	 is
absurd	 because	 all	 fractions	 must	 eventually	 have	 a	 simplest	 form,	 and
therefore	 the	 hypothetical	 fraction	 cannot	 exist.	 Therefore	 √2	 cannot	 be
written	as	a	fraction	and	is	irrational.	An	outline	of	Euclid’s	proof	is	given	in
Appendix	2.
By	using	proof	by	contradiction	Euclid	was	able	to	prove	the	existence	of

irrational	numbers.	For	the	first	time	numbers	had	taken	on	a	new	and	more
abstract	quality.	Until	this	point	in	history	all	numbers	could	be	expressed	as
whole	 numbers	 or	 fractions,	 but	 Euclid’s	 irrational	 numbers	 defied
representation	in	the	traditional	manner.	There	is	no	other	way	to	describe	the
number	 equal	 to	 the	 square	 root	 of	 two	 other	 than	 by	 expressing	 it	 as	 √2,
because	 it	 cannot	 be	 written	 as	 a	 fraction	 and	 any	 attempt	 to	 write	 it	 as	 a
decimal	could	only	ever	be	an	approximation,	e.g.	1.414213562373	…
For	 Pythagoras,	 the	 beauty	 of	 mathematics	 was	 the	 idea	 that	 rational

numbers	(whole	numbers	and	fractions)	could	explain	all	natural	phenomena.
This	 guiding	 philosophy	 blinded	 Pythagoras	 to	 the	 existence	 of	 irrational
numbers	 and	may	even	have	 led	 to	 the	 execution	of	one	of	his	pupils.	One
story	 claims	 that	 a	young	 student	by	 the	name	of	Hippasus	was	 idly	 toying
with	the	number	√2,	attempting	to	find	the	equivalent	fraction.	Eventually	he
came	 to	 realise	 that	 no	 such	 fraction	 existed,	 i.e.	 that	 √2	 is	 an	 irrational
number.	Hippasus	must	have	been	overjoyed	by	his	discovery,	but	his	master
was	 not.	 Pythagoras	 had	 defined	 the	 universe	 in	 terms	 of	 rational	 numbers,
and	 the	 existence	of	 irrational	numbers	brought	his	 ideal	 into	question.	The
consequence	of	Hippasus’	insight	should	have	been	a	period	of	discussion	and
contemplation	during	which	Pythagoras	ought	to	have	come	to	terms	with	this
new	source	of	numbers.	However,	Pythagoras	was	unwilling	to	accept	that	he
was	wrong,	but	at	the	same	time	he	was	unable	to	destroy	Hippasus’	argument
by	the	power	of	logic.	To	his	eternal	shame	he	sentenced	Hippasus	to	death	by
drowning.
The	 father	 of	 logic	 and	 the	 mathematical	 method	 had	 resorted	 to	 force

rather	 than	admit	he	was	wrong.	Pythagoras’	denial	of	 irrational	numbers	 is
his	 most	 disgraceful	 act	 and	 perhaps	 the	 greatest	 tragedy	 of	 Greek
mathematics.	 It	 was	 only	 after	 his	 death	 that	 irrationals	 could	 be	 safely
resurrected.
Although	Euclid	clearly	had	an	interest	in	the	theory	of	numbers,	it	was	not

his	greatest	contribution	to	mathematics.	Euclid’s	true	passion	was	geometry,
and	 of	 the	 thirteen	 volumes	 that	 make	 up	 the	 Elements,	 books	 I	 to	 VI
concentrate	on	plane	(two-dimensional)	geometry	and	books	XI	to	XIII	deal
with	 solid	 (three-dimensional)	 geometry.	 It	 is	 such	 a	 complete	 body	 of
knowledge	 that	 the	 contents	 of	 the	 Elements	 would	 form	 the	 geometry



syllabus	in	schools	and	universities	for	the	next	two	thousand	years.
The	mathematician	 who	 compiled	 the	 equivalent	 text	 for	 number	 theory

was	Diophantus	of	Alexandria,	the	last	champion	of	the	Greek	mathematical
tradition.	 Although	 Diophantus’	 achievements	 in	 number	 theory	 are	 well
documented	 in	 his	 books,	 virtually	 nothing	 else	 is	 known	 about	 this
formidable	mathematician.	His	 place	 of	 birth	 is	 unknown	 and	 his	 arrival	 in
Alexandria	 could	 have	 been	 any	 time	within	 a	 five-century	window.	 In	 his
writings	Diophantus	quotes	Hypsicles	and	therefore	he	must	have	lived	after
150	BC;	on	the	other	hand	his	own	work	is	quoted	by	Theon	of	Alexandria	and
therefore	he	must	have	lived	before	AD	364.	A	date	around	AD	250	is	generally
accepted	as	being	a	sensible	estimate.	Appropriately	for	a	problem-solver,	the
one	detail	of	Diophantus’	life	that	has	survived	is	in	the	form	of	a	riddle	said
to	have	been	carved	on	his	tomb:

God	granted	him	 to	be	a	boy	 for	 the	 sixth	part	of	his	 life,	 and	adding	a	 twelfth	part	 to	 this,	He
clothed	his	cheeks	with	down;	He	lit	him	the	light	of	wedlock	after	a	seventh	part,	and	five	years
after	his	marriage	He	granted	him	a	son.	Alas!	late-born	wretched	child;	after	attaining	the	measure
of	 half	 his	 father’s	 full	 life,	 chill	 Fate	 took	 him.	 After	 consoling	 his	 grief	 by	 this	 science	 of
numbers	for	four	years	he	ended	his	life.

The	challenge	is	to	calculate	Diophantus’	life	span.	The	answer	can	be	found
in	Appendix	3.
This	riddle	is	an	example	of	the	sort	of	problem	that	Diophantus	relished.

His	speciality	was	to	tackle	questions	which	required	whole	number	solutions,
and	 today	such	questions	are	 referred	 to	as	Diophantine	problems.	He	spent
his	 career	 in	Alexandria	 collecting	well-understood	 problems	 and	 inventing
new	 ones,	 and	 then	 compiled	 them	 all	 into	 a	 major	 treatise	 entitled
Arithmetica.	Of	 the	 thirteen	books	which	made	up	 the	Arithmetica,	only	six
would	 survive	 the	 turmoils	 of	 the	 Dark	 Ages	 and	 go	 on	 to	 inspire	 the
Renaissance	 mathematicians,	 including	 Pierre	 de	 Fermat.	 The	 remaining
seven	books	would	be	lost	during	a	series	of	tragic	events	which	would	send
mathematics	back	to	the	age	of	the	Babylonians.
During	the	centuries	between	Euclid	and	Diophantus,	Alexandria	remained

the	 intellectual	 capital	 of	 the	 civilised	world,	 but	 throughout	 this	 period	 the
city	was	continually	under	threat	from	foreign	armies.	The	first	major	attack
occurred	 in	47	BC,	when	 Julius	Caesar	 attempted	 to	overthrow	Cleopatra	by
setting	fire	to	the	Alexandrian	fleet.	The	Library,	which	was	located	near	the
harbour,	 also	 caught	 alight,	 and	 hundreds	 of	 thousands	 of	 books	 were
destroyed.	Fortunately	for	mathematics	Cleopatra	appreciated	the	importance
of	knowledge	and	was	determined	to	restore	 the	Library	 to	 its	 former	glory.



Mark	Antony	realised	that	the	way	to	an	intellectual’s	heart	is	via	her	library,
and	 so	marched	 to	 the	 city	 of	 Pergamum.	 This	 city	 had	 already	 initiated	 a
library	which	it	hoped	would	provide	it	with	the	best	collection	in	the	world,
but	instead	Mark	Antony	transplanted	the	entire	stock	to	Egypt,	restoring	the
supremacy	of	Alexandria.
For	the	next	four	centuries	the	Library	continued	to	accumulate	books	until

in	AD	389	it	 received	the	first	of	 two	fatal	blows,	both	 the	result	of	religious
bigotry.	 The	 Christian	 Emperor	 Theodosius	 ordered	 Theophilus,	 Bishop	 of
Alexandria,	 to	destroy	all	 pagan	monuments.	Unfortunately	when	Cleopatra
rebuilt	 and	 restocked	 the	Library,	 she	 decided	 to	 house	 it	 in	 the	 Temple	 of
Serapis,	and	so	the	Library	became	caught	up	in	the	destruction	of	icons	and
altars.	 The	 ‘pagan’	 scholars	 attempted	 to	 save	 six	 centuries-worth	 of
knowledge,	 but	 before	 they	 could	 do	 anything	 they	 were	 butchered	 by	 the
Christian	mob.	The	descent	into	the	Dark	Ages	had	begun.
A	 few	 precious	 copies	 of	 the	 most	 vital	 books	 survived	 the	 Christian

onslaught	and	scholars	continued	to	visit	Alexandria	in	search	of	knowledge.
Then	 in	 642	 a	 Moslem	 attack	 succeeded	 where	 the	 Christians	 had	 failed.
When	 asked	 what	 should	 be	 done	 with	 the	 Library,	 the	 victorious	 Caliph
Omar	commanded	that	those	books	that	were	contrary	to	the	Koran	should	be
destroyed,	 and	 furthermore	 those	 books	 that	 conformed	 to	 the	 Koran	 were
superfluous	 and	 they	 too	must	 be	 destroyed.	The	manuscripts	were	 used	 to
stoke	the	furnaces	which	heated	the	public	baths	and	Greek	mathematics	went
up	 in	 smoke.	 It	 is	 not	 surprising	 that	 most	 of	 Diophantus’	 work	 was
destroyed;	in	fact	it	is	a	miracle	that	six	volumes	of	the	Arithmetica	managed
to	survive	the	tragedy	of	Alexandria.
For	the	next	thousand	years	mathematics	in	the	West	was	in	the	doldrums,

and	only	a	handful	of	 luminaries	 in	 India	and	Arabia	kept	 the	subject	alive.
They	copied	 the	 formulae	described	 in	 the	 surviving	manuscripts	of	Greece
and	then	began	to	reinvent	for	themselves	many	of	the	theorems	that	had	been
lost.	 They	 also	 added	 new	 elements	 to	 mathematics,	 including	 the	 number
zero.
In	modern	mathematics	zero	performs	two	functions.	First,	 it	allows	us	to

distinguish	between	numbers	like	52	and	502.	In	a	system	where	the	position
of	 a	 number	 denotes	 its	 value,	 a	 symbol	 is	 needed	 to	 confirm	 an	 empty
position.	 For	 instance,	 52	 represents	 5	 times	 ten	 plus	 2	 times	 one,	whereas
502	represents	5	 times	a	hundred	plus	0	 times	 ten	plus	2	 times	one,	and	the
zero	is	crucial	for	removing	any	ambiguity.	Even	the	Babylonians	in	the	third
millennium	BC	appreciated	the	use	of	zero	to	avoid	confusion,	and	the	Greeks
adopted	 their	 idea,	using	a	circular	 symbol	 similar	 to	 the	one	we	use	 today.
However,	 zero	 has	 a	 more	 subtle	 and	 deeper	 significance	 which	 was	 only



fully	appreciated	several	centuries	 later	by	 the	mathematicians	of	India.	The
Hindus	 recognised	 that	 zero	had	 an	 independent	 existence	beyond	 the	mere
spacing	role	among	the	other	numbers	–	zero	was	a	number	in	its	own	right.	It
represented	 a	 quantity	 of	 nothing.	 For	 the	 first	 time	 the	 abstract	 concept	 of
nothingness	had	been	given	a	tangible	symbolic	representation.
This	may	seem	a	trivial	step	forward	to	the	modern	reader,	but	the	deeper

meaning	 of	 the	 zero	 symbol	 had	 been	 ignored	 by	 all	 the	 ancient	 Greek
philosophers,	including	Aristotle.	He	had	argued	that	the	number	zero	should
be	 outlawed	 because	 it	 disrupted	 the	 consistency	 of	 the	 other	 numbers	 –
dividing	any	ordinary	number	by	zero	led	to	an	incomprehensible	result.	By
the	sixth	century	 the	 Indian	mathematicians	no	 longer	brushed	 this	problem
under	 the	 rug,	 and	 the	 seventh-century	 scholar	 Brahmagupta	 was
sophisticated	enough	to	use	division	by	zero	as	a	definition	for	infinity.
While	Europe	had	abandoned	the	noble	search	for	truth,	India	and	Arabia

were	 consolidating	 the	 knowledge	 which	 had	 been	 smuggled	 out	 of	 the
embers	of	Alexandria	and	were	reinterpreting	it	in	a	new	and	more	eloquent
language.	 As	 well	 as	 adding	 zero	 to	 the	 mathematical	 vocabulary,	 they
replaced	the	primitive	Greek	symbols	and	cumbersome	Roman	numerals	with
the	 counting	 system	which	 has	 now	 been	 universally	 adopted.	 Once	 again,
this	 might	 seem	 like	 an	 absurdly	 humble	 step	 forward,	 but	 try	multiplying
CLV	 by	DCI	 and	 you	will	 appreciate	 the	 significance	 of	 the	 breakthrough.
The	 equivalent	 task	 of	multiplying	 155	 by	 601	 is	 a	 good	 deal	 simpler.	 The
growth	of	any	discipline	depends	on	the	ability	to	communicate	and	develop
ideas,	and	this	in	turn	relies	on	a	language	which	is	sufficiently	detailed	and
flexible.	 The	 ideas	 of	 Pythagoras	 and	 Euclid	were	 no	 less	 elegant	 for	 their
awkward	 expression,	 but	 translated	 into	 the	 symbols	 of	 Arabia	 they	would
blossom	and	give	fruit	to	newer	and	richer	concepts.
In	the	tenth	century	the	French	scholar	Gerbert	of	Aurillac	learnt	 the	new

counting	system	from	the	Moors	of	Spain	and	through	his	teaching	positions
at	churches	and	schools	throughout	Europe	he	was	able	to	introduce	the	new
system	to	the	West.	In	999	he	was	elected	Pope	Sylvester	II,	an	appointment
which	 allowed	 him	 to	 further	 encourage	 the	 use	 of	 Indo-Arabic	 numerals.
Although	 the	 efficiency	 of	 the	 system	 revolutionised	 accounting	 and	 was
rapidly	 adopted	 by	merchants,	 it	 did	 little	 to	 inspire	 a	 revival	 in	 European
mathematics.
The	vital	turning	point	for	Western	mathematics	occurred	in	1453	when	the

Turks	 ransacked	 Constantinople.	 During	 the	 intervening	 years	 the
manuscripts	 which	 had	 survived	 the	 desecration	 of	 Alexandria	 had
congregated	 in	 Constantinople,	 but	 once	 again	 they	 were	 threatened	 with
destruction.	Byzantine	scholars	fled	westward	with	whatever	texts	they	could



preserve.	 Having	 survived	 the	 onslaught	 of	 Caesar,	 Bishop	 Theophilus,
Caliph	Omar	and	now	the	Turks,	a	few	precious	volumes	of	the	Arithmetica
made	 their	 way	 back	 to	 Europe.	 Diophantus	 was	 destined	 for	 the	 desk	 of
Pierre	de	Fermat.

Birth	of	a	Riddle

Fermat’s	 judicial	 responsibilities	occupied	a	great	deal	of	his	 time,	but	what
little	 leisure	 he	 had	 was	 devoted	 entirely	 to	 mathematics.	 This	 was	 partly
because	 judges	 in	 seventeenth-century	 France	 were	 discouraged	 from
socialising	on	 the	grounds	 that	 friends	 and	 acquaintances	might	 one	day	be
called	 before	 the	 court.	 Fraternising	 with	 the	 locals	 would	 only	 lead	 to
favouritism.	 Isolated	 from	 the	 rest	 of	Toulouse’s	high	 society,	Fermat	 could
concentrate	on	his	hobby.
There	is	no	record	of	Fermat	ever	being	inspired	by	a	mathematical	tutor;

instead	 it	 was	 a	 copy	 of	 the	 Arithmetica	 which	 became	 his	 mentor.	 The
Arithmetica	 sought	 to	 describe	 the	 theory	 of	 numbers,	 as	 it	 was	 in
Diophantus’	time,	via	a	series	of	problems	and	solutions.	In	effect	Diophantus
was	 presenting	 Fermat	 with	 one	 thousand	 years	 worth	 of	 mathematical
understanding.	 In	 one	 book	 Fermat	 could	 find	 the	 entire	 knowledge	 of
numbers	as	constructed	by	the	likes	of	Pythagoras	and	Euclid.	The	theory	of
numbers	 had	 stood	 still	 ever	 since	 the	 barbaric	 burning	 of	 Alexandria,	 but
now	 Fermat	 was	 ready	 to	 resume	 study	 of	 the	 most	 fundamental	 of
mathematical	disciplines.
The	Arithmetica	 which	 inspired	 Fermat	was	 a	 Latin	 translation	made	 by

Claude	Gaspar	Bachet	de	Méziriac,	reputedly	the	most	learned	man	in	all	of
France.	As	well	as	being	a	brilliant	linguist,	poet	and	classics	scholar,	Bachet
had	 a	 passion	 for	 mathematical	 puzzles.	 His	 first	 publication	 was	 a
compilation	of	puzzles	entitled	Problemes	plaisans	et	délectables	qui	se	font
par	 les	 nombres,	 which	 included	 river-crossing	 problems,	 a	 liquid-pouring
problem	and	several	think-of-a-number	tricks.	One	of	the	questions	posed	was
a	problem	about	weights:

What	is	the	least	number	of	weights	that	can	be	used	on	a	set	of	scales	to	weigh	any	whole	number
of	kilograms	from	1	to	40?

Bachet	had	a	cunning	solution	which	shows	that	it	is	possible	to	achieve	this
task	with	only	four	weights.	His	solution	is	given	in	Appendix	4.
Although	 he	 was	 merely	 a	 mathematical	 dilettante,	 Bachet’s	 interest	 in



puzzles	was	enough	for	him	to	realise	that	Diophantus’	list	of	problems	were
on	 a	 higher	 plane	 and	 worthy	 of	 deeper	 study.	 He	 set	 himself	 the	 task	 of
translating	Diophantus’	 opus	 and	 publishing	 it	 so	 that	 the	 techniques	 of	 the
Greeks	 could	 be	 rekindled.	 It	 is	 important	 to	 realise	 that	 vast	 quantities	 of
ancient	 mathematical	 knowledge	 had	 been	 completely	 forgotten.	 Higher
mathematics	was	not	taught	in	even	the	greatest	European	universities	and	it
is	 only	 thanks	 to	 the	 efforts	 of	 scholars	 such	 as	 Bachet	 that	 so	 much	was
revived	 so	 rapidly.	 In	1621	when	Bachet	published	 the	Latin	version	of	 the
Arithmetica,	he	was	contributing	to	the	second	golden	age	of	mathematics.
The	 Arithmetica	 contains	 over	 one	 hundred	 problems	 and	 for	 each	 one

Diophantus	gives	a	detailed	solution.	This	level	of	conscientiousness	was	not
a	habit	which	Fermat	ever	picked	up.	Fermat	was	not	interested	in	writing	a
textbook	 for	 future	generations:	he	merely	wanted	 to	 satisfy	himself	 that	he
had	solved	a	problem.	While	studying	Diophantus’	problems	and	solutions,	he
would	 be	 inspired	 to	 think	 of	 and	 tackle	 other	 related	 and	 more	 subtle
questions.	Fermat	would	scribble	down	whatever	was	necessary	 to	convince
himself	that	he	could	see	the	solution	and	then	he	would	not	bother	to	write
down	the	remainder	of	the	proof.	More	often	than	not	he	would	consign	his
inspirational	 jottings	 to	 the	 bin,	 and	 then	 move	 on	 to	 the	 next	 problem.
Fortunately	 for	 us,	 Bachet’s	 publication	 of	 the	 Arithmetica	 contained
generous	margins	on	every	page,	and	sometimes	Fermat	would	hastily	write
logic	and	comments	 in	 these	columns.	These	marginal	notes	would	become
an	 invaluable,	 if	 somewhat	 scanty,	 record	 of	 Fermat’s	 most	 brilliant
calculations.
One	of	Fermat’s	discoveries	 concerned	 the	 so-called	 friendly	numbers,	or

amicable	 numbers,	 closely	 related	 to	 the	 perfect	 numbers	 which	 had
fascinated	Pythagoras	two	thousand	years	earlier.	Friendly	numbers	are	pairs
of	 numbers	 such	 that	 each	 number	 is	 the	 sum	 of	 the	 divisors	 of	 the	 other
number.	The	Pythagoreans	made	the	extraordinary	discovery	that	220	and	284
are	friendly	numbers.	The	divisors	of	220	are	1,	2,	4,	5,	10,	11,	20,	22,	44,	55,
110,	and	the	sum	of	all	these	is	284.	On	the	other	hand	the	divisors	of	284	are
1,	2,	4,	71,	142,	and	the	sum	of	all	these	is	220.
The	 pair	 220	 and	 284	 was	 said	 to	 be	 symbolic	 of	 friendship.	 Martin

Gardner’s	 book	 Mathematical	 Magic	 Show	 tells	 of	 talismans	 sold	 in	 the
Middle	Ages	which	were	 inscribed	with	 these	numbers	on	 the	grounds	 that
wearing	 the	 charms	would	promote	 love.	An	Arab	numerologist	 documents
the	practice	of	carving	220	on	one	fruit	and	284	on	another,	and	then	eating
the	first	one	and	offering	the	second	one	to	a	lover	as	a	form	of	mathematical
aphrodisiac.	Early	theologians	noted	that	in	Genesis	Jacob	gave	220	goats	to
Esau.	They	believed	that	the	number	of	goats,	one	half	of	a	friendly	pair,	was



an	expression	of	Jacob’s	love	for	Esau.
No	 other	 friendly	 numbers	 were	 identified	 until	 1636	 when	 Fermat

discovered	the	pair	17,296	and	18,416.	Although	not	a	profound	discovery,	it
demonstrates	Fermat’s	familiarity	with	numbers	and	his	love	of	playing	with
them.	Fermat	started	a	fad	for	finding	friendly	numbers;	Descartes	discovered
a	 third	 pair	 (9,363,584	 and	 9,437,056)	 and	 Leonhard	 Euler	 went	 on	 to	 list
sixty-two	amicable	pairs.	Curiously	 they	had	all	overlooked	a	much	smaller
pair	of	friendly	numbers.	In	1866	a	sixteen-year-old	Italian,	Nicolò	Paganini,
discovered	the	pair	1,184	and	1,210.
During	 the	 twentieth	 century	 mathematicians	 have	 extended	 the	 idea

further	 and	 have	 searched	 for	 so-called	 ‘sociable’	 numbers,	 three	 or	 more
numbers	which	 form	a	 closed	 loop.	For	 example,	 in	 the	 loop	of	 5	 numbers
(12,496;	14,288;	15,472;	14,536;	14,264)	the	divisors	of	the	first	number	add
up	to	the	second,	the	divisors	of	the	second	add	to	the	third,	the	divisors	of	the
third	add	up	to	the	fourth,	the	divisors	of	the	fourth	add	up	to	the	fifth,	and	the
divisors	of	the	fifth	add	up	to	the	first.
Although	 discovering	 a	 new	 pair	 of	 friendly	 numbers	 made	 Fermat

something	of	a	celebrity,	his	reputation	was	truly	confirmed	thanks	to	a	series
of	 mathematical	 challenges.	 For	 example,	 Fermat	 noticed	 that	 26	 is
sandwiched	between	25	and	27,	one	of	which	is	a	square	number	(25	=	52	=	5
×	5)	and	the	other	is	a	cube	number	(27	=	33	=	3	×	3	×	3).	He	searched	for
other	numbers	sandwiched	between	a	square	and	a	cube	but	failed	to	find	any,
and	 suspected	 that	 26	 might	 be	 unique.	 After	 days	 of	 strenuous	 effort	 he
managed	to	construct	an	elaborate	argument	which	proved	without	any	doubt
that	26	is	indeed	the	only	number	between	a	square	and	a	cube.	His	step-by-
step	logical	proof	established	that	no	other	numbers	could	fulfil	this	criterion.
Fermat	 announced	 this	 unique	 property	 of	 26	 to	 the	 mathematical

community,	 and	 then	 challenged	 them	 to	 prove	 that	 this	 was	 the	 case.	 He
openly	admitted	that	he	himself	had	a	proof;	the	question	was,	however,	did
others	have	the	ingenuity	to	match	it?	Despite	the	simplicity	of	the	claim	the
proof	is	fiendishly	complicated,	and	Fermat	took	particular	delight	in	taunting
the	English	mathematicians	Wallis	 and	Digby,	who	 eventually	 had	 to	 admit
defeat.	 Ultimately	 Fermat’s	 greatest	 claim	 to	 fame	 would	 turn	 out	 to	 be
another	challenge	to	the	rest	of	the	world.	However,	it	would	be	an	accidental
riddle	which	was	never	intended	for	public	discussion.

The	Marginal	Note

While	studying	Book	II	of	the	Arithmetica	Fermat	came	upon	a	whole	series



of	 observations,	 problems	 and	 solutions	 which	 concerned	 Pythagoras’
theorem	 and	 Pythagorean	 triples.	 For	 instance,	 Diophantus	 discussed	 the
existence	 of	 particular	 triples	 which	 formed	 so-called	 ‘limping	 triangles’,
ones	in	which	the	two	shorter	legs	x	and	y	differ	only	by	one	(e.g.	x	=	20,	y	=
21,	z	=	29	and	202	+	212	=	292).
Fermat	was	struck	by	the	variety	and	sheer	quantity	of	Pythagorean	triples.

He	 was	 aware	 that	 centuries	 earlier	 Euclid	 had	 stated	 a	 proof,	 outlined	 in
Appendix	5,	which	demonstrated	that,	in	fact,	there	are	an	infinite	number	of
Pythagorean	 triples.	 Fermat	 must	 have	 gazed	 at	 Diophantus’	 detailed
exposition	of	Pythagorean	triples	and	wondered	what	there	was	to	add	to	the
subject.	As	he	stared	at	the	page	he	began	to	play	with	Pythagoras’	equation,
trying	 to	 discover	 something	which	 had	 evaded	 the	Greeks.	 Suddenly,	 in	 a
moment	 of	 genius	 which	 would	 immortalise	 the	 Prince	 of	 Amateurs,	 he
created	an	equation	which,	 though	very	similar	 to	Pythagoras’	equation,	had
no	 solutions	 at	 all.	 This	 was	 the	 equation	 which	 the	 ten-year-old	 Andrew
Wiles	read	about	in	the	Milton	Road	Library.
Instead	of	considering	the	equation

Fermat	was	contemplating	a	variant	of	Pythagoras’	creation:

As	mentioned	in	the	last	chapter,	Fermat	had	merely	changed	the	power	from
2	 to	3,	 the	 square	 to	a	cube,	but	his	new	equation	apparently	had	no	whole
number	 solutions	 whatsoever.	 Trial	 and	 error	 soon	 shows	 the	 difficulty	 of
finding	 two	 cubed	 numbers	 which	 add	 together	 to	 make	 another	 cubed
number.	 Could	 it	 really	 be	 the	 case	 that	 this	 minor	 modification	 turns
Pythagoras’	 equation,	 one	 with	 an	 infinite	 number	 of	 solutions,	 into	 an
equation	with	no	solutions?
He	altered	 the	equation	 further	by	changing	 the	power	 to	numbers	bigger

than	3,	and	discovered	that	finding	a	solution	to	each	of	these	equations	was
equally	difficult.	According	to	Fermat	there	appeared	to	be	no	three	numbers
which	would	perfectly	fit	the	equation

In	 the	margin	of	his	Arithmetica,	 next	 to	Problem	8,	 he	made	 a	 note	 of	 his
observation:



Cubem	autem	 in	 duos	 cubos,	 aut	 quadratoquadratum	 in	 duos	 quadratoquadratos,	 et	 generaliter
nullam	in	infinitum	ultra	quadratum	potestatem	in	duos	eiusdem	nominis	fas	est	dividere.

It	is	impossible	for	a	cube	to	be	written	as	a	sum	of	two	cubes	or	a	fourth	power	to	be	written	as	the
sum	of	two	fourth	powers	or,	in	general,	for	any	number	which	is	a	power	greater	than	the	second
to	be	written	as	a	sum	of	two	like	powers.

Among	all	 the	possible	numbers	 there	 seemed	 to	be	no	 reason	why	at	 least
one	set	of	solutions	could	not	be	found,	yet	Fermat	stated	that	nowhere	in	the
infinite	 universe	 of	 numbers	 was	 there	 a	 ‘Fermatean	 triple’.	 It	 was	 an
extraordinary	claim,	but	one	which	Fermat	believed	he	could	prove.	After	the
first	marginal	note	outlining	 the	 theory,	 the	mischievous	genius	 jotted	down
an	additional	comment	which	would	haunt	generations	of	mathematicians:

Cuius	rei	demonstrationem	mirabilem	sane	detexi	hanc	marginis	exiguitas	non	caperet.

I	 have	 a	 truly	marvellous	 demonstration	 of	 this	 proposition	which	 this	margin	 is	 too	 narrow	 to
contain.

This	was	Fermat	at	his	most	infuriating.	His	own	words	suggest	that	he	was
particularly	pleased	with	this	‘truly	marvellous’	proof,	but	he	had	no	intention
of	bothering	to	write	out	the	detail	of	the	argument,	never	mind	publishing	it.
He	 never	 told	 anyone	 about	 his	 proof,	 and	 yet	 despite	 his	 combination	 of
indolence	 and	modesty	 Fermat’s	 Last	 Theorem,	 as	 it	would	 later	 be	 called,
would	become	famous	around	the	world	for	centuries	to	come.

The	Last	Theorem	Published	at	Last

Fermat’s	 notorious	 discovery	 happened	 early	 in	 his	mathematical	 career,	 in
around	1637.	Some	thirty	years	later,	while	carrying	out	his	judicial	duties	in
the	 town	of	Castres,	Fermat	was	 taken	 seriously	 ill.	On	9	 January	1665,	he
signed	 his	 last	 arrêt,	 and	 three	 days	 later	 he	 died.	 Still	 isolated	 from	 the
Parisian	school	of	mathematics	and	not	necessarily	fondly	remembered	by	his
frustrated	 correspondents,	 Fermat’s	 discoveries	 were	 at	 risk	 of	 being	 lost
forever.	 Fortunately	 Fermat’s	 eldest	 son,	 Clément-Samuel,	 who	 appreciated
the	 significance	 of	 his	 father’s	 hobby,	 was	 determined	 that	 his	 discoveries
should	 not	 be	 lost	 to	 the	 world.	 It	 is	 thanks	 to	 his	 efforts	 that	 we	 know
anything	 at	 all	 about	 Fermat’s	 remarkable	 breakthroughs	 in	 number	 theory



and,	 in	 particular,	 if	 it	were	 not	 for	Clément-Samuel,	 the	 enigma	 known	 as
Fermat’s	Last	Theorem	would	have	died	with	its	creator.
Clément-Samuel	 spent	 five	 years	 collecting	 his	 father’s	 notes	 and	 letters,

and	examining	the	jottings	in	the	margins	of	his	copy	of	the	Arithmetica.	The
marginal	 note	 referring	 to	 Fermat’s	 Last	 Theorem	 was	 just	 one	 of	 many
inspirational	 thoughts	scribbled	in	 the	book,	and	Clément-Samuel	undertook
to	publish	these	annotations	in	a	special	edition	of	the	Arithmetica.	In	1670	at
Toulouse	 he	 brought	 out	Diophantus’	 Arithmetica	 Containing	 Observations
by	 P.	 de	 Fermat.	 Alongside	 Bachet’s	 original	 Greek	 and	 Latin	 translations
were	forty-eight	observations	made	by	Fermat,	one	of	which	was	to	become
known	as	Fermat’s	Last	Theorem.
Once	Fermat’s	Observations	reached	the	wider	community,	it	was	clear	that

the	letters	he	had	sent	to	colleagues	represented	mere	morsels	from	a	treasure
trove	of	discovery.	His	personal	notes	contained	a	whole	series	of	theorems.
Unfortunately	 these	 were	 accompanied	 either	 with	 no	 explanation	 at	 all	 or
with	 only	 a	 slight	 hint	 of	 the	 underlying	 proof.	 There	 were	 just	 enough
tantalising	glimpses	of	logic	to	leave	mathematicians	in	no	doubt	that	Fermat
had	proofs,	but	filling	in	 the	details	was	 left	as	a	challenge	for	 them	to	 take
up.
Leonhard	 Euler,	 one	 of	 the	 greatest	 mathematicians	 of	 the	 eighteenth

century,	 attempted	 to	 prove	 one	 of	 Fermat’s	 most	 elegant	 observations,	 a
theorem	 concerning	 prime	 numbers.	 A	 prime	 number	 is	 one	 which	 has	 no
divisors	–	no	number	will	divide	into	it	without	a	remainder,	except	for	1	and
the	number	itself.	For	instance,	13	is	a	prime	number,	but	14	is	not.	Nothing
will	divide	into	13,	but	2	and	7	will	divide	into	14.	All	prime	numbers	(except
2)	can	be	put	into	two	categories;	those	which	equal	4n	+	1	and	those	which
equal	4n	–	1,	where	n	equals	some	number.	So	13	is	in	the	former	group	(4	×
3	+	1),	whereas	19	is	in	the	latter	group	(4	×	5	–	1).	Fermat’s	prime	theorem
claimed	that	the	first	type	of	primes	were	always	the	sum	of	two	squares	(13	=
22	+	32),	whereas	the	second	type	could	never	be	written	in	this	way	(19	=	?2
+	?2).	This	property	of	primes	is	beautifully	simple,	but	trying	to	prove	that	it
is	true	for	every	single	prime	number	turns	out	to	be	remarkably	difficult.	For
Fermat	it	was	just	one	of	many	private	proofs.	The	challenge	for	Euler	was	to
rediscover	 Fermat’s	 proof.	 Eventually	 in	 1749,	 after	 seven	 years	 work	 and
almost	a	century	after	Fermat’s	death,	Euler	succeeded	in	proving	this	prime
number	theorem.
Fermat’s	panoply	of	 theorems	ranged	from	the	fundamental	 to	 the	simply

amusing.	Mathematicians	rank	the	importance	of	theorems	according	to	their
impact	on	the	rest	of	mathematics.	First,	a	theorem	is	considered	important	if
it	 has	 a	 universal	 truth,	 that	 is	 to	 say,	 if	 it	 applies	 to	 an	 entire	 group	 of



numbers.	In	the	case	of	the	prime	number	theorem,	it	is	true	not	for	just	some
prime	numbers,	 but	 for	 all	 prime	 numbers.	 Second,	 theorems	 should	 reveal
some	 deeper	 underlying	 truth	 about	 the	 relationship	 between	 numbers.	 A
theorem	can	be	the	springboard	for	generating	a	whole	host	of	other	theorems,
even	 inspiring	 the	 development	 of	 whole	 new	 branches	 of	 mathematics.
Finally,	a	theorem	is	important	if	entire	areas	of	research	can	be	hindered	for
the	 lack	of	one	 logical	 link.	Many	mathematicians	have	cried	 themselves	 to
sleep	 knowing	 that	 they	 could	 achieve	 a	 major	 result	 if	 only	 they	 could
establish	one	missing	link	in	their	chain	of	logic.
Because	 mathematicians	 employ	 theorems	 as	 stepping	 stones	 to	 other

results,	it	was	essential	that	every	single	one	of	Fermat’s	theorems	be	proved.
Just	because	Fermat	said	he	had	a	proof	of	a	theorem	it	could	not	be	accepted
at	 face	value.	Before	 it	 could	be	used,	 each	 theorem	had	 to	be	proved	with
ruthless	 rigour,	 otherwise	 the	 consequences	 could	have	been	disastrous.	For
example,	 imagine	 that	 mathematicians	 had	 accepted	 one	 of	 Fermat’s
theorems.	It	would	then	be	incorporated	as	a	single	element	in	a	whole	series
of	other	larger	proofs.	In	due	course	these	larger	proofs	would	be	incorporated
into	 even	 larger	 proofs,	 and	 so	 on.	 Ultimately	 hundreds	 of	 theorems	 could
come	to	rely	on	the	truth	of	the	original	unchecked	theorem.	However,	what	if
Fermat	had	made	a	mistake	and	 the	unchecked	theorem	was	 in	fact	 flawed?
All	these	other	theorems	which	incorporated	it	would	also	be	flawed,	and	vast
areas	 of	 mathematics	 would	 collapse.	 Theorems	 are	 the	 foundations	 of
mathematics,	because	once	their	truth	has	been	established	other	theorems	can
safely	 be	 built	 on	 top	 of	 them.	 Unsubstantiated	 ideas	 are	 infinitely	 less
valuable	 and	 are	 referred	 to	 as	 conjectures.	 Any	 logic	 which	 relies	 on	 a
conjecture	is	itself	a	conjecture.
Fermat	 said	he	had	a	proof	 for	 every	one	of	his	observations,	 so	 for	him

they	were	theorems.	However,	until	the	community	at	large	could	rediscover
the	individual	proofs	each	one	could	only	be	considered	a	conjecture.	In	fact
for	 the	 last	 350	 years	 Fermat’s	 Last	 Theorem	 should	more	 accurately	 have
been	referred	to	as	Fermat’s	Last	Conjecture.
As	the	centuries	passed,	all	his	other	observations	were	proved	one	by	one,

but	Fermat’s	Last	Theorem	stubbornly	refused	to	give	in	so	easily.	In	fact,	it	is
called	the	‘Last’	Theorem	because	it	remains	the	last	one	of	the	observations
to	be	proved.	Three	centuries	of	effort	failed	to	find	a	proof,	and	this	led	to	its
notoriety	 as	 the	 most	 demanding	 riddle	 in	 mathematics.	 However,	 this
acknowledged	 difficulty	 does	 not	 necessarily	 mean	 that	 Fermat’s	 Last
Theorem	 is	 an	 important	 theorem	 in	 the	 ways	 described	 earlier.	 The	 Last
Theorem,	at	least	until	very	recently,	seemed	to	fail	to	fulfil	several	criteria	–
it	 seemed	 that	proving	 it	would	not	 lead	 to	anything	profound,	 it	would	not



give	any	particularly	deep	insight	about	numbers,	and	it	would	not	help	prove
any	other	conjectures.
The	fame	of	Fermat’s	Last	Theorem	comes	solely	from	the	sheer	difficulty

of	 proving	 it.	 An	 extra	 sparkle	 is	 added	 by	 the	 fact	 that	 the	 Prince	 of
Amateurs	 said	 that	 he	 could	 prove	 this	 theorem	 which	 has	 since	 baffled
generations	 of	 professional	 mathematicians.	 Fermat’s	 offhand	 comments	 in
the	margin	 of	 his	 copy	 of	 the	Arithmetica	 were	 read	 as	 a	 challenge	 to	 the
world.	 He	 had	 proved	 the	 Last	 Theorem:	 the	 question	 was,	 could	 any
mathematician	match	his	brilliance?
G.H.	Hardy	had	a	whimsical	 sense	of	humour	and	dreamt	up	what	 could

have	been	an	equally	frustrating	legacy.	Hardy’s	challenge	was	in	the	form	of
an	insurance	policy	to	help	him	cope	with	his	fear	of	travelling	on	ships.	If	he
ever	 had	 to	 journey	 across	 the	 sea	 he	 would	 first	 send	 a	 telegram	 to	 a
colleague	saying:

HAVE	SOLVED	RIEMANN	HYPOTHESIS	STOP

WILL	GIVE	DETAILS	UPON	RETURN	STOP

The	 Riemann	 hypothesis	 is	 a	 problem	 which	 has	 plagued	 mathematicians
since	 the	nineteenth	century.	Hardy’s	 logic	was	 that	God	would	never	allow
him	 to	 drown	 because	 it	 would	 leave	mathematicians	 haunted	 by	 a	 second
terrible	phantom.
Fermat’s	Last	Theorem	is	a	problem	of	 immense	difficulty,	and	yet	 it	can

be	 stated	 in	 a	 form	 that	 a	 schoolchild	 can	 understand.	 There	 can	 be	 no
problem	 in	 physics,	 chemistry	 or	 biology	 which	 can	 be	 so	 simply	 and
unambiguously	 stated	 and	which	 has	 remained	 unsolved	 for	 so	 long.	 In	 his
book	 The	 Last	 Problem,	 E.T.	 Bell	 wrote	 that	 civilisation	 would	 probably
come	 to	 an	 end	 before	 Fermat’s	 Last	 Theorem	 could	 be	 solved.	 Proving
Fermat’s	Last	Theorem	has	become	the	most	valuable	prize	in	number	theory,
and	not	 surprisingly	 it	 has	 led	 to	 some	of	 the	most	 exciting	episodes	 in	 the
history	of	mathematics.	The	search	for	a	proof	of	Fermat’s	Last	Theorem	has
involved	the	greatest	minds	on	the	planet,	huge	rewards,	suicidal	despair	and
duelling	at	dawn.
The	 riddle’s	 status	 has	 gone	 beyond	 the	 closed	world	 of	mathematics.	 In

1958	it	even	made	 its	way	into	a	Faustian	 tale.	An	anthology	entitled	Deals
with	the	Devil	contains	a	short	story	written	by	Arthur	Porges.	In	‘The	Devil
and	Simon	Flagg’	 the	Devil	 asks	Simon	Flagg	 to	 set	 him	 a	 question.	 If	 the
Devil	 succeeds	 in	 answering	 it	 within	 twenty-four	 hours	 then	 he	 takes
Simon’s	soul,	but	if	he	fails	then	he	must	give	Simon	$100,000.	Simon	poses
the	question:	 ‘Is	Fermat’s	Last	Theorem	correct?’	The	Devil	disappears	 and



whizzes	around	the	world	to	absorb	every	piece	of	mathematics	that	has	ever
been	created.	The	following	day	he	returns	and	admits	defeat:

‘You	win,	Simon,’	he	said,	almost	in	a	whisper,	eyeing	him	with	ungrudging	respect.	‘Not	even	I
can	learn	enough	mathematics	in	such	a	short	time	for	so	difficult	a	problem.	The	more	I	got	into	it
the	worse	it	became.	Non-unique	factoring,	ideals	–	Bah!	Do	you	know,’	the	Devil	confided,	‘not
even	 the	 best	mathematicians	 on	 other	 planets	 –	 all	 far	 ahead	 of	 yours	 –	 have	 solved	 it?	Why,
there’s	 a	 chap	 on	 Saturn	 –	 he	 looks	 something	 like	 a	mushroom	 on	 stilts	 –	 who	 solves	 partial
differential	equations	mentally;	and	even	he’s	given	up.’



3
A	Mathematical	Disgrace

Mathematics	 is	 not	 a	 careful	march	 down	 a	well-cleared	 highway,	 but	 a	 journey	 into	 a	 strange
wilderness,	where	the	explorers	often	get	 lost.	Rigour	should	be	a	signal	 to	 the	historian	that	 the
maps	have	been	made,	and	the	real	explorers	have	gone	elsewhere.

W.S.	Anglin

‘Since	 I	 first	 met	 Fermat’s	 Last	 Theorem	 as	 a	 child	 it’s	 been	 my	 greatest
passion,’	recalls	Andrew	Wiles,	in	a	hesitant	voice	which	conveys	the	emotion
he	feels	about	the	problem.	‘I’d	found	this	problem	which	had	been	unsolved
for	 three	hundred	years.	 I	 don’t	 think	many	of	my	 schoolfriends	 caught	 the
mathematics	 bug,	 so	 I	 didn’t	 discuss	 it	 with	my	 contemporaries.	 But	 I	 did
have	a	teacher	who	had	done	research	in	mathematics	and	he	gave	me	a	book
about	number	theory	that	gave	me	some	clues	about	how	to	start	tackling	it.
To	begin	with	I	worked	on	the	assumption	that	Fermat	didn’t	know	very	much
more	mathematics	 than	I	would	have	known.	I	 tried	to	find	his	 lost	solution
by	using	the	kind	of	methods	he	might	have	used.’
Wiles	was	a	child	full	of	innocence	and	ambition,	who	saw	an	opportunity

to	 succeed	 where	 generations	 of	 mathematicians	 had	 failed.	 To	 others	 this
might	 have	 seemed	 like	 a	 foolhardy	dream	but	 young	Andrew	was	 right	 in
thinking	 that	he,	a	 twentieth-century	schoolboy,	knew	as	much	mathematics
as	 Pierre	 de	 Fermat,	 a	 genius	 of	 the	 seventeenth	 century.	 Perhaps	 in	 his
naïvety	he	would	stumble	upon	a	proof	which	other	more	sophisticated	minds
had	missed.
Despite	 his	 enthusiasm	 every	 calculation	 resulted	 in	 a	 dead	 end.	 Having

racked	 his	 brains	 and	 sifted	 through	 his	 schoolbooks	 he	 was	 achieving
nothing.	After	a	year	of	 failure	he	changed	his	 strategy	and	decided	 that	he
might	 be	 able	 to	 learn	 something	 from	 the	mistakes	 of	 other	more	 eminent
mathematicians.	‘Fermat’s	Last	Theorem	has	this	incredible	romantic	history
to	 it.	 Many	 people	 have	 thought	 about	 it,	 and	 the	 more	 that	 great
mathematicians	 in	 the	 past	 have	 tried	 and	 failed	 to	 solve	 the	 problem,	 the
more	 of	 a	 challenge	 and	 the	 more	 of	 a	 mystery	 it’s	 become.	 Many
mathematicians	had	 tried	 it	 in	so	many	different	ways	 in	 the	eighteenth	and
nineteenth	centuries,	and	so	as	a	teenager	I	decided	that	I	ought	to	study	those



methods	and	try	to	understand	what	they’d	been	doing.’
Young	Wiles	examined	the	approaches	of	everyone	who	had	ever	made	a

serious	 attempt	 to	 prove	Fermat’s	Last	Theorem.	He	began	by	 studying	 the
work	of	the	most	prolific	mathematician	in	history	and	the	first	one	to	make	a
breakthrough	in	the	battle	against	Fermat.

The	Mathematical	Cyclops

Creating	mathematics	is	a	painful	and	mysterious	experience.	Often	the	object
of	the	proof	is	clear,	but	the	route	is	shrouded	in	fog,	and	the	mathematician
stumbles	 through	 a	 calculation,	 terrified	 that	 each	 step	might	 be	 taking	 the
argument	in	completely	the	wrong	direction.	Additionally	there	is	the	fear	that
no	 route	 exists.	 A	mathematician	may	 believe	 that	 a	 statement	 is	 true,	 and
spend	years	trying	to	prove	that	it	is	indeed	true,	when	all	along	it	is	actually
false.	 The	 mathematician	 has	 effectively	 been	 attempting	 to	 prove	 the
impossible.
In	the	entire	history	of	the	subject	only	a	handful	of	mathematicians	appear

to	have	avoided	the	self-doubt	which	intimidates	their	colleagues.	Perhaps	the
most	 notable	 example	 of	 such	 a	 mathematician	 was	 the	 eighteenth-century
genius	 Leonhard	 Euler,	 and	 it	 was	 he	 who	 made	 the	 first	 breakthrough
towards	 proving	 Fermat’s	 Last	 Theorem.	 Euler	 had	 such	 an	 incredible
intuition	and	vast	memory	that	it	was	said	he	could	map	out	the	entire	bulk	of
a	calculation	in	his	head	without	having	to	put	pen	to	paper.	Across	Europe	he
was	referred	to	as	‘analysis	incarnate’,	and	the	French	academician	François
Arago	 said,	 ‘Euler	 calculated	without	 apparent	 effort	 as	men	 breathe,	 or	 as
eagles	sustain	themselves	in	the	wind.’
Leonhard	Euler	was	born	 in	Basle	 in	1707,	 the	 son	of	 a	Calvinist	pastor,

Paul	 Euler.	 Although	 the	 young	 Euler	 showed	 a	 prodigious	 talent	 for
mathematics,	 his	 father	 was	 determined	 that	 he	 should	 study	 theology	 and
pursue	 a	 career	 in	 the	 Church.	 Leonhard	 dutifully	 obeyed	 and	 studied
theology	and	Hebrew	at	the	University	of	Basle.
Fortunately	 for	 Euler	 the	 town	 of	 Basle	 was	 also	 home	 to	 the	 eminent

Bernoulli	clan.	The	Bernoullis	could	easily	claim	to	be	the	most	mathematical
of	 families,	 creating	 eight	 of	 Europe’s	most	 outstanding	minds	within	 only
three	 generations	 –	 some	 have	 said	 that	 the	 Bernoulli	 family	 was	 to
mathematics	what	 the	Bach	family	was	to	music.	Their	fame	spread	beyond
the	mathematical	community	and	one	particular	legend	typifies	the	profile	of
the	family.	Daniel	Bernoulli	was	once	travelling	across	Europe	and	had	struck
up	 a	 conversation	 with	 a	 stranger.	 After	 a	 while	 he	 modestly	 introduced



himself:	 ‘I	 am	Daniel	 Bernoulli.’	 ‘And	 I,’	 said	 his	 companion	 sarcastically,
‘am	Isaac	Newton.’	Daniel	fondly	recalled	this	incident	on	several	occasions,
considering	it	the	most	sincere	tribute	he	had	ever	received.
Daniel	and	Nikolaus	Bernoulli	were	close	 friends	of	Leonhard	Euler,	 and

they	realised	that	the	most	brilliant	of	mathematicians	was	being	turned	into
the	most	mediocre	of	theologians.	They	appealed	to	Paul	Euler	and	requested
that	 Leonhard	 be	 allowed	 to	 forsake	 the	 cloth	 in	 favour	 of	 numbers.	 Euler
senior	 had	 in	 the	 past	 been	 taught	mathematics	 by	Bernoulli	 senior,	 Jakob,
and	had	a	tremendous	respect	for	the	family.	Reluctantly	he	accepted	that	his
son	had	been	born	to	calculate,	not	preach.
Leonhard	 Euler	 soon	 left	 Switzerland	 for	 the	 palaces	 of	 Berlin	 and	 St

Petersburg,	where	he	was	to	spend	the	bulk	of	his	creative	years.	During	the
era	of	Fermat,	mathematicians	were	considered	amateur	number-jugglers,	but
by	the	eighteenth	century	 they	were	 treated	as	professional	problem-solvers.
The	 culture	 of	 numbers	 had	 changed	 dramatically,	 and	 this	 was	 partly	 a
consequence	of	Sir	Isaac	Newton	and	his	scientific	calculations.
Newton	believed	that	mathematicians	were	wasting	their	time	teasing	each

other	 with	 pointless	 riddles.	 Instead	 he	 would	 apply	 mathematics	 to	 the
physical	world	and	calculate	everything	from	the	orbits	of	the	planets	to	the
trajectories	of	 cannon-balls.	By	 the	 time	Newton	died,	 in	1727,	Europe	had
undergone	 a	 scientific	 revolution,	 and	 in	 the	 same	year	Euler	 published	 his
first	paper.	Although	the	paper	contained	elegant	and	innovative	mathematics,
it	 was	 primarily	 aimed	 at	 describing	 a	 solution	 to	 a	 technical	 problem
regarding	the	masting	of	ships.
The	European	powers	were	not	interested	in	using	mathematics	to	explore

esoteric	and	abstract	concepts;	instead	they	wanted	to	exploit	mathematics	to
solve	practical	problems,	and	they	competed	to	employ	the	best	minds.	Euler
began	his	career	with	the	Czars,	before	being	invited	to	the	Berlin	Academy
by	Frederick	the	Great	of	Prussia.	Eventually	he	returned	to	Russia,	under	the
rule	of	Catherine	the	Great,	where	he	spent	his	final	years.	During	his	career
he	 tackled	a	multitude	of	problems,	ranging	from	navigation	 to	finance,	and
from	acoustics	 to	 irrigation.	The	practical	world	of	problem-solving	did	not
dull	 Euler’s	 mathematical	 ability.	 Instead	 tackling	 each	 new	 task	 would
inspire	 him	 to	 create	 innovative	 and	 ingenious	 mathematics.	 His	 single-
minded	passion	 drove	 him	 to	write	 several	 papers	 in	 a	 single	 day,	 and	 it	 is
said	 that	 between	 the	 first	 and	 second	 calls	 for	 dinner	 he	would	 attempt	 to
dash	 off	 a	 complete	 calculation	 worthy	 of	 publication.	 Not	 a	 moment	 was
wasted	and	even	when	he	was	cradling	an	infant	in	one	hand	Euler	would	be
outlining	a	proof	with	the	other.
One	 of	 Euler’s	 greatest	 achievements	 was	 the	 development	 of	 the



algorithmic	method.	The	point	of	Euler’s	algorithms	was	to	tackle	apparently
impossible	 problems.	 One	 such	 problem	 was	 predicting	 the	 phases	 of	 the
moon	 far	 into	 the	 future	with	 high	 accuracy	 –	 information	which	 could	 be
used	to	draw	up	vital	navigation	tables.	Newton	had	already	shown	that	it	is
relatively	easy	to	predict	the	orbit	of	one	body	around	another,	but	in	the	case
of	the	moon	the	situation	is	not	so	simple.	The	moon	orbits	the	earth,	but	there
is	 a	 third	 body,	 the	 sun,	 which	 complicates	matters	 enormously.	While	 the
earth	and	moon	attract	each	other,	 the	sun	perturbs	 the	position	of	 the	earth
and	has	a	knock-on	effect	on	the	orbit	of	the	moon.	Equations	could	be	used
to	 pin	 down	 the	 effect	 of	 any	 two	 of	 the	 bodies,	 but	 eighteenth-century
mathematicians	 could	 not	 incorporate	 the	 third	 body	 into	 their	 calculations.
Even	 today	 it	 is	 impossible	 to	 predict	 the	 exact	 solution	 to	 the	 so-called
‘three-body	problem’.
Euler	 realised	 that	mariners	did	not	need	 to	know	 the	phase	of	 the	moon

with	 absolute	 accuracy,	 only	 with	 enough	 precision	 to	 locate	 their	 own
position	 to	 within	 a	 few	 nautical	 miles.	 Consequently	 Euler	 developed	 a
recipe	 for	 generating	 an	 imperfect	 but	 sufficiently	 accurate	 solution.	 The
recipe,	known	as	an	algorithm,	worked	by	first	obtaining	a	 rough-and-ready
result,	which	 could	 then	 be	 fed	 back	 into	 the	 algorithm	 to	 generate	 a	more
refined	result.	This	refined	result	could	then	be	fed	back	into	the	algorithm	to
generate	an	even	more	accurate	result,	and	so	on.	A	hundred	or	so	iterations
later	Euler	was	able	 to	provide	a	position	 for	 the	moon	which	was	accurate
enough	 for	 the	 purposes	 of	 the	 navy.	 He	 gave	 his	 algorithm	 to	 the	 British
Admiralty	and	in	return	they	rewarded	him	with	a	prize	of	£300.
Euler	earned	a	 reputation	 for	being	able	 to	 solve	any	problem	which	was

posed,	 a	 talent	 which	 seemed	 to	 extend	 even	 beyond	 the	 realm	 of	 science.
During	his	stint	at	 the	court	of	Catherine	the	Great	he	encountered	the	great
French	 philosopher	 Denis	 Diderot.	 Diderot	 was	 a	 committed	 atheist	 and
would	 spend	 his	 days	 converting	 the	 Russians	 to	 atheism.	 This	 infuriated
Catherine,	 who	 asked	 Euler	 to	 put	 a	 stop	 to	 the	 efforts	 of	 the	 godless
Frenchman.
Euler	gave	 the	matter	some	 thought	and	claimed	 that	he	had	an	algebraic

proof	for	the	existence	of	God.	Catherine	the	Great	invited	Euler	and	Diderot
to	 the	palace	 and	gathered	 together	her	 courtiers	 to	 listen	 to	 the	 theological
debate.	Euler	stood	before	the	audience	and	announced:

With	no	great	understanding	of	algebra,	Diderot	was	unable	to	argue	against



the	greatest	mathematician	in	Europe	and	was	left	speechless.	Humiliated,	he
left	 St	 Petersburg	 and	 returned	 to	 Paris.	 In	 his	 absence,	 Euler	 continued	 to
enjoy	his	return	to	theological	study	and	published	several	other	mock	proofs
concerning	the	nature	of	God	and	the	human	spirit.	

Figure	5.	The	River	Pregel	divides	the	town	of	Königsberg	into	four	seperate	parts,	A,	B,	C	and	D.
Seven	bridges	connect	the	various	parts	of	the	town,	and	a	local	riddle	asked	if	it	was	possible	to	make	a

journey	such	that	each	bridge	is	crossed	once	and	only	once.

A	 more	 valid	 problem	 which	 also	 appealed	 to	 Euler’s	 whimsical	 nature
concerned	the	Prussian	city	of	Königsberg,	now	known	as	the	Russian	city	of
Kaliningrad.	The	city	is	built	on	the	banks	of	the	river	Pregel	and	consists	of
four	separate	quarters	connected	by	seven	bridges.	Figure	5	shows	the	layout
of	the	city.	Some	of	the	more	curious	residents	of	Königsberg	wondered	if	it
was	possible	to	plot	a	journey	across	all	seven	bridges	without	having	to	stroll
across	 any	bridge	more	 than	once.	The	citizens	of	Königsberg	 tried	various
routes	 but	 each	 one	 ended	 in	 failure.	 Euler	 also	 failed	 to	 find	 a	 successful
route,	 but	 he	was	 successful	 in	 explaining	why	making	 such	 a	 journey	was
impossible.	

Figure	6.	A	simplified	representation	of	the	bridges	of	Königsberg



Euler	began	with	a	plan	of	 the	city,	and	from	it	he	generated	a	simplified
representation	 in	 which	 the	 sections	 of	 land	 were	 reduced	 to	 points	 and
bridges	were	replaced	by	lines,	as	shown	in	Figure	6.	He	then	argued	that,	in
general,	 in	order	 to	make	a	successful	 journey	(i.e.	crossing	all	bridges	only
once)	a	point	should	be	connected	to	an	even	number	of	lines.	This	is	because
in	the	middle	of	a	journey	when	the	traveller	passes	through	a	land	mass,	he
or	she	must	enter	via	one	bridge	and	then	leave	via	a	different	bridge.	There
are	only	two	exceptions	 to	 this	rule	–	when	a	 traveller	either	begins	or	ends
the	 journey.	At	 the	 start	 of	 the	 journey	 the	 traveller	 leaves	 a	 land	mass	 and
requires	only	a	single	bridge	to	exit,	and	at	the	end	of	the	journey	the	traveller
arrives	at	a	land	mass	and	requires	only	a	single	bridge	to	enter.	If	the	journey
begins	and	ends	in	different	locations,	then	these	two	land	masses	are	allowed
to	have	an	odd	number	of	bridges.	But	if	the	journey	begins	and	ends	in	the
same	 place,	 then	 this	 point,	 like	 all	 the	 other	 points,	 must	 have	 an	 even
number	of	bridges.
So,	in	general,	Euler	concluded	that,	for	any	network	of	bridges,	it	is	only

possible	to	make	a	complete	journey	crossing	each	bridge	only	once	if	all	the
landmasses	have	an	even	number	of	bridges,	or	exactly	two	land	masses	have
an	 odd	 number	 of	 bridges.	 In	 the	 case	 of	 Königsberg	 there	 are	 four	 land
masses	in	total	and	all	of	them	are	connected	to	an	odd	number	of	bridges	–
three	points	have	three	bridges,	and	one	has	five	bridges.	Euler	had	been	able
to	explain	why	 it	was	 impossible	 to	cross	each	one	of	Königsberg’s	bridges
once	and	only	once,	and	furthermore	he	had	generated	a	rule	which	could	be
applied	 to	any	network	of	bridges	 in	any	city	 in	 the	world.	The	argument	 is
beautifully	simple,	and	was	perhaps	just	the	sort	of	logical	problem	that	Euler
dashed	off	before	dinner.
The	Königsberg	 bridge	 puzzle	 is	 a	 so-called	 network	 problem	 in	 applied

mathematics,	 but	 it	 inspired	 Euler	 to	 consider	 more	 abstract	 networks.	 He
went	 on	 to	 discover	 a	 fundamental	 truth	 about	 all	 networks,	 the	 so-called
network	 formula,	which	he	could	prove	with	 just	a	handful	of	 logical	 steps.
The	 network	 formula	 shows	 an	 eternal	 relationship	 between	 the	 three
properties	which	describe	any	network:

where
V	=	the	number	of	vertices	(intersections)	in	the	network,
L	=	the	number	of	lines	in	the	network,
R	=	the	number	of	regions	(enclosed	areas)	in	the	network.



Euler	claimed	that	for	any	network	one	could	add	the	number	of	vertices	and
regions	and	subtract	the	number	of	lines	and	the	total	would	always	be	1.	For
example,	all	the	networks	in	Figure	7	obey	the	rule.	

Figure	7.	All	conceivable	networks	obey	Euler’s	network	formula.

It	is	possible	to	imagine	testing	this	formula	on	a	whole	series	of	networks
and	if	it	turned	out	to	be	true	on	each	occasion	it	would	be	tempting	to	assume
that	 the	 formula	 is	 true	 for	 all	 networks.	 Although	 this	 might	 be	 enough
evidence	 for	 a	 scientific	 theory,	 it	 is	 inadequate	 to	 justify	 a	 mathematical
theorem.	 The	 only	 way	 to	 show	 that	 the	 formula	 works	 for	 every	 possible
network	is	to	construct	a	foolproof	argument,	which	is	exactly	what	Euler	did.
Euler	began	by	considering	the	simplest	network	of	all,	i.e.	a	single	vertex

as	shown	in	Figure	8.	For	this	network	the	formula	is	clearly	true:	there	is	one
vertex,	and	no	lines	or	regions,	and	therefore

Euler	 then	 considered	 what	 would	 happen	 if	 he	 added	 something	 to	 this
simplest	 of	 all	 networks.	 Any	 extension	 to	 the	 single	 vertex	 requires	 the
addition	of	a	line.	The	line	can	either	connect	the	existing	vertex	to	itself,	or	it
can	connect	the	existing	vertex	to	a	new	vertex.
First,	let	us	look	at	connecting	the	vertex	to	itself	with	this	additional	line.

As	 shown	 in	 Figure	 8,	 when	 the	 line	 is	 added,	 this	 also	 results	 in	 a	 new
region.	Therefore	the	network	formula	remains	true	because	the	extra	region
(+1)	 cancels	 the	 extra	 line	 (–1).	 If	 further	 lines	 are	 added	 in	 this	 way	 the
network	formula	will	still	remain	true	because	each	new	line	will	create	a	new
region.



Figure	8.	Euler	proved	his	network	formula	by	showing	that	it	was	true	for	the	simplest	network,	and
then	demonstrating	that	the	formula	would	remain	true	whatever	extensions	were	added	to	the	single

vertex.

Second,	let	us	look	at	using	the	line	to	connect	the	original	vertex	to	a	new
vertex,	 as	 shown	 in	Figure	8.	Once	again	 the	network	 formula	 remains	 true
because	 the	extra	vertex	 (+1)	cancels	 the	extra	 line	 (–1).	 If	 further	 lines	are
added	 in	 this	 way,	 the	 network	 formula	will	 still	 remain	 true	 because	 each
new	line	will	create	a	new	vertex.
This	was	all	 that	Euler	required	for	his	proof.	He	argued	that	 the	network

formula	 was	 true	 for	 the	 simplest	 of	 all	 networks,	 the	 single	 vertex.
Furthermore,	 all	 other	 networks,	 no	 matter	 how	 complicated,	 can	 be
constructed	 from	 the	 simplest	 network	 by	 adding	 lines	 one	 at	 a	 time.	 Each
time	a	new	line	is	added	the	network	formula	will	remain	true	because	either
a	 new	 vertex	 or	 a	 new	 region	 will	 always	 be	 added	 and	 this	 will	 have	 a
compensating	effect.	Euler	had	developed	a	simple	but	powerful	strategy.	He
proved	that	the	formula	is	true	for	the	most	basic	network,	a	single	vertex,	and
then	 he	 demonstrated	 that	 any	 operation	 which	 complicated	 the	 network
would	continue	to	conserve	the	validity	of	the	formula.	Therefore	the	formula
is	true	for	the	infinity	of	all	possible	networks.
When	Euler	first	encountered	Fermat’s	Last	Theorem,	he	must	have	hoped

that	he	could	solve	 it	by	adopting	a	similar	strategy.	The	Last	Theorem	and
the	network	formula	come	from	very	different	areas	of	mathematics	but	they
have	one	thing	in	common,	which	is	that	both	say	something	about	an	infinite
number	of	objects.	The	network	formula	says	that	for	the	infinite	number	of
networks	 that	 exist	 the	 number	 of	 vertices	 and	 regions	 less	 the	 number	 of
lines	 always	 equals	 1.	 Fermat’s	 Last	 Theorem	 claims	 that	 for	 an	 infinite



number	of	equations	there	are	no	whole	number	solutions.	Recall	that	Fermat
stated	that	there	are	no	whole	number	solutions	to	the	following	equation:

This	equation	represents	an	infinite	set	of	equations:

Euler	wondered	if	he	could	prove	that	one	of	the	equations	had	no	solutions
and	then	extrapolate	the	result	to	all	the	remaining	equations,	in	the	same	way
he	had	proved	his	network	 formula	 for	all	networks	by	generalising	 it	 from
the	simplest	case,	the	single	vertex.
Euler’s	 task	was	 given	 a	 head	 start	when	 he	 discovered	 a	 clue	 hidden	 in

Fermat’s	 jottings.	 Although	 Fermat	 never	 wrote	 down	 a	 proof	 for	 the	 Last
Theorem,	 he	 did	 cryptically	 describe	 a	 proof	 for	 the	 specific	 case	 n	 =	 4
elsewhere	in	his	copy	of	the	Arithmetica	and	incorporated	it	into	the	proof	of
a	 completely	 different	 problem.	 Even	 though	 this	 is	 the	 most	 complete
calculation	he	ever	committed	to	paper,	the	details	are	still	sketchy	and	vague,
and	Fermat	concludes	the	proof	by	saying	that	lack	of	time	and	paper	prevent
him	 from	giving	 a	 fuller	 explanation.	Despite	 the	 lack	of	 detail	 in	Fermat’s
scribbles,	 they	 clearly	 illustrate	 a	 particular	 form	 of	 proof	 by	 contradiction
known	as	the	method	of	infinite	descent.
In	order	to	prove	that	there	were	no	solutions	to	the	equation	x4	+	y4	=	z4,

Fermat	began	by	assuming	that	there	was	a	hypothetical	solution

By	examining	the	properties	of	(X1,	r1,	Z1),	Fermat	could	demonstrate	that	if
this	 hypothetical	 solution	 did	 exist	 then	 there	 would	 have	 to	 be	 a	 smaller
solution	 (X2,	 r2,	 Z2).	 Then,	 by	 examining	 this	 new	 solution,	 Fermat	 could
show	there	would	be	an	even	smaller	solution	(X3,	r3,	Z3),	and	so	on.
Fermat	 had	 discovered	 a	 descending	 staircase	 of	 solutions,	 which

theoretically	 would	 continue	 forever,	 generating	 ever-smaller	 numbers.



However,	 x,	 y	 and	 z	 must	 be	 whole	 numbers,	 and	 so	 the	 never-ending
staircase	 is	 impossible	 because	 there	 must	 be	 a	 smallest	 possible	 solution.
This	 contradiction	 proves	 that	 the	 initial	 assumption	 that	 there	 is	 a	 solution
(X1,	r1,	Z1)	must	 be	 false.	Using	 the	method	of	 infinite	 descent	Fermat	 had
demonstrated	 that	 it	 is	 forbidden	 for	 the	 equation	 with	 n	 =	 4	 to	 have	 any
solutions,	because	otherwise	the	consequences	would	be	absurd.
Euler	tried	to	use	this	as	a	starting	point	for	constructing	a	general	proof	for

all	the	other	equations.	As	well	as	building	up	to	n	=	infinity,	he	would	also
have	to	build	down	to	n	=	3	and	it	was	this	single	downward	step	which	he
attempted	first.	On	4	August	1753	Euler	announced	in	a	letter	to	the	Prussian
mathematician	Christian	Goldbach	 that	 he	 had	 adapted	 Fermat’s	method	 of
infinite	descent	and	successfully	proved	 the	case	for	n	=	3.	After	a	hundred
years	this	was	the	first	time	anybody	had	succeeded	in	making	any	progress
towards	meeting	Fermat’s	challenge.
In	order	to	extend	Fermat’s	proof	from	n	=	4	to	cover	the	case	n	=	3	Euler

had	 to	 incorporate	 the	 bizarre	 concept	 of	 a	 so-called	 imaginary	number,	 an
entity	 which	 had	 been	 discovered	 by	 European	 mathematicians	 in	 the
sixteenth	 century.	 It	 is	 strange	 to	 think	of	 new	numbers	 being	 ‘discovered’,
but	this	is	mainly	because	we	are	so	familiar	with	the	numbers	we	commonly
use	that	we	forget	that	there	was	a	time	when	some	of	these	numbers	were	not
known.	 Negative	 numbers,	 fractions	 and	 irrational	 numbers	 all	 had	 to	 be
discovered	 and	 the	 motivation	 in	 each	 case	 was	 to	 answer	 otherwise
unanswerable	questions.
The	 history	 of	 numbers	 begins	 with	 the	 simple	 counting	 numbers

(1,2,3,	…)	otherwise	known	as	natural	numbers.	These	numbers	are	perfectly
satisfactory	for	adding	together	simple	whole	quantities,	such	as	sheep	or	gold
coins,	 to	 achieve	a	 total	number	which	 is	 also	 a	whole	quantity.	As	well	 as
addition,	 the	 other	 simple	 operation	 of	multiplication	 also	 acts	 upon	whole
numbers	to	generate	other	whole	numbers.	However,	the	operation	of	division
throws	up	an	awkward	problem.	While	8	divided	by	2	equals	4,	we	find	that	2
divided	by	8	equals	¼.	The	result	of	the	latter	division	is	not	a	whole	number
but	a	fraction.
Division	 is	 a	 simple	 operation	 performed	 on	 natural	 numbers	 which

requires	us	to	look	beyond	the	natural	numbers	in	order	to	obtain	the	answer.
It	 is	 unthinkable	 for	 mathematicians	 not,	 in	 theory	 at	 least,	 to	 be	 able	 to
answer	every	single	question,	and	this	necessity	is	called	completeness.	There
are	 certain	 questions	 concerning	 natural	 numbers	 which	 would	 be
unanswerable	without	 resorting	 to	 fractions.	Mathematicians	express	 this	by
saying	that	fractions	are	necessary	for	completeness.
It	is	this	need	for	completeness	which	led	the	Hindus	to	discover	negative



numbers.	The	Hindus	noticed	that,	while	3	subtracted	from	5	was	obviously	2,
subtracting	5	from	3	was	not	such	a	simple	matter.	The	answer	was	beyond
the	 natural	 counting	 numbers,	 and	 could	 only	 be	 accommodated	 by
introducing	 the	 concept	 of	 negative	numbers.	Some	mathematicians	did	not
accept	 this	 extension	 into	 abstraction	 and	 referred	 to	 negative	 numbers	 as
‘absurd’	or	‘fictitious’.	While	an	accountant	could	hold	one	gold	coin,	or	even
half	a	gold	coin,	it	was	impossible	to	hold	a	negative	coin.
The	 Greeks	 also	 had	 a	 yearning	 for	 completeness	 and	 this	 led	 them	 to

discover	irrational	numbers.	In	Chapter	2	the	question	arose,	What	number	is
the	square	 root	of	 two,	√2?	The	Greeks	knew	that	 this	number	was	 roughly
equal	to	7⁄7,	but	when	they	tried	to	discover	the	exact	fraction	they	found	that
it	 did	 not	 exist.	Here	was	 a	 number	which	 could	 never	 be	 represented	 as	 a
fraction,	 but	 this	 new	 type	 of	 number	 was	 necessary	 in	 order	 to	 answer	 a
simple	 question,	 What	 is	 the	 square	 root	 of	 two?	 The	 demand	 for
completeness	 meant	 that	 yet	 another	 colony	 was	 added	 to	 the	 empire	 of
numbers.	

Figure	9.	All	numbers	can	be	positioned	along	the	number	line,	which	extends	to	infinity	in	both
directions.

By	the	Renaissance,	mathematicians	assumed	that	 they	had	discovered	all
the	numbers	 in	 the	universe.	All	numbers	could	be	 thought	of	as	 lying	on	a
number	line,	an	infinitely	long	line	with	zero	at	the	centre,	as	shown	in	Figure
9.	The	whole	numbers	were	spaced	equally	along	 the	number	 line,	with	 the
positive	 numbers	 on	 the	 right	 of	 zero	 extending	 to	 positive	 infinity	 and	 the
negative	 numbers	 on	 the	 left	 of	 zero	 extending	 to	 negative	 infinity.	 The
fractions	occupied	the	spaces	between	the	whole	numbers,	and	the	irrational
numbers	were	interspersed	between	the	fractions.
The	 number	 line	 suggested	 that	 completeness	 had	 apparently	 been

achieved.	 All	 the	 numbers	 seemed	 to	 be	 in	 place,	 ready	 to	 answer	 all
mathematical	questions	–	in	any	case,	there	was	no	more	room	on	the	number
line	 for	 any	 new	 numbers.	 Then	 during	 the	 sixteenth	 century	 there	 were
renewed	rumblings	of	disquiet.	The	Italian	mathematician	Rafaello	Bombelli
was	studying	the	square	roots	of	various	numbers	when	he	stumbled	upon	an
unanswerable	question.
The	 problem	 began	 by	 asking,	What	 is	 the	 square	 root	 of	 one,	 √1?	 The

obvious	 answer	 is	 1,	 because	 1	 ×	 1	 =	 1.	 The	 less	 obvious	 answer	 is	 –1.	A



negative	number	multiplied	by	another	negative	number	generates	a	positive
number.	This	means	–1	×	–1	=	+1.	So,	the	square	root	of	+1	is	both	+1	and	–
1.	This	abundance	of	answers	is	fine,	but	then	the	question	arises,	What	is	the
square	root	of	negative	one,	√–1?	The	problem	seems	to	be	 intractable.	The
solution	cannot	be	+1	or	–1,	because	the	square	of	both	these	numbers	is	+1.
However,	 there	 are	 no	 other	 obvious	 candidates.	 At	 the	 same	 time
completeness	demands	that	we	must	be	able	to	answer	the	question.
The	 solution	 for	 Bombelli	 was	 to	 create	 a	 new	 number,	 i,	 called	 an

imaginary	number,	which	was	simply	defined	as	the	solution	to	the	question,
What	 is	 the	 square	 root	 of	 negative	 one?	 This	might	 seem	 like	 a	 cowardly
solution	to	the	problem,	but	it	was	no	different	to	the	way	in	which	negative
numbers	were	introduced.	Faced	with	an	otherwise	unanswerable	question	the
Hindus	 merely	 defined	 –1	 as	 the	 solution	 to	 the	 question,	 What	 is	 zero
subtract	one?	 It	 is	easier	 to	accept	 the	concept	of	–1	only	because	we	have
experience	of	 the	 analogous	 concept	 of	 ‘debt’,	whereas	we	have	nothing	 in
the	 real	 world	 to	 underpin	 the	 concept	 of	 an	 imaginary	 number.	 The
seventeenth-century	 German	 mathematician	 Gottfried	 Leibniz	 elegantly
described	 the	 strange	 nature	 of	 the	 imaginary	 number:	 ‘The	 imaginary
number	 is	 a	 fine	 and	 wonderful	 recourse	 of	 the	 divine	 spirit,	 almost	 an
amphibian	between	being	and	non-being.’
Once	we	have	defined	i	as	being	the	square	root	of	–1,	then	2i	must	exist,

because	this	would	be	the	sum	of	i	plus	i	(as	well	as	being	the	square	root	of	–
4).	Similarly	 i⁄2	must	 exist	 because	 this	 is	 the	 result	 of	 dividing	 i	 by	 2.	By
performing	simple	operations	it	is	possible	to	achieve	an	imaginary	equivalent
of	 every	 so-called	 real	 number.	 There	 are	 imaginary	 counting	 numbers,
imaginary	negative	numbers,	imaginary	fractions	and	imaginary	irrationals.	



Figure	10.	The	introduction	of	an	axis	for	imaginary	numbers	turns	the	number	line	into	a	number
plane.	Any	combination	of	real	and	imaginary	numbers	has	a	position	on	the	number	plane.

The	problem	which	now	arises	is	that	all	these	imaginary	numbers	have	no
natural	position	along	the	real	number	line.	Mathematicians	resolve	this	crisis
by	 creating	 a	 separate	 imaginary	 number	 line	which	 is	 perpendicular	 to	 the
real	one,	and	which	crosses	at	zero,	as	shown	in	Figure	10.	Numbers	are	now
no	longer	restricted	to	a	one-dimensional	line,	but	rather	they	occupy	a	two-
dimensional	plane.	While	pure	imaginary	or	pure	real	numbers	are	restricted
to	their	respective	lines,	combinations	of	real	and	imaginary	numbers	(e.g.	1	+
2i),	called	complex	numbers,	live	on	the	so-called	number	plane.
What	 is	 particularly	 remarkable	 is	 that	 complex	 numbers	 can	 be	 used	 to

solve	any	conceivable	equation.	For	example,	in	order	to	calculate	√(3	+	4i),
mathematicians	do	not	have	to	resort	to	inventing	a	new	type	of	number	–	the
answer	 turns	 out	 to	 be	 2	 +	 i,	 another	 complex	 number.	 In	 other	 words	 the
imaginary	 numbers	 appear	 to	 be	 the	 final	 element	 required	 to	 make
mathematics	complete.
Although	 the	 square	 roots	 of	 negative	 numbers	 have	 been	 referred	 to	 as

imaginary	 numbers,	 mathematicians	 consider	 i	 no	 more	 abstract	 than	 a
negative	number	or	any	counting	number.	 In	addition,	physicists	discovered
that	 imaginary	numbers	provide	 the	best	 language	 for	describing	some	real-
world	phenomena.	With	a	few	minor	manipulations	 imaginary	numbers	 turn



out	to	be	the	ideal	way	to	analyse	the	natural	swinging	motion	of	objects	such
as	pendula.	This	motion,	 technically	called	a	sinusoidal	oscillation,	 is	 found
throughout	nature,	and	so	imaginary	numbers	have	become	an	integral	part	of
many	 physical	 calculations.	 Nowadays	 electrical	 engineers	 conjure	 up	 i	 to
analyse	 oscillating	 currents,	 and	 theoretical	 physicists	 calculate	 the
consequences	 of	 oscillating	 quantum	 mechanical	 wave	 functions	 by
summoning	up	the	powers	of	imaginary	numbers.
Pure	mathematicians	have	also	exploited	imaginary	numbers,	using	them	to

find	 answers	 to	 previously	 impenetrable	 problems.	 Imaginary	 numbers
literally	add	a	new	dimension	to	mathematics,	and	Euler	hoped	to	exploit	this
extra	degree	of	freedom	to	attack	Fermat’s	Last	Theorem.
In	 the	 past	 other	 mathematicians	 had	 tried	 to	 adapt	 Fermat’s	 method	 of

infinite	descent	to	work	for	cases	other	than	n	=	4,	but	in	every	case	attempts
to	stretch	the	proof	only	led	to	gaps	in	the	logic.	However,	Euler	showed	that
by	incorporating	the	imaginary	number,	i,	into	his	proof	he	could	plug	holes
in	the	proof,	and	force	the	method	of	infinite	descent	to	work	for	the	case	n	=
3.
It	was	 a	 tremendous	 achievement,	 but	 one	which	 he	 could	 not	 repeat	 for

other	 cases	 of	 Fermat’s	Last	Theorem.	Unfortunately	Euler’s	 endeavours	 to
make	the	argument	work	for	the	cases	up	to	infinity	all	ended	in	failure.	The
man	 who	 created	 more	 mathematics	 than	 anybody	 else	 in	 history	 was
humbled	by	Fermat’s	challenge.	His	only	consolation	was	 that	he	had	made
the	first	breakthrough	in	the	world’s	hardest	problem.
Undaunted	by	 this	 failure	Euler	 continued	 to	 create	 brilliant	mathematics

until	 the	day	he	died,	 an	achievement	made	all	 the	more	 remarkable	by	 the
fact	that	during	the	final	years	of	his	career	he	was	totally	blind.	His	loss	of
sight	 began	 in	 1735	 when	 the	 Academy	 in	 Paris	 offered	 a	 prize	 for	 the
solution	 to	an	astronomical	problem.	The	problem	was	so	awkward	 that	 the
mathematical	community	asked	the	Academy	to	allow	them	several	months	in
which	 to	 come	 up	with	 an	 answer,	 but	 for	 Euler	 this	 was	 unnecessary.	 He
became	obsessed	with	 the	 task,	worked	 continually	 for	 three	 days	 and	duly
won	 the	 prize.	 However,	 poor	 working	 conditions	 combined	 with	 intense
stress	cost	Euler,	 then	still	only	in	his	 twenties,	 the	sight	of	one	eye.	This	 is
apparent	in	many	portraits	of	Euler.
On	the	advice	of	Jean	Le	Rond	d’Alembert,	Euler	was	replaced	by	Joseph-

Louis	 Lagrange	 as	mathematician	 to	 the	 court	 of	 Frederick	 the	Great,	 who
later	 commented:	 ‘To	 your	 care	 and	 recommendation	 am	 I	 indebted	 for
having	 replaced	a	half-blind	mathematician	with	 a	mathematician	with	both
eyes,	which	will	especially	please	the	anatomical	members	of	my	Academy.’
Euler	 returned	 to	 Russia	 where	 Catherine	 the	 Great	 welcomed	 back	 her



‘mathematical	cyclops’.
The	loss	of	one	eye	was	only	a	minor	handicap	–	in	fact	Euler	claimed	that

‘now	 I	will	 have	 less	 distraction’.	 Forty	 years	 later,	 at	 the	 age	 of	 sixty,	 his
situation	worsened	considerably,	when	a	cataract	 in	Euler’s	good	eye	meant
he	was	destined	to	become	completely	blind.	He	was	determined	not	to	give
in	and	began	to	practise	writing	with	his	fading	eye	closed	in	order	to	perfect
his	 technique	before	 the	onset	of	darkness.	Within	weeks	he	was	blind.	The
rehearsal	paid	off	 for	a	while,	but	a	 few	months	 later	Euler’s	 script	became
illegible,	whereupon	his	son	Albert	acted	as	his	amanuensis.
Euler	continued	to	produce	mathematics	for	the	next	seventeen	years	and,

if	anything,	he	was	more	productive	than	ever.	His	immense	intellect	allowed
him	 to	 juggle	 concepts	 without	 having	 to	 commit	 them	 to	 paper,	 and	 his
phenomenal	memory	 allowed	him	 to	use	his	 own	brain	 as	 a	mental	 library.
Colleagues	 suggested	 that	 the	 onset	 of	 blindness	 appeared	 to	 expand	 the
horizons	of	 his	 imagination.	 It	 is	worth	noting	 that	Euler’s	 computations	of
lunar	 positions	 were	 completed	 during	 his	 period	 of	 blindness.	 For	 the
emperors	of	Europe	this	was	the	most	prized	of	mathematical	achievements,	a
problem	 that	 had	 confounded	 the	 greatest	 mathematicians	 in	 Europe,
including	Newton.
In	1776	an	operation	was	performed	to	remove	the	cataract,	and	for	a	few

days	 Euler’s	 sight	 seemed	 to	 have	 been	 restored.	 Then	 infection	 set	 in	 and
Euler	was	plunged	back	into	darkness.	Undaunted	he	continued	to	work	until,
on	 18	 September	 1783,	 he	 suffered	 a	 fatal	 stroke.	 In	 the	 words	 of	 the
mathematician-philosopher	 the	Marquis	 de	Condorcet,	 ‘Euler	 ceased	 to	 live
and	calculate.’

A	Petty	Pace

A	century	after	Fermat’s	death	there	existed	proofs	for	only	two	specific	cases
of	 the	 Last	 Theorem.	 Fermat	 had	 given	 mathematicians	 a	 head	 start	 by
providing	them	with	the	proof	that	there	were	no	solutions	to	the	equation

Euler	had	adapted	the	proof	to	show	that	there	were	no	solutions	to

After	Euler’s	breakthrough	it	was	still	necessary	to	prove	that	 there	were	no



whole	number	solutions	to	an	infinity	of	equations:

Although	 mathematicians	 were	 making	 embarrassingly	 slow	 progress,	 the
situation	was	not	quite	as	bad	as	it	might	seem	at	first	sight.	The	proof	for	the
case	n	=	4	also	proves	the	cases	n	=	8,	12,	16,	20,	….	The	reason	is	that	any
number	which	can	be	written	as	an	8th	(or	a	12th,	16th,	20th,	…)	power	can
also	be	rewritten	as	a	4th	power.	For	instance,	the	number	256	is	equal	to	28,
but	it	is	also	equal	to	44.	Therefore	any	proof	which	works	for	the	4th	power
will	also	work	for	the	8th	power	and	for	any	other	power	that	is	a	multiple	of
4.	Using	 the	 same	principle,	Euler’s	 proof	 for	 the	 case	n	 =	 3	 automatically
proves	the	cases	n	=	6,	9,	12,	15,	…
Suddenly,	 the	 numbers	 are	 tumbling	 and	 Fermat	 looks	 vulnerable.	 The

proof	for	the	case	n	=	3	is	particularly	significant	because	the	number	3	is	an
example	 of	 a	 prime	 number.	 As	 explained	 earlier,	 a	 prime	 number	 has	 the
special	property	of	not	being	the	multiple	of	any	whole	number	except	for	1
and	 itself.	 Other	 prime	 numbers	 are	 5,	 7,	 11,	 13,	 ….	 All	 the	 remaining
numbers	 are	multiples	 of	 the	 primes,	 and	 are	 referred	 to	 as	 non-primes,	 or
composite	numbers.
Number	 theorists	 consider	 prime	 numbers	 to	 be	 the	 most	 important

numbers	of	all	because	they	are	the	atoms	of	mathematics.	Prime	numbers	are
the	 numerical	 building	 blocks	 because	 all	 other	 numbers	 can	 be	 created	 by
multiplying	 combinations	 of	 the	 prime	 numbers.	 This	 seems	 to	 lead	 to	 a
remarkable	breakthrough.	To	prove	Fermat’s	Last	Theorem	for	all	values	of	n,
one	 merely	 has	 to	 prove	 it	 for	 the	 prime	 values	 of	 n.	 All	 other	 cases	 are
merely	multiples	of	the	prime	cases	and	would	be	proved	implicitly.
Intuitively	this	enormously	simplifies	the	problem,	because	you	can	ignore

those	equations	which	 involve	a	value	of	n	 that	 is	not	a	prime	number.	The
number	of	equations	 remaining	 is	now	vastly	 reduced.	For	example,	 for	 the
values	of	n	up	to	20,	there	are	only	six	values	which	need	to	be	proved:	



If	one	can	prove	Fermat’s	Last	Theorem	for	just	the	prime	values	of	n,	 then
the	theorem	is	proved	for	all	values	of	n.	If	one	considers	all	whole	numbers,
then	it	is	obvious	that	there	are	infinitely	many.	If	one	considers	just	the	prime
numbers,	 which	 are	 only	 a	 small	 fraction	 of	 all	 the	 whole	 numbers,	 then
surely	the	problem	is	much	simpler?
Intuition	would	suggest	that	if	you	begin	with	an	infinite	quantity	and	then

remove	the	bulk	of	it,	then	you	would	expect	to	be	left	with	something	finite.
Unfortunately	 intuition	 is	 not	 the	 arbiter	 of	 truth	 in	mathematics,	 but	 rather
logic.	 In	 fact,	 it	 is	 possible	 to	 prove	 that	 the	 list	 of	 primes	 is	 never-ending.
Therefore,	despite	being	able	to	ignore	the	vast	majority	of	equations	relating
to	non-prime	values	of	n,	the	remaining	equations	relating	to	prime	values	of
n	are	still	infinite	in	number.
The	 proof	 that	 there	 is	 an	 infinity	 of	 primes	 dates	 all	 the	 way	 back	 to

Euclid,	 and	 is	 one	 of	 the	 classic	 arguments	 of	mathematics.	 Initially	Euclid
assumes	 that	 there	 is	 a	 finite	 list	 of	known	prime	numbers,	 and	 then	 shows
that	there	must	exist	an	infinite	number	of	additions	to	this	list.	There	are	N
prime	 numbers	 in	 Euclid’s	 finite	 list,	 which	 are	 labelled	P1,	P2,	P3,	…,PN.
Euclid	can	then	generate	a	new	number	QA	such	that

This	new	number	QA	is	either	prime	or	not	prime.	If	it	is	prime	then	we	have
succeeded	 in	 generating	 a	 new,	 bigger	 prime	 number,	 and	 therefore	 our
original	 list	 of	 primes	 was	 not	 complete.	 On	 the	 other	 hand,	 if	QA	 is	 not
prime,	 then	 it	must	 be	perfectly	divisible	by	 a	prime.	This	 prime	 cannot	 be
one	of	 the	known	primes	because	dividing	QA	 by	any	of	 the	known	primes
will	 inevitably	 lead	 to	a	 remainder	of	1.	Therefore	 there	must	be	some	new
prime,	which	we	can	call	PN	+	1.
We	have	now	arrived	at	 the	 stage	where	either	QA	 is	 a	new	prime	or	we

have	another	new	prime	PN+1.	Either	way	we	have	added	to	our	original	list
of	primes.	We	can	now	repeat	the	process,	including	our	new	prime	(PN+1	or



QA)	 in	our	list,	and	generate	some	new	number	QB.	Either	this	new	number
will	be	yet	another	new	prime,	or	there	will	have	to	be	some	other	new	prime
PN+2	 that	 is	not	on	our	 list	of	known	primes.	The	upshot	of	 the	argument	 is
that,	however	 long	our	 list	of	prime	numbers,	 it	 is	always	possible	 to	find	a
new	one.	Therefore	the	list	of	primes	is	never-ending	and	infinite.
But	 how	 can	 something	 which	 is	 undeniably	 smaller	 than	 an	 infinite

quantity	 also	 be	 infinite?	 The	 German	 mathematician	 David	 Hilbert	 once
said:	‘The	infinite!	No	other	question	has	ever	moved	so	profoundly	the	spirit
of	man;	 no	other	 idea	has	 so	 fruitfully	 stimulated	his	 intellect;	 yet	 no	other
concept	 stands	 in	 greater	 need	 of	 clarification	 than	 that	 of	 the	 infinite.’	 To
resolve	the	paradox	of	the	infinite	it	is	necessary	to	define	what	is	meant	by
infinity.	Georg	Cantor,	who	worked	alongside	Hilbert,	defined	infinity	as	the
size	 of	 the	 never-ending	 list	 of	 counting	 numbers	 (1,	 2,	 3,	 4,	 …).
Consequently	anything	which	is	comparable	in	size	is	equally	infinite.
By	 this	 definition	 the	 number	 of	 even	 counting	 numbers,	 which	 would

intuitively	appear	to	be	smaller,	is	also	infinite.	It	is	easy	to	demonstrate	that
the	 quantity	 of	 counting	 numbers	 and	 the	 quantity	 of	 even	 numbers	 are
comparable	 because	 we	 can	 pair	 off	 each	 counting	 number	 with	 a
corresponding	even	number:

If	 every	 member	 of	 the	 counting	 numbers	 list	 can	 be	 matched	 up	 with	 a
member	 of	 the	 even	 numbers	 list	 then	 the	 two	 lists	must	 be	 the	 same	 size.
This	method	of	 comparison	 leads	 to	 some	 surprising	 conclusions,	 including
the	fact	that	there	are	an	infinite	number	of	primes.	Although	Cantor	was	the
first	 person	 to	 tackle	 infinity	 in	 a	 formal	 way,	 he	 was	 initially	 heavily
criticised	by	the	mathematical	community	for	his	radical	definition.	Towards
the	 end	 of	 his	 career	 the	 attacks	 became	 increasingly	 personal	 and	 this
resulted	in	Cantor	suffering	mental	illness	and	severe	depression.	Eventually,
after	 his	 death,	 his	 ideas	 became	 widely	 accepted	 as	 the	 only	 consistent,
accurate	and	powerful	definition	of	infinity.	As	a	tribute	Hilbert	said:	‘No	one
shall	drive	us	from	the	paradise	Cantor	has	created	for	us.’
Hilbert	went	on	to	create	an	example	of	infinity,	known	as	Hilbert’s	Hotel,

which	clearly	 illustrates	 its	 strange	qualities.	This	hypothetical	hotel	has	 the
desirable	 attribute	 of	 having	 an	 infinite	 number	 of	 rooms.	 One	 day	 a	 new
guest	arrives	and	is	disappointed	to	learn	that,	despite	the	hotel’s	infinite	size,
all	 the	 rooms	 are	 occupied.	 Hilbert,	 the	 clerk,	 thinks	 for	 a	 while	 and	 then



reassures	 the	 new	 arrival	 that	 he	will	 find	 an	 empty	 room.	He	 asks	 all	 his
current	guests	to	move	to	the	next	room,	so	that	the	guest	in	room	1	moves	to
room	2,	the	guest	in	room	2	moves	to	room	3,	and	so	on.	Everybody	who	was
in	 the	 hotel	 still	 has	 a	 room,	 which	 allows	 the	 new	 arrival	 to	 slip	 into	 the
vacant	room	1.	This	shows	that	infinity	plus	one	equals	infinity.
The	following	night	Hilbert	has	to	deal	with	a	much	greater	problem.	The

hotel	is	still	full	when	an	infinitely	large	coach	arrives	with	an	infinite	number
of	new	guests.	Hilbert	remains	unperturbed	and	rubs	his	hands	at	the	thought
of	 infinitely	more	 hotel	 bills.	He	 asks	 all	 his	 current	 guests	 to	move	 to	 the
room	which	is	double	the	number	of	their	current	room.	So	the	guest	in	room
1	 moves	 to	 room	 2,	 the	 guest	 in	 room	 2	 moves	 to	 room	 4,	 and	 so	 on.
Everybody	who	was	in	the	hotel	still	has	a	room	and	yet	an	infinite	number	of
rooms,	all	 the	odd	ones,	have	been	vacated	for	the	new	arrivals.	This	shows
that	double	infinity	is	still	infinity.
Hilbert’s	Hotel	seems	to	suggest	that	all	infinities	are	as	large	as	each	other,

because	 various	 infinities	 seem	 to	 be	 able	 to	 squeeze	 into	 the	 same	 infinite
hotel	–	 the	 infinity	of	even	numbers	can	be	matched	up	and	compared	with
the	 infinity	 of	 all	 counting	 numbers.	 However,	 some	 infinities	 are	 indeed
bigger	 than	 others.	 For	 example,	 any	 attempt	 to	 pair	 every	 rational	 number
with	every	irrational	number	ends	in	failure,	and	in	fact	it	can	be	proved	that
the	infinite	set	of	irrational	numbers	is	larger	than	the	infinite	set	of	rational
numbers.	 Mathematicians	 have	 had	 to	 develop	 a	 whole	 system	 of
nomenclature	 to	 deal	with	 the	 varying	 scales	 of	 infinity	 and	 conjuring	with
these	concepts	is	one	of	today’s	hottest	topics.
Although	the	infinity	of	primes	dashed	hopes	for	an	early	proof	of	Fermat’s

Last	Theorem,	a	countless	supply	of	prime	numbers	does	have	more	positive
implications	 in	 other	 areas	 such	 as	 espionage	 and	 the	 evolution	 of	 insects.
Before	returning	to	the	quest	for	a	proof	of	Fermat’s	Last	Theorem	it	is	worth
briefly	investigating	the	uses	and	abuses	of	primes.
Prime	number	theory	is	one	of	the	few	areas	of	pure	mathematics	that	has

found	 a	 direct	 application	 in	 the	 real	 world,	 namely	 in	 cryptography.
Cryptography	 involves	 scrambling	secret	messages	 so	 that	 they	can	only	be
unscrambled	 by	 the	 receiver	 and	 not	 by	 anybody	 else	 who	might	 intercept
them.	 The	 scrambling	 process	 requires	 the	 use	 of	 a	 secret	 key,	 and
traditionally	unscrambling	the	message	simply	requires	the	receiver	to	apply
the	key	in	reverse.	With	this	procedure	the	key	is	the	weakest	link	in	the	chain
of	security.	First,	the	receiver	and	the	sender	must	agree	on	the	details	of	the
key	and	the	exchange	of	this	information	is	a	risky	process.	If	the	enemy	can
intercept	 the	key	being	exchanged,	 then	 they	can	unscramble	all	 subsequent
messages.	Second,	 the	keys	must	be	 regularly	 changed	 in	order	 to	maintain



security,	 and	 each	 time	 this	 happens	 there	 is	 a	 risk	 of	 the	 new	 key	 being
intercepted.
The	problem	of	the	key	revolves	around	the	fact	 that	applying	it	one	way

will	 scramble	 the	 message,	 and	 applying	 it	 in	 reverse	 unscrambles	 the
message	 –	 unscrambling	 a	 message	 is	 almost	 as	 easy	 as	 scrambling	 it.
However,	 experience	 tells	 us	 that	 there	 are	many	 everyday	 situations	when
unscrambling	is	far	harder	than	scrambling	–	it	is	relatively	easy	to	scramble
an	egg,	but	to	unscramble	it	is	far	harder.
In	the	1970s	Whitfield	Diffie	and	Martin	Hellman	came	up	with	the	idea	of

looking	 for	 a	 mathematical	 process	 which	 was	 easy	 to	 perform	 in	 one
direction	but	incredibly	difficult	to	perform	in	the	opposite	direction.	Such	a
process	would	provide	a	perfect	key.	For	example,	I	could	have	my	own	two-
part	 key,	 and	 publish	 the	 scrambling	 half	 of	 it	 in	 a	 public	 directory.	 Then
anybody	 could	 send	 me	 scrambled	 messages,	 but	 only	 I	 would	 know	 the
unscrambling	half	of	 the	key.	Although	everyone	would	have	knowledge	of
the	scrambling	part	of	the	key,	it	bears	no	relation	to	the	unscrambling	part	of
the	key.
In	 1977	 Ronald	 Rivest,	 Adi	 Shamir	 and	 Leonard	 Adleman,	 a	 team	 of

mathematicians	 and	 computer	 scientists	 at	 the	 Massachusetts	 Institute	 of
Technology,	 realised	 that	 prime	 numbers	 were	 the	 ideal	 basis	 for	 an	 easy-
scramble/hard-unscramble	process.	 In	order	 to	make	my	own	personal	key	I
would	take	two	huge	prime	numbers,	each	one	containing	up	to	80	digits,	and
then	multiply	them	together	 to	achieve	an	even	larger	non-prime	number.	In
order	to	scramble	messages	all	that	is	required	is	knowledge	of	the	large	non-
prime	number,	whereas	to	unscramble	the	message	you	would	need	to	know
the	two	original	prime	numbers	which	were	multiplied	together,	known	as	the
prime	factors.	I	can	now	publish	the	large	non-prime	number,	the	scrambling
half	of	the	key,	and	keep	the	two	prime	factors,	the	unscrambling	half	of	the
key,	 to	 myself.	 Importantly,	 even	 though	 everybody	 knows	 the	 large	 non-
prime	number,	 they	would	 have	 immense	 difficulty	 in	working	 out	 the	 two
prime	factors.
Taking	 a	 simpler	 example,	 I	 could	 hand	 out	 the	 non-prime	 number	 589,

which	would	enable	everyone	to	scramble	messages	to	me.	I	would	keep	the
two	prime	factors	of	589	secret,	so	that	only	I	could	unscramble	the	messages.
If	others	could	work	out	the	two	prime	factors	then	they	too	could	unscramble
my	messages,	but	even	with	this	small	number	it	is	not	obvious	what	the	two
prime	factors	are.	In	this	case	it	would	only	take	a	few	minutes	on	a	desktop
computer	to	figure	out	that	the	prime	factors	are	actually	31	and	19	(31	×	19	=
589),	and	so	my	key	would	not	remain	secure	for	very	long.
However,	 in	 reality	 the	 non-prime	 number	which	 I	would	 publish	would



have	over	a	hundred	digits,	which	makes	the	task	of	finding	its	prime	factors
effectively	 impossible.	 Even	 if	 the	 world’s	 most	 powerful	 computers	 were
used	 to	 split	 this	 huge	 non-prime	 number	 (the	 scrambling	 key)	 into	 its	 two
prime	 factors	 (the	unscrambling	key)	 it	would	 take	 several	years	 to	achieve
the	answer.	Therefore,	to	foil	foreign	spies,	I	merely	have	to	change	my	key
on	an	annual	basis.	Once	a	year	I	announce	my	new	giant	non-prime	number,
and	anybody	who	wants	to	try	and	unscramble	my	messages	would	then	have
to	start	all	over	again	trying	to	compute	the	two	prime	factors.
As	well	 as	 finding	a	 role	 in	espionage,	prime	numbers	also	appear	 in	 the

natural	world.	The	periodical	cicadas,	most	notably	Magicicada	septendecim,
have	 the	 longest	 life-cycle	 of	 any	 insect.	 Their	 unique	 life-cycle	 begins
underground,	 where	 the	 nymphs	 patiently	 suck	 the	 juice	 from	 the	 roots	 of
trees.	 Then,	 after	 17	 years	 of	 waiting	 the	 adult	 cicadas	 emerge	 from	 the
ground,	swarm	in	vast	numbers	and	temporarily	swamp	the	landscape.	Within
a	few	weeks	they	mate,	lay	their	eggs	and	die.
The	question	which	puzzled	biologists	was,	Why	is	the	cicada’s	life-cycle

so	long?	And	is	there	any	significance	to	the	life-cycle	being	a	prime	number
of	 years?	 Another	 species,	Magicicada	 tredecim,	 swarms	 every	 13	 years,
implying	 that	 life-cycles	 lasting	 a	 prime	 number	 of	 years	 offer	 some
evolutionary	advantage.
One	theory	suggests	that	the	cicada	has	a	parasite	which	also	goes	through

a	lengthy	life-cycle	and	which	the	cicada	is	trying	to	avoid.	If	the	parasite	has
a	life-cycle	of,	say,	2	years	then	the	cicada	wants	to	avoid	a	life-cycle	which	is
divisible	by	2,	otherwise	 the	parasite	and	 the	cicada	will	 regularly	coincide.
Similarly,	 if	 the	parasite	has	a	 life-cycle	of	3	years	 then	 the	cicada	wants	 to
avoid	 a	 life-cycle	 which	 is	 divisible	 by	 3,	 otherwise	 the	 parasite	 and	 the
cicada	 will	 once	 again	 regularly	 coincide.	 Ultimately,	 to	 avoid	 meeting	 its
parasite	the	cicadas’	best	strategy	is	to	have	a	long	life-cycle	lasting	a	prime
number	 of	 years.	 Because	 nothing	 will	 divide	 into	 17,	 Magicicada
septendecim	will	rarely	meet	its	parasite.	If	the	parasite	has	a	2-year	life-cycle
they	will	only	meet	every	34	years,	 and	 if	 it	has	a	 longer	 life-cycle,	 say	16
years,	then	they	will	only	meet	every	272	(16	×	17)	years.
In	 order	 to	 fight	 back,	 the	 parasite	 only	 has	 two	 life-cycles	 which	 will

increase	 the	 frequency	of	coincidences	–	 the	annual	cycle	and	 the	same	17-
year	 cycle	 as	 the	 cicada.	 However,	 the	 parasite	 is	 unlikely	 to	 survive
reappearing	17	years	in	a	row,	because	for	the	first	16	appearances	there	will
be	no	cicadas	for	it	to	parasitise.	On	the	other	hand,	in	order	to	reach	the	17-
year	life-cycle,	the	generations	of	parasites	would	first	have	to	evolve	through
the	 16-year	 life-cycle.	 This	 would	 mean	 at	 some	 stage	 of	 evolution	 the
parasite	 and	 cicada	 would	 not	 coincide	 for	 272	 years!	 In	 either	 case	 the



cicadas	long	prime	life-cycle	protects	it.
This	might	explain	why	 the	alleged	parasite	has	never	been	found!	 In	 the

race	to	keep	up	with	the	cicada,	the	parasite	probably	kept	extending	its	life-
cycle	until	it	hit	the	16-year	hurdle.	Then	it	failed	to	coincide	for	272	years,
by	which	time	the	lack	of	coinciding	with	cicadas	had	driven	it	to	extinction.
The	 result	 is	 a	 cicada	 with	 a	 17-year	 life	 cycle,	 which	 it	 no	 longer	 needs
because	its	parasite	no	longer	exists.

Monsieur	Le	Blanc

By	 the	 beginning	 of	 the	 nineteenth	 century,	 Fermat’s	 Last	 Theorem	 had
already	 established	 itself	 as	 the	 most	 notorious	 problem	 in	 number	 theory.
Since	Euler’s	breakthrough	there	had	been	no	further	progress,	but	a	dramatic
announcement	 by	 a	 young	Frenchwoman	was	 to	 reinvigorate	 the	 pursuit	 of
Fermat’s	 lost	 proof.	 Sophie	 Germain	 lived	 in	 an	 era	 of	 chauvinism	 and
prejudice,	 and	 in	order	 to	 conduct	 her	 research	 she	was	 forced	 to	 assume	a
false	identity,	study	in	terrible	conditions	and	work	in	intellectual	isolation.
Over	 the	 centuries	 women	 have	 been	 discouraged	 from	 studying

mathematics,	 but	 despite	 the	 discrimination	 there	 have	 been	 several	 female
mathematicians	 who	 fought	 against	 the	 establishment	 and	 indelibly	 forged
their	 names	 in	 the	 annals	 of	mathematics.	 The	 first	woman	 known	 to	 have
made	an	impact	on	the	subject	was	Theano	in	the	sixth	century	BC,	who	began
as	one	of	Pythagoras’	students	before	becoming	one	of	his	foremost	disciples
and	 eventually	 marrying	 him.	 Pythagoras	 is	 known	 as	 the	 ‘feminist
philosopher’	because	he	actively	encouraged	women	scholars,	Theano	being
just	one	of	the	twenty-eight	sisters	in	the	Pythagorean	Brotherhood.
In	 later	centuries	 the	 likes	of	Socrates	and	Plato	would	continue	 to	 invite

women	 into	 their	 schools,	 but	 it	 was	 not	 until	 the	 fourth	 century	 AD	 that	 a
woman	 mathematician	 founded	 her	 own	 influential	 school.	 Hypatia,	 the
daughter	 of	 a	 mathematics	 professor	 at	 the	 University	 of	 Alexandria,	 was
famous	 for	 giving	 the	most	 popular	 discourses	 in	 the	 known	world	 and	 for
being	the	greatest	of	problem-solvers.	Mathematicians	who	had	been	stuck	for
months	 on	 a	 particular	 problem	would	write	 to	 her	 seeking	 a	 solution,	 and
Hypatia	rarely	disappointed	her	admirers.	She	was	obsessed	by	mathematics
and	the	process	of	logical	proof,	and	when	asked	why	she	never	married	she
replied	that	she	was	wedded	to	the	truth.	Ultimately	her	devotion	to	the	cause
of	rationalism	caused	her	downfall,	when	Cyril,	 the	patriarch	of	Alexandria,
began	to	oppress	philosophers,	scientists	and	mathematicians,	whom	he	called
heretics.	 The	 historian	 Edward	 Gibbon	 provided	 a	 vivid	 account	 of	 what



happened	 after	 Cyril	 had	 plotted	 against	 Hypatia	 and	 turned	 the	 masses
against	her:

On	 a	 fatal	 day,	 in	 the	 holy	 season	 of	 Lent,	 Hypatia	 was	 torn	 from	 her	 chariot,	 stripped	 naked,
dragged	to	the	church,	and	inhumanely	butchered	by	the	hands	of	Peter	the	Reader	and	a	troop	of
savage	and	merciless	fanatics;	her	flesh	was	scraped	from	her	bones	with	sharp	oyster-shells,	and
her	quivering	limbs	were	delivered	to	the	flames.

Soon	 after	 the	 death	 of	Hypatia	mathematics	 entered	 a	 period	of	 stagnation
and	it	was	not	until	after	the	Renaissance	that	another	woman	made	her	name
as	 a	 mathematician.	 Maria	 Agnesi	 was	 born	 in	 Milan	 in	 1718	 and,	 like
Hypatia,	was	the	daughter	of	a	mathematician.	She	was	acknowledged	to	be
one	 of	 the	 finest	 mathematicians	 in	 Europe,	 particularly	 famous	 for	 her
treatises	on	 the	 tangents	 to	curves.	 In	 Italian,	curves	were	called	versiera,	a
word	derived	from	the	Latin	vertere,	‘to	turn’,	but	it	was	also	an	abbreviation
for	avversiera,	 or	 ‘wife	 of	 the	Devil’.	A	 curve	 studied	 by	Agnesi	 (versiera
Agnesi)	was	mistranslated	into	English	as	the	‘witch	of	Agnesi’,	and	in	time
the	mathematician	herself	was	referred	to	by	the	same	title.
Although	 mathematicians	 across	 Europe	 acknowledged	 Agnesi’s	 ability,

many	academic	institutions,	in	particular	the	French	Academy,	refused	to	give
her	a	research	post.	Institutionalised	discrimination	against	women	continued
right	 through	 to	 the	 twentieth	 century,	 when	 Emmy	 Noether,	 described	 by
Einstein	 as	 ‘the	 most	 significant	 creative	 mathematical	 genius	 thus	 far
produced	 since	 the	 higher	 education	 of	 women	 began’,	 was	 denied	 a
lectureship	at	the	University	of	Göttingen.	The	majority	of	the	faculty	argued:
‘How	 can	 it	 be	 allowed	 that	 a	 woman	 become	 a	 Privatdozent?	 Having
become	a	Privatdozent,	she	can	then	become	a	professor	and	a	member	of	the
University	 Senate	….	What	will	 our	 soldiers	 think	when	 they	 return	 to	 the
University	and	find	 that	 they	are	expected	 to	 learn	at	 the	feet	of	a	woman?’
Her	friend	and	mentor	David	Hilbert	replied:	‘Meine	Herren,	I	do	not	see	that
the	 sex	 of	 the	 candidate	 is	 an	 argument	 against	 her	 admission	 as	 a
Privatdozent.	After	all,	the	Senate	is	not	a	bathhouse.’
Later	 her	 colleague	 Edmund	 Landau	 was	 asked	 whether	 Noether	 was

indeed	a	great	woman	mathematician,	to	which	he	replied:	‘I	can	testify	that
she	is	a	great	mathematician,	but	that	she	is	a	woman,	I	cannot	swear.’
In	addition	to	suffering	discrimination	Noether	had	much	else	in	common

with	other	women	mathematicians	through	the	centuries,	such	as	the	fact	that
she	too	was	the	daughter	of	a	mathematics	professor.	Many	mathematicians,
of	both	genders,	are	from	mathematical	families,	giving	rise	 to	 light-hearted
rumours	of	a	mathematical	gene,	but	in	the	case	of	women	the	percentage	is



particularly	high.	The	probable	explanation	is	that	most	women	with	potential
were	never	exposed	to	the	subject	or	encouraged	to	pursue	it,	whereas	those
born	 to	 professors	 could	 hardly	 avoid	 being	 immersed	 in	 the	 numbers.
Furthermore,	 Noether,	 like	 Hypatia,	 Agnesi	 and	 most	 other	 women
mathematicians,	never	married,	largely	because	it	was	not	socially	acceptable
for	women	to	pursue	such	careers	and	there	were	few	men	who	were	prepared
to	 wed	 brides	 with	 such	 controversial	 backgrounds.	 The	 great	 Russian
mathematician	 Sonya	Kovalevsky	 is	 an	 exception	 to	 this	 rule,	 inasmuch	 as
she	arranged	a	marriage	of	convenience	to	Vladimir	Kovalevsky,	a	man	who
was	agreeable	to	a	platonic	relationship.	For	both	parties	the	marriage	allowed
them	 to	 escape	 their	 families	 and	 concentrate	 on	 their	 researches,	 and	 in
Sonya’s	case	travelling	alone	around	Europe	was	much	easier	once	she	was	a
respectable	married	woman.
Of	 all	 the	 European	 countries	 France	 displayed	 the	 most	 chauvinistic

attitude	towards	educated	women,	declaring	that	mathematics	was	unsuitable
for	women	 and	 beyond	 their	mental	 capacity.	 Although	 the	 salons	 of	 Paris
dominated	the	mathematical	world	for	most	of	the	eighteenth	and	nineteenth
centuries,	 only	 one	 woman	 managed	 to	 escape	 the	 constraints	 of	 French
society	 and	 establish	 herself	 as	 a	 great	 number	 theorist.	 Sophie	 Germain
revolutionised	 the	 study	of	Fermat’s	Last	Theorem	and	made	a	contribution
greater	than	any	of	the	men	who	had	gone	before	her.
Sophie	Germain	was	 born	 on	 1	April	 1776,	 the	 daughter	 of	 a	merchant,

Ambroise-François	 Germain.	 Outside	 of	 her	 work,	 her	 life	 was	 to	 be
dominated	by	the	turmoils	of	the	French	Revolution	–	the	year	she	discovered
her	love	of	numbers	the	Bastille	was	stormed,	and	her	study	of	calculus	was
shadowed	 by	 the	 Reign	 of	 Terror.	 Although	 her	 father	 was	 financially
successful,	Sophie’s	family	were	not	members	of	the	aristocracy.
Although	 ladies	 of	 Germain’s	 social	 background	 were	 not	 actively

encouraged	 to	 study	 mathematics,	 they	 were	 expected	 to	 have	 sufficient
knowledge	of	the	subject	in	order	to	be	able	to	discuss	the	topic	should	it	arise
during	polite	conversation.	To	this	end	a	series	of	 textbooks	were	written	 to
help	young	women	get	to	grips	with	the	latest	developments	in	mathematics
and	 science.	 Francesco	 Algarotti	 was	 the	 author	 of	 Sir	 Isaac	 Newton’s
Philosophy	Explain’d	for	 the	Use	of	Ladies.	Because	Algarotti	believed	 that
women	were	 only	 interested	 in	 romance,	 he	 attempted	 to	 explain	Newton’s
discoveries	 through	 the	 flirtatious	 dialogue	 between	 a	 Marquise	 and	 her
interlocutor.	For	example,	 the	interlocutor	outlines	the	inverse	square	law	of
gravitational	attraction,	whereupon	the	Marquise	gives	her	own	interpretation
on	 this	 fundamental	 law	 of	 physics:	 ‘I	 cannot	 help	 thinking	 …	 that	 this
proportion	 in	 the	 squares	 of	 the	 distances	 of	 places	…	 is	 observed	 even	 in



love.	Thus	after	eight	days’	absence	love	becomes	sixty-four	times	less	than	it
was	the	first	day.’
Not	 surprisingly	 this	 gallant	 genre	 of	 books	 was	 not	 responsible	 for

inspiring	Sophie	Germain’s	 interest	 in	mathematics.	The	event	 that	 changed
her	life	occurred	one	day	when	she	was	browsing	in	her	father’s	library	and
chanced	 upon	 Jean-Etienne	 Montucla’s	 book	History	 of	 Mathematics.	 The
chapter	 that	 caught	 her	 imagination	 was	 Montucla’s	 essay	 on	 the	 life	 of
Archimedes.	 His	 account	 of	 Archimedes’	 discoveries	 was	 undoubtedly
interesting,	 but	 what	 particularly	 kindled	 her	 fascination	 was	 the	 story
surrounding	 his	 death.	Archimedes	 had	 spent	 his	 life	 at	 Syracuse,	 studying
mathematics	in	relative	tranquillity,	but	when	he	was	in	his	late	seventies	the
peace	was	shattered	by	the	invading	Roman	army.	Legend	has	it	 that	during
the	invasion	Archimedes	was	so	engrossed	in	the	study	of	a	geometric	figure
in	the	sand	that	he	failed	to	respond	to	the	questioning	of	a	Roman	soldier.	As
a	result	he	was	speared	to	death.
Germain	concluded	that	if	somebody	could	be	so	consumed	by	a	geometric

problem	that	it	could	lead	to	their	death,	then	mathematics	must	be	the	most
captivating	subject	 in	 the	world.	She	 immediately	set	about	 teaching	herself
the	basics	of	number	theory	and	calculus,	and	soon	she	was	working	late	into
the	night,	 studying	 the	works	of	Euler	 and	Newton.	This	 sudden	 interest	 in
such	an	unfeminine	subject	worried	her	parents.	A	friend	of	the	family,	Count
Guglielmo	 Libri-Carrucci	 dalla	 Sommaja,	 told	 how	 Sophie’s	 father
confiscated	 her	 candles	 and	 clothes	 and	 removed	 any	 heating	 in	 order	 to
discourage	 her	 from	 studying.	Only	 a	 few	 years	 later	 in	Britain,	 the	 young
mathematician	Mary	Somerville	would	also	have	her	candles	confiscated	by
her	father	who	maintained	that	‘we	must	put	a	stop	to	this,	or	we	shall	have
Mary	in	a	strait-jacket	one	of	these	days’.
In	Germain’s	case	she	responded	by	maintaining	a	secret	cache	of	candles

and	 wrapping	 herself	 in	 bed-clothes.	 Libri-Carrucci	 wrote	 that	 the	 winter
nights	 were	 so	 cold	 that	 the	 ink	 froze	 in	 the	 inkwell	 but	 Sophie	 continued
regardless.	She	was	described	by	some	people	as	shy	and	awkward,	but	she
was	also	immensely	determined	and	eventually	her	parents	relented	and	gave
Sophie	 their	blessing.	Germain	never	married	and	 throughout	her	career	her
father	funded	her	research.	For	many	years	Germain	continued	to	study	alone
because	there	were	no	mathematicians	in	the	family	who	could	introduce	her
to	the	latest	ideas	and	her	tutors	refused	to	take	her	seriously.
Then,	in	1794,	the	Ecole	Polytechnique	opened	in	Paris.	It	was	founded	as

an	 academy	 of	 excellence	 to	 train	 mathematicians	 and	 scientists	 for	 the
nation.	 This	 would	 have	 been	 an	 ideal	 place	 for	 Germain	 to	 develop	 her
mathematical	skills	except	for	the	fact	that	it	was	an	institution	reserved	only



for	men.	Her	natural	 shyness	prevented	her	 from	confronting	 the	academy’s
governing	body,	so	instead	she	resorted	to	covertly	studying	at	 the	Ecole	by
assuming	the	identity	of	a	former	student	at	the	academy,	Monsieur	Antoine-
August	 Le	 Blanc.	 The	 academy’s	 administration	was	 unaware	 that	 the	 real
Monsieur	 Le	 Blanc	 had	 left	 Paris	 and	 continued	 to	 print	 lecture	 notes	 and
problems	 for	 him.	 Germain	 managed	 to	 obtain	 what	 was	 intended	 for	 Le
Blanc	 and	 each	week	 she	would	 submit	 answers	 to	 the	 problems	under	 her
new	pseudonym.	Everything	was	going	to	plan	until	a	couple	of	months	later
when	 the	 supervisor	 of	 the	 course,	 Joseph-Louis	Lagrange,	 could	no	 longer
ignore	 the	 brilliance	 of	Monsieur	 Le	Blanc’s	 answer	 sheets.	Not	 only	were
Monsieur	 Le	 Blanc’s	 solutions	 marvellously	 ingenious,	 but	 they	 showed	 a
remarkable	transformation	in	a	student	who	had	previously	been	notorious	for
his	abysmal	calculations.	Lagrange,	who	was	one	of	the	finest	mathematicians
of	the	nineteenth	century,	requested	a	meeting	with	the	reformed	student	and
Germain	was	forced	to	reveal	her	true	identity.	Lagrange	was	astonished	and
pleased	to	meet	the	young	woman	and	became	her	mentor	and	friend.	At	last
Sophie	 Germain	 had	 a	 teacher	 who	 could	 inspire	 her,	 and	 with	 whom	 she
could	be	open	about	her	skills	and	ambitions.
Germain	grew	in	confidence	and	she	moved	from	solving	problems	in	her

coursework	 to	 studying	 unexplored	 areas	 of	mathematics.	Most	 importantly
she	became	 interested	 in	number	 theory	 and	 inevitably	 she	 came	 to	hear	of
Fermat’s	 Last	 Theorem.	 She	 worked	 on	 the	 problem	 for	 several	 years,
eventually	reaching	the	stage	where	she	believed	she	had	made	an	important
breakthrough.	She	needed	to	discuss	her	ideas	with	a	fellow	number	theorist
and	 decided	 that	 she	 would	 go	 straight	 to	 the	 top	 and	 consult	 the	 greatest
number	 theorist	 in	 the	 world,	 the	 German	 mathematician	 Carl	 Friedrich
Gauss.
Gauss	 is	acknowledged	as	being	one	of	 the	most	brilliant	mathematicians

who	 has	 ever	 lived.	 While	 E.T.	 Bell	 referred	 to	 Fermat	 as	 the	 ‘Prince	 of
Amateurs’,	he	called	Gauss	the	‘Prince	of	Mathematicians’.	Germain	had	first
encountered	 his	 work	 through	 studying	 his	 masterpiece	 Disquisitiones
arithmeticae,	 the	 most	 important	 and	 wide-ranging	 treatise	 since	 Euclid’s
Elements.	Gauss’s	work	influenced	every	area	of	mathematics,	but	strangely
enough	he	never	published	anything	on	Fermat’s	Last	Theorem.	In	one	letter
he	 even	 displayed	 contempt	 for	 the	 problem.	 His	 friend	 the	 German
astronomer	Heinrich	Olbers	had	written	to	Gauss	encouraging	him	to	compete
for	 a	 prize	which	 had	 been	 offered	 by	 the	 Paris	Academy	 for	 a	 solution	 to
Fermat’s	 challenge:	 ‘It	 seems	 to	me,	 dear	 Gauss,	 that	 you	 should	 get	 busy
about	this.’	Two	weeks	later	Gauss	replied,	‘I	am	very	much	obliged	for	your
news	concerning	the	Paris	prize.	But	I	confess	that	Fermat’s	Last	Theorem	as



an	 isolated	 proposition	 has	 very	 little	 interest	 for	me,	 for	 I	 could	 easily	 lay
down	 a	multitude	 of	 such	 propositions,	 which	 one	 could	 neither	 prove	 nor
disprove.’	Gauss	was	entitled	to	his	opinion,	but	Fermat	had	clearly	stated	that
a	proof	existed	and	even	the	subsequent	failed	attempts	to	find	the	proof	had
generated	innovative	new	techniques,	such	as	proof	by	‘infinite	descent’	and
the	use	of	imaginary	numbers.	Perhaps	in	the	past	Gauss	had	tried	and	failed
to	make	any	impact	on	the	problem,	and	his	response	to	Olbers	was	merely	a
case	 of	 intellectual	 sour	 grapes.	 Nonetheless,	 when	 he	 received	 Germain’s
letters	he	was	sufficiently	impressed	by	her	breakthrough	that	he	temporarily
forgot	his	ambivalence	towards	Fermat’s	Last	Theorem.
Seventy-five	years	earlier	Euler	had	published	his	proof	for	the	case	n	=	3,

and	 ever	 since	 mathematicians	 had	 been	 trying	 in	 vain	 to	 prove	 other
individual	cases.	However,	Germain	adopted	a	new	strategy	and	described	to
Gauss	 a	 so-called	 general	 approach	 to	 the	 problem.	 In	 other	 words,	 her
immediate	 goal	was	 not	 to	 prove	 one	 particular	 case,	 but	 to	 say	 something
about	many	 cases	 at	 once.	 In	 her	 letter	 to	Gauss	 she	 outlined	 a	 calculation
which	 focused	on	a	particular	 type	of	prime	number	p	 such	 that	 (2p	+	1)	 is
also	prime.	Germain’s	list	of	primes	includes	5,	because	11	(2	×	5	+	1)	is	also
prime;	but	it	does	not	include	13,	because	27	(2	×	13	+	1)	is	not	prime.
For	 values	 of	 n	 equal	 to	 these	 Germain	 primes,	 she	 used	 an	 elegant

argument	to	show	that	there	were	probably	no	solutions	to	the	equation	xn	+
yn	=	zn.	By	‘probably’	Germain	meant	that	it	was	unlikely	that	any	solutions
existed,	 because	 if	 there	 was	 a	 solution	 then	 either	 x,	 y	 or	 z	 would	 be	 a
multiple	of	n,	and	this	would	put	a	very	tight	restriction	on	any	solutions.	Her
colleagues	examined	her	list	of	primes	one	by	one	trying	to	prove	that	x,	y	or	z
could	not	be	a	multiple	of	n,	thereby	showing	that	for	that	particular	value	of
n	there	could	be	no	solutions.
In	 1825	 her	 method	 claimed	 its	 first	 complete	 success	 thanks	 to	 Gustav

Lejeune-Dirichlet	 and	 Adrien-Marie	 Legendre,	 two	 mathematicians	 a
generation	apart.	Legendre	was	a	man	in	his	seventies	who	had	lived	through
the	 political	 turmoil	 of	 the	 French	 Revolution.	 His	 failure	 to	 support	 the
government	 candidate	 for	 the	 Institut	 National	 led	 to	 the	 stopping	 of	 his
pension,	and	by	the	time	he	made	his	contribution	to	Fermat’s	Last	Theorem
he	 was	 destitute.	 On	 the	 other	 hand,	 Dirichlet	 was	 an	 ambitious	 young
number	theorist	who	had	only	just	turned	twenty.	Both	of	them	independently
were	able	to	prove	that	the	case	n	=	5	has	no	solutions,	but	they	based	their
proofs	on,	and	owed	their	success	to,	Sophie	Germain.
Fourteen	years	later	the	French	made	another	breakthrough.	Gabriel	Lamé

made	some	further	 ingenious	additions	to	Germain’s	method	and	proved	the
case	 for	 the	 prime	 n	 =	 7.	 Germain	 had	 shown	 numbers	 theorists	 how	 to



destroy	an	entire	section	of	prime	cases	and	now	it	was	up	 to	 the	combined
efforts	of	her	colleagues	to	continue	proving	Fermat’s	Last	Theorem	one	case
at	a	time.
Germain’s	 work	 on	 Fermat’s	 Last	 Theorem	 was	 to	 be	 her	 greatest

contribution	 to	 mathematics	 but	 initially	 she	 was	 not	 credited	 for	 her
breakthrough.	When	Germain	wrote	 to	Gauss	 she	was	 still	 in	 her	 twenties,
and	 although	 she	 had	 gained	 a	 reputation	 in	 Paris	 she	 feared	 that	 the	 great
man	would	not	 take	her	seriously	because	of	her	gender.	 In	order	 to	protect
herself	Germain	resorted	once	again	to	her	pseudonym,	signing	her	letters	as
Monsieur	Le	Blanc.
Her	 fear	 and	 respect	 for	 Gauss	 is	 shown	 in	 one	 of	 her	 letters	 to	 him:

‘Unfortunately,	 the	 depth	 of	my	 intellect	 does	 not	 equal	 the	 voracity	 of	my
appetite,	 and	 I	 feel	 a	 kind	 of	 temerity	 in	 troubling	 a	man	of	 genius	when	 I
have	no	other	claim	to	his	attention	than	an	admiration	necessarily	shared	by
all	his	readers.’	Gauss,	unaware	of	his	correspondent’s	true	identity,	attempted
to	put	Germain	at	ease	and	replied:	‘I	am	delighted	that	arithmetic	has	found
in	you	so	able	a	friend.’
Germain’s	 contribution	may	 have	 been	 forever	 wrongly	 attributed	 to	 the

mysterious	Monsieur	Le	Blanc	were	it	not	for	the	Emperor	Napoleon.	In	1806
Napoleon	was	 invading	Prussia	 and	 the	French	 army	was	 storming	 through
one	 German	 city	 after	 another.	 Germain	 feared	 that	 the	 fate	 that	 befell
Archimedes	might	also	take	the	life	of	her	other	great	hero	Gauss,	so	she	sent
a	message	to	her	friend	General	Joseph-Marie	Pernety,	who	was	in	charge	of
the	 advancing	 forces.	 She	 asked	 him	 to	 guarantee	Gauss’s	 safety,	 and	 as	 a
result	the	general	took	special	care	of	the	German	mathematician,	explaining
to	him	that	he	owed	his	life	to	Mademoiselle	Germain.	Gauss	was	grateful	but
surprised,	for	he	had	never	heard	of	Sophie	Germain.
The	 game	 was	 up.	 In	 Germain’s	 next	 letter	 to	 Gauss	 she	 reluctantly

revealed	her	true	identity.	Far	from	being	angry	at	the	deception,	Gauss	wrote
back	to	her	with	delight:

But	how	to	describe	to	you	my	admiration	and	astonishment	at	seeing	my	esteemed	correspondent
Monsieur	Le	Blanc	metamorphose	himself	into	this	illustrious	personage	who	gives	such	a	brilliant
example	of	what	I	would	find	it	difficult	to	believe.	A	taste	for	the	abstract	sciences	in	general	and
above	all	the	mysteries	of	numbers	is	excessively	rare:	one	is	not	astonished	at	it:	the	enchanting
charms	of	this	sublime	science	reveal	themselves	only	to	those	who	have	the	courage	to	go	deeply
into	 it.	 But	 when	 a	 person	 of	 the	 sex	 which,	 according	 to	 our	 customs	 and	 prejudices,	 must
encounter	infinitely	more	difficulties	than	men	to	familiarise	herself	with	these	thorny	researches,
succeeds	 nevertheless	 in	 surmounting	 these	 obstacles	 and	 penetrating	 the	most	 obscure	 parts	 of
them,	 then	 without	 doubt	 she	 must	 have	 the	 noblest	 courage,	 quite	 extraordinary	 talents	 and



superior	genius.	Indeed	nothing	could	prove	to	me	in	so	flattering	and	less	equivocal	manner	that
the	attractions	of	this	science,	which	has	enriched	my	life	with	so	many	joys,	are	not	chimerical,	as
the	predilection	with	which	you	have	honoured	it.

Sophie	 Germain’s	 correspondence	 with	 Carl	 Gauss	 inspired	 much	 of	 her
work,	but	in	1808	the	relationship	ended	abruptly.	Gauss	had	been	appointed
professor	 of	 astronomy	 at	 the	 University	 of	 Göttingen,	 his	 interest	 shifted
from	number	theory	to	more	applied	mathematics,	and	he	no	longer	bothered
to	return	Germain’s	letters.	Without	her	mentor	her	confidence	began	to	wane,
and	within	a	year	she	abandoned	pure	mathematics.
Although	 she	 made	 no	 further	 contributions	 to	 proving	 Fermat’s	 Last

Theorem,	she	did	embark	on	an	eventful	career	as	a	physicist,	a	discipline	in
which	she	would	again	excel	only	 to	be	confronted	by	 the	prejudices	of	 the
establishment.	Her	most	 important	 contribution	 to	 the	 subject	was	 ‘Memoir
on	the	vibrations	of	elastic	plates’,	a	brilliantly	insightful	paper	which	laid	the
foundations	 for	 the	modern	 theory	 of	 elasticity.	As	 a	 result	 of	 this	 research
and	 her	 work	 on	 Fermat’s	 Last	 Theorem	 she	 received	 a	 medal	 from	 the
Institut	 de	 France,	 and	 became	 the	 first	 woman	 who	 was	 not	 a	 wife	 of	 a
member	to	attend	lectures	at	the	Academy	of	Sciences.	Then	towards	the	end
of	her	life	she	re-established	her	relationship	with	Carl	Gauss,	who	convinced
the	 University	 of	 Göttingen	 to	 award	 her	 an	 honorary	 degree.	 Tragically,
before	the	university	could	bestow	the	honour	upon	her,	Sophie	Germain	died
of	breast	cancer.

All	 things	considered	 she	was	probably	 the	most	profoundly	 intellectual	woman	 that	France	has
ever	produced.	And	yet,	strange	as	it	may	seem,	when	the	state	official	came	to	make	out	the	death
certificate	of	this	eminent	associate	and	co-worker	of	the	most	illustrious	members	of	the	French
Academy	 of	 Science,	 he	 designated	 her	 as	 a	 rentière-annuitant	 (a	 single	 woman	 with	 no
profession)	 –	 not	 as	 a	mathématicienne.	Nor	 is	 this	 all.	When	 the	 Eiffel	 Tower	was	 erected,	 in
which	the	engineers	were	obliged	to	give	special	attention	to	 the	elasticity	of	 the	materials	used,
there	were	inscribed	on	this	lofty	structure	the	names	of	seventy-two	savants.	But	one	will	not	find
in	 this	 list	 the	 name	 of	 that	 daughter	 of	 genius,	whose	 researches	 contributed	 so	much	 towards
establishing	the	theory	of	the	elasticity	of	metals	–	Sophie	Germain.	Was	she	excluded	from	this
list	 for	 the	 same	 reason	 that	 Agnesi	 was	 ineligible	 for	 membership	 in	 the	 French	 Academy	 –
because	she	was	a	woman?	It	would	seem	so.	If	such,	indeed,	was	the	case,	more	is	the	shame	for
those	who	were	responsible	for	such	ingratitude	towards	one	who	had	deserved	so	well	of	science,
and	who	by	her	achievements	had	won	an	enviable	place	in	the	hall	of	fame.

H.J.	Mozans,	1913



The	Sealed	Envelopes

After	 the	breakthrough	of	Sophie	Germain	the	French	Academy	of	Sciences
offered	 a	 series	 of	 prizes,	 including	 a	 gold	 medal	 and	 3,000	 Francs	 to	 the
mathematician	 who	 could	 finally	 put	 to	 rest	 the	 mystery	 of	 Fermat’s	 Last
Theorem.	As	well	as	the	prestige	of	proving	Fermat’s	Last	Theorem	there	was
now	an	immensely	valuable	reward	attached	 to	 the	challenge.	The	salons	of
Paris	were	 full	of	 rumours	as	 to	who	was	adopting	which	strategy	and	how
close	they	were	to	announcing	a	result.	Then,	on	1	March	1847,	the	Academy
held	its	most	dramatic	meeting	ever.
The	proceedings	describe	how	Gabriel	Lamé,	who	had	proved	the	case	n	=

7	 some	 years	 earlier,	 took	 the	 podium	 in	 front	 of	 the	 most	 eminent
mathematicians	of	the	age	and	proclaimed	that	he	was	on	the	verge	of	proving
Fermat’s	Last	Theorem.	He	admitted	that	his	proof	was	still	 incomplete,	but
he	outlined	his	method	and	predicted	with	relish	that	he	would	in	the	coming
weeks	publish	a	complete	proof	in	the	Academy’s	journal.
The	 entire	 audience	 was	 stunned,	 but	 as	 soon	 as	 Lamé	 left	 the	 floor

Augustin	Louis	Cauchy,	 another	 of	 Paris’s	 finest	mathematicians,	 asked	 for
permission	 to	 speak.	 Cauchy	 announced	 to	 the	 Academy	 that	 he	 had	 been
working	along	similar	lines	to	Lamé,	and	that	he	too	was	about	to	publish	a
complete	proof.
Both	 Cauchy	 and	 Lamé	 realised	 that	 time	 was	 of	 the	 essence.	Whoever

would	be	first	to	submit	a	complete	proof	would	receive	the	most	prestigious
and	valuable	prize	in	mathematics.	Although	neither	of	them	had	a	complete
proof,	 the	 two	 rivals	were	keen	 to	 somehow	stake	a	claim	and	so	 just	 three
weeks	 after	 they	 had	 made	 their	 announcements	 they	 deposited	 sealed
envelopes	 at	 the	Academy.	 This	was	 a	 common	 practice	 at	 the	 time	which
enabled	mathematicians	to	go	on	record	without	revealing	the	exact	details	of
their	work.	 If	 a	 dispute	 should	 later	 arise	 regarding	 the	originality	 of	 ideas,
then	 a	 sealed	 envelope	 would	 provide	 the	 evidence	 needed	 to	 establish
priority.
The	anticipation	built	up	throughout	April	as	Cauchy	and	Lamé	published

tantalising	but	vague	details	of	their	proof	in	the	proceedings	of	the	Academy.
Although	the	entire	mathematical	community	was	desperate	to	see	the	proof
completed,	 many	 of	 them	 secretly	 hoped	 that	 it	 would	 be	 Lamé	 and	 not
Cauchy	who	would	win	the	race.	By	all	accounts	Cauchy	was	a	self-righteous
creature,	 a	 religious	 bigot	 and	 extremely	 unpopular	with	 his	 colleagues.	He
was	only	tolerated	at	the	Academy	because	of	his	brilliance.
Then,	 on	 24	May,	 an	 announcement	 was	made	 which	 put	 an	 end	 to	 the

speculation.	It	was	neither	Cauchy	nor	Lamé	who	addressed	the	Academy	but



rather	Joseph	Liouville.	Liouville	shocked	the	entire	audience	by	reading	out
the	contents	of	a	letter	from	the	German	mathematician	Ernst	Kummer.
Kummer	was	 a	number	 theorist	 of	 the	highest	order,	 but	 for	much	of	his

career	a	fierce	patriotism	fired	by	a	hatred	of	Napoleon	deflected	him	from	his
true	calling.	When	Kummer	was	an	infant	the	French	army	invaded	his	home
town	of	Sorau,	bringing	with	 them	an	epidemic	of	 typhus.	Kummer’s	father
was	 the	 town	 physician	 and	 within	 weeks	 he	 was	 taken	 by	 the	 disease.
Traumatised	by	the	experience	Kummer	swore	to	do	his	utmost	to	defend	his
country	 from	further	attack,	and	as	 soon	as	he	 left	university	he	applied	his
intellect	to	the	problem	of	plotting	the	trajectories	of	cannon-balls.	Ultimately
he	taught	the	laws	of	ballistics	at	Berlin’s	war	college.
In	 parallel	 with	 his	 military	 career	 Kummer	 actively	 pursued	 pure

mathematical	 research	 and	had	been	 fully	 aware	of	 the	ongoing	 saga	 at	 the
French	Academy.	He	had	read	through	the	proceedings	and	analysed	the	few
details	that	Cauchy	and	Lamé	had	dared	to	reveal.	To	Kummer	it	was	obvious
that	the	two	Frenchmen	were	heading	towards	the	same	logical	dead	end,	and
he	outlined	his	reasons	in	the	letter	which	he	sent	to	Liouville.
According	to	Kummer	the	fundamental	problem	was	that	the	proofs	of	both

Cauchy	 and	Lamé	 relied	 on	 using	 a	 property	 of	 numbers	 known	 as	 unique
factorisation.	 Unique	 factorisation	 states	 that	 there	 is	 only	 one	 possible
combination	 of	 primes	 which	 will	 multiply	 together	 to	 give	 any	 particular
number.	 For	 instance,	 the	 only	 combination	 of	 primes	which	will	 build	 the
number	18	is	as	follows:

Similarly,	 the	 following	 numbers	 are	 uniquely	 factorised	 in	 the	 following
ways:

Unique	factorisation	was	discovered	back	in	the	fourth	century	BC	by	Euclid,
who	proved	that	it	is	true	for	all	counting	numbers	and	described	the	proof	in
Book	 IX	 of	 his	Elements.	 The	 fact	 that	 unique	 factorisation	 is	 true	 for	 all
counting	 numbers	 is	 a	 vital	 element	 in	many	 other	 proofs	 and	 is	 nowadays
called	the	fundamental	theorem	of	arithmetic.
At	 first	 sight	 there	 should	 have	 been	 no	 reason	 why	 Cauchy	 and	 Lamé

should	 not	 rely	 on	 unique	 factorisation,	 as	 had	 hundreds	 of	mathematicians



before	them.	Unfortunately	both	of	their	proofs	involved	imaginary	numbers.
Although	unique	factorisation	 is	 true	for	real	numbers,	Kummer	pointed	out
that	 it	 might	 not	 necessarily	 hold	 true	 when	 imaginary	 numbers	 are
introduced.	According	to	him	this	was	a	fatal	flaw.
For	example,	 if	we	restrict	ourselves	 to	 real	numbers	 then	 the	number	12

can	 only	 be	 factorised	 into	 2	 ×	 2	 ×	 3.	 However,	 if	 we	 allow	 imaginary
numbers	into	our	proof	then	12	can	also	be	factorised	in	the	following	way:

Here	 (1	 +	 √–11)	 is	 a	 complex	 number,	 a	 combination	 of	 a	 real	 and	 an
imaginary	number.	Although	the	process	of	multiplication	is	more	convoluted
than	 for	 ordinary	 numbers,	 the	 existence	 of	 complex	 numbers	 does	 lead	 to
additional	ways	to	factorise	12.	Another	way	to	factorise	12	is	(2	+	√–8)	×	(2
–	 √–8).	 There	 is	 no	 longer	 a	 unique	 factorisation	 but	 rather	 a	 choice	 of
factorisations.
This	 loss	 of	 unique	 factorisation	 severely	 damaged	 the	 proofs	 of	Cauchy

and	 Lamé,	 but	 it	 did	 not	 necessarily	 destroy	 them	 completely.	 The	 proofs
were	supposed	to	show	that	there	were	no	solutions	to	the	equation	xn	+	yn	=
zn,	where	n	represents	any	number	greater	than	2.	As	discussed	earlier	in	this
chapter,	 the	 proof	 only	 had	 to	 work	 for	 the	 prime	 values	 of	 n.	 Kummer
showed	that	by	employing	extra	techniques	it	was	possible	to	restore	unique
factorisation	 for	 various	 values	 of	 n.	 For	 example,	 the	 problem	 of	 unique
factorisation	could	be	circumvented	for	all	prime	numbers	up	to	and	including
n	=	31.	However,	the	prime	number	n	=	37	could	not	be	dealt	with	so	easily.
Among	the	other	primes	less	than	100,	two	others,	n	=	59	and	67,	were	also
awkward	 cases.	 These	 so-called	 irregular	 primes,	 which	 are	 sprinkled
throughout	the	remaining	prime	numbers,	were	now	the	stumbling	block	to	a
complete	proof.
Kummer	 pointed	 out	 that	 there	was	 no	 known	mathematics	which	 could

tackle	all	 these	 irregular	primes	 in	one	 fell	 swoop.	However,	he	did	believe
that,	by	carefully	tailoring	techniques	to	each	individual	irregular	prime,	they
could	 be	 dealt	 with	 one	 by	 one.	 Developing	 these	 customised	 techniques
would	be	a	slow	and	painful	exercise,	and	worse	still	the	number	of	irregular
primes	 is	 still	 infinite.	 Disposing	 of	 them	 individually	 would	 occupy	 the
world’s	community	of	mathematicians	until	the	end	of	time.
Kummer’s	 letter	 had	 a	 devastating	 effect	 on	 Lamé.	 With	 hindsight	 the

assumption	 of	 unique	 factorisation	was	 at	 best	 over-optimistic	 and	 at	worst
foolhardy.	Lamé	realised	that	had	he	been	more	open	about	his	work	he	might
have	 spotted	 the	 error	 sooner,	 and	 he	 wrote	 to	 his	 colleague	 Dirichlet	 in



Berlin:	 ‘If	 only	 you	 had	 been	 in	 Paris,	 or	 I	 had	 been	 in	 Berlin,	 all	 of	 this
would	not	have	happened.’
While	Lamé	felt	humiliated,	Cauchy	refused	to	accept	defeat.	He	felt	 that

compared	 to	 Lamé’s	 proof	 his	 own	 approach	 was	 less	 reliant	 on	 unique
factorisation,	and	until	Kummer’s	analysis	had	been	fully	checked	there	was
the	possibility	that	 it	was	flawed.	For	several	weeks	he	continued	to	publish
articles	on	the	subject,	but	by	the	end	of	the	summer	he	too	fell	silent.
Kummer	had	demonstrated	that	a	complete	proof	of	Fermat’s	Last	Theorem

was	beyond	 the	current	mathematical	approaches.	 It	was	a	brilliant	piece	of
mathematical	 logic,	 but	 a	 massive	 blow	 to	 an	 entire	 generation	 of
mathematicians	 who	 had	 hoped	 that	 they	 might	 solve	 the	 world’s	 hardest
mathematical	problem.
The	 situation	 was	 summarised	 by	 Cauchy,	 who	 in	 1857	 wrote	 the

Academy’s	closing	report	on	their	prize	for	Fermat’s	Last	Theorem:

Report	 on	 the	 competition	 for	 the	 Grand	 Prize	 in	 mathematical	 sciences.	 Already	 set	 in	 the
competition	for	1853	and	prorogued	to	1856.

Eleven	memoirs	have	been	presented	to	the	secretary.	But	none	has	solved	the	proposed	question.
Thus,	 after	 many	 times	 being	 put	 forward	 for	 a	 prize,	 the	 question	 remains	 at	 the	 point	 where
Monsieur	Kummer	left	it.	However,	the	mathematical	sciences	should	congratulate	themselves	for
the	 works	 which	 were	 undertaken	 by	 the	 geometers,	 with	 their	 desire	 to	 solve	 the	 question,
specially	 by	Monsieur	Kummer;	 and	 the	Commissaries	 think	 that	 the	Academy	would	make	 an
honorable	 and	 useful	 decision	 if,	 by	 withdrawing	 the	 question	 from	 the	 competition,	 it	 would
adjugate	 the	medal	 to	Monsieur	Kummer,	 for	 his	 beautiful	 researches	 on	 the	 complex	 numbers
composed	of	roots	of	unity	and	integers.

For	over	two	centuries	every	attempt	to	rediscover	the	proof	of	Fermat’s	Last
Theorem	had	ended	 in	 failure.	Throughout	his	 teenage	years	Andrew	Wiles
had	studied	the	work	of	Euler,	Germain,	Cauchy,	Lamé	and	finally	Kummer.
He	 hoped	 he	 could	 learn	 by	 their	 mistakes,	 but	 by	 the	 time	 he	 was	 an
undergraduate	at	the	University	of	Oxford	he	confronted	the	same	brick	wall
that	faced	Kummer.
Some	 of	 Wiles’s	 contemporaries	 were	 beginning	 to	 suspect	 that	 the

problem	 might	 be	 impossible.	 Perhaps	 Fermat	 had	 deceived	 himself	 and
therefore	the	reason	why	nobody	had	rediscovered	Fermat’s	proof	was	that	no
such	 proof	 existed.	Despite	 this	 scepticism	Wiles	 continued	 to	 search	 for	 a
proof.	He	was	inspired	by	the	knowledge	that	there	had	been	several	cases	in
the	past	of	proofs	which	had	eventually	been	discovered	only	after	centuries
of	 effort.	And	 in	 some	 of	 those	 cases	 the	 flash	 of	 insight	which	 solved	 the



problem	did	not	rely	on	new	mathematics;	rather	it	was	a	proof	which	could
have	been	done	long	ago.

Figure	11.	In	these	diagrams	every	dot	is	connected	to	every	other	dot	by	straight	lines.	Is	it	possible	to
construct	a	diagram	such	that	every	line	has	at	least	three	dots	on	it?

One	 example	 of	 a	 problem	which	 evaded	 solution	 for	 decades	 is	 the	dot
conjecture.	The	challenge	involves	a	series	of	dots	which	are	all	connected	to
each	other	by	straight	lines,	such	as	the	dot	diagrams	shown	in	Figure	11.	The
conjecture	claims	that	it	is	impossible	to	draw	a	dot	diagram	such	that	every
line	has	at	least	three	dots	on	it	(excluding	the	diagram	where	all	the	dots	are
on	 the	 same	 line).	 Certainly	 by	 experimenting	 with	 a	 few	 diagrams	 this
appears	to	be	true.	For	example,	Figure	11(a)	has	five	dots	connected	by	six
lines.	 Four	 of	 the	 lines	 do	 not	 have	 three	 dots	 on	 them	 and	 so	 clearly	 this
arrangement	does	not	satisfy	the	requirement	that	all	lines	have	three	dots.	By
adding	an	extra	dot	and	the	associated	line,	as	in	Figure	11(b),	the	number	of
lines	which	do	not	have	three	dots	is	reduced	to	just	three.	However,	trying	to
adapt	 the	diagram	 further	 so	 that	 all	 the	 lines	have	 three	dots	 appears	 to	be
impossible.	Of	course,	this	does	not	prove	that	no	such	diagram	exists.
Generations	 of	 mathematicians	 tried	 and	 failed	 to	 find	 a	 proof	 of	 the

apparently	 straightforward	 dot	 conjecture.	 What	 made	 the	 conjecture	 even
more	infuriating	was	that	when	a	proof	was	eventually	discovered,	it	involved
only	a	minimal	amount	of	mathematical	knowledge	mixed	with	a	little	extra
cunning.	The	proof	is	outlined	in	Appendix	6.
There	was	a	possibility	 that	all	 the	 techniques	 required	 to	prove	Fermat’s

Last	 Theorem	 were	 available,	 and	 that	 the	 only	 missing	 ingredient	 was
ingenuity.	 Wiles	 was	 not	 prepared	 to	 give	 up:	 finding	 a	 proof	 of	 the	 Last
Theorem	had	turned	from	being	a	childhood	fascination	in	to	a	fully	fledged
obsession.	Having	learnt	all	 there	was	to	 learn	about	 the	mathematics	of	 the
nineteenth	 century,	 Wiles	 decided	 to	 arm	 himself	 with	 techniques	 of	 the
twentieth	century.



4
Into	Abstraction

Proof	is	an	idol	before	which	the	mathematician	tortures	himself.
Sir	Arthur	Eddington

Following	the	work	of	Ernst	Kummer,	hopes	of	finding	a	proof	for	 the	Last
Theorem	seemed	 fainter	 than	ever.	Furthermore	mathematics	was	beginning
to	 move	 into	 different	 areas	 of	 study	 and	 there	 was	 a	 risk	 that	 the	 new
generation	of	mathematicians	would	ignore	what	seemed	an	impossible	dead-
end	problem.	By	the	beginning	of	the	twentieth	century	the	problem	still	held
a	 special	 place	 in	 the	 hearts	 of	 number	 theorists,	 but	 they	 treated	 Fermat’s
Last	 Theorem	 in	 the	 same	 way	 that	 chemists	 treated	 alchemy.	 Both	 were
foolish	romantic	dreams	from	a	past	age.
Then	in	1908	Paul	Wolfskehl,	a	German	industrialist	from	Darmstadt,	gave

the	problem	a	new	lease	of	life.	The	Wolfskehl	family	were	famous	for	their
wealth	 and	 their	 patronage	 of	 the	 arts	 and	 sciences,	 and	 Paul	 was	 no
exception.	He	had	studied	mathematics	at	university	and,	although	he	devoted
most	 of	 his	 life	 to	 building	 the	 family’s	 business	 empire,	 he	 maintained
contact	with	professional	mathematicians	and	continued	to	dabble	in	number
theory.	In	particular	Wolfskehl	refused	to	give	up	on	Fermat’s	Last	Theorem.
Wolfskehl	 was	 by	 no	 means	 a	 gifted	 mathematician	 and	 he	 was	 not

destined	to	make	a	major	contribution	to	finding	a	proof	of	the	Last	Theorem.
Nonetheless,	 thanks	 to	a	curious	chain	of	events,	he	was	 to	become	 forever
associated	with	Fermat’s	problem,	and	would	 inspire	 thousands	of	others	 to
take	up	the	challenge.
The	 story	 begins	 with	 Wolfskehl’s	 obsession	 with	 a	 beautiful	 woman,

whose	 identity	 has	 never	 been	 established.	 Depressingly	 for	Wolfskehl	 the
mysterious	woman	rejected	him	and	he	was	left	in	such	a	state	of	utter	despair
that	 he	 decided	 to	 commit	 suicide.	 He	 was	 a	 passionate	 man,	 but	 not
impetuous,	and	he	planned	his	death	with	meticulous	detail.	He	set	a	date	for
his	 suicide	 and	 would	 shoot	 himself	 through	 the	 head	 at	 the	 stroke	 of
midnight.	 In	 the	 days	 that	 remained	 he	 settled	 all	 his	 outstanding	 business
affairs,	and	on	the	final	day	he	wrote	his	will	and	composed	letters	to	all	his
close	friends	and	family.



Wolfskehl	 had	 been	 so	 efficient	 that	 everything	 was	 completed	 slightly
ahead	 of	 his	midnight	 deadline,	 so	 to	while	 away	 the	 hours	 he	went	 to	 the
library	and	began	browsing	through	the	mathematical	publications.	It	was	not
long	 before	 he	 found	 himself	 staring	 at	Kummer’s	 classic	 paper	 explaining
the	failure	of	Cauchy	and	Lamé.	It	was	one	of	the	great	calculations	of	the	age
and	 suitable	 reading	 for	 the	 final	 moments	 of	 a	 suicidal	 mathematician.
Wolfskehl	 worked	 through	 the	 calculation	 line	 by	 line.	 Suddenly	 he	 was
startled	 at	what	 appeared	 to	 be	 a	 gap	 in	 the	 logic	 –	Kummer	 had	made	 an
assumption	and	failed	to	justify	a	step	in	his	argument.	Wolfskehl	wondered
whether	he	had	uncovered	a	 serious	 flaw	or	whether	Kummer’s	 assumption
was	 justified.	 If	 the	 former	were	 true,	 then	 there	was	 a	 chance	 that	proving
Fermat’s	Last	Theorem	might	be	a	good	deal	easier	than	many	had	presumed.
He	 sat	 down,	 explored	 the	 inadequate	 segment	 of	 the	 proof,	 and	 became

engrossed	 in	 developing	 a	 mini-proof	 which	 would	 either	 consolidate
Kummer’s	work	or	prove	 that	his	 assumption	was	wrong,	 in	which	case	all
Kummer’s	work	would	be	invalidated.	By	dawn	his	work	was	complete.	The
bad	 news,	 as	 far	 as	mathematics	was	 concerned,	was	 that	Kummer’s	 proof
had	 been	 remedied	 and	 the	 Last	 Theorem	 remained	 in	 the	 realm	 of	 the
unattainable.	The	good	news	was	 that	 the	appointed	 time	of	 the	suicide	had
passed,	and	Wolfskehl	was	so	proud	 that	he	had	discovered	and	corrected	a
gap	 in	 the	 work	 of	 the	 great	 Ernst	 Kummer	 that	 his	 despair	 and	 sorrow
evaporated.	Mathematics	had	renewed	his	desire	for	life.
Wolfskehl	 tore	 up	 his	 farewell	 letters	 and	 rewrote	 his	will	 in	 the	 light	 of

what	had	happened	that	night.	Upon	his	death	in	1908	the	new	will	was	read
out,	 and	 the	 Wolfskehl	 family	 were	 shocked	 to	 discover	 that	 Paul	 had
bequeathed	 a	 large	 proportion	 of	 his	 fortune	 as	 a	 prize	 to	 be	 awarded	 to
whomsoever	 could	 prove	 Fermat’s	 Last	 Theorem.	 The	 reward	 of	 100,000
Marks,	worth	over	£1,000,000	 in	 today’s	money,	was	his	way	of	 repaying	a
debt	to	the	conundrum	that	had	saved	his	life.
The	 money	 was	 put	 into	 the	 charge	 of	 the	 Königliche	 Gesellschaft	 der

Wissenschaften	of	Göttingen,	which	officially	announced	the	competition	for
the	Wolfskehl	Prize	that	same	year:

By	the	power	conferred	on	us,	by	Dr.	Paul	Wolfskehl,	deceased	 in	Darmstadt,	we	hereby	fund	a
prize	of	one	hundred	thousand	Marks,	to	be	given	to	the	person	who	will	be	the	first	to	prove	the
great	theorem	of	Fermat.

The	following	rules	will	be	followed:
(1)	The	Königliche	Gesellschaft	 der	Wissenschaften	 in	Göttingen	will	 have	 absolute	 freedom	 to
decide	upon	whom	the	prize	should	be	conferred.	It	will	refuse	to	accept	any	manuscript	written



with	the	sole	aim	of	entering	the	competition	to	obtain	the	Prize.	It	will	only	take	into	consideration
those	mathematical	memoirs	which	have	appeared	in	the	form	of	a	monograph	in	the	periodicals,
or	which	are	for	sale	in	the	bookshops.	The	Society	asks	the	authors	of	such	memoirs	to	send	at
least	five	printed	exemplars.
(2)	Works	which	are	published	in	a	language	which	is	not	understood	by	the	scholarly	specialists
chosen	 for	 the	 jury	 will	 be	 excluded	 from	 the	 competition.	 The	 authors	 of	 such	 works	 will	 be
allowed	to	replace	them	by	translations,	of	guaranteed	faithfulness.
(3)	The	Society	declines	responsibility	for	the	examination	of	works	not	brought	to	its	attention,	as
well	as	for	the	errors	which	might	result	from	the	fact	that	the	author	of	a	work,	or	part	of	a	work,
are	unknown	to	the	Society.
(4)	The	Society	 retains	 the	 right	of	decision	 in	 the	case	where	various	persons	would	have	dealt
with	the	solution	of	the	problem,	or	for	the	case	where	the	solution	is	the	result	of	the	combined
efforts	of	several	scholars,	in	particular	concerning	the	partition	of	the	Prize.
(5)	 The	 award	 of	 the	 Prize	 by	 the	 Society	 will	 take	 place	 not	 earlier	 than	 two	 years	 after	 the
publication	of	 the	memoir	 to	be	crowned.	The	 interval	of	 time	 is	 intended	 to	allow	German	and
foreign	mathematicians	to	voice	their	opinion	about	the	validity	of	the	solution	published.
(6)	As	soon	as	the	Prize	is	conferred	by	the	Society,	the	laureate	will	be	informed	by	the	secretary,
in	 the	name	of	 the	Society;	 the	 result	will	 be	published	wherever	 the	Prize	has	been	 announced
during	the	preceding	year.	The	assignment	of	the	Prize	by	the	Society	is	not	to	be	the	subject	of	any
further	discussion.
(7)	The	payment	of	the	Prize	will	be	made	to	the	laureate,	in	the	next	three	months	after	the	award,
by	the	Royal	Cashier	of	Göttingen	University,	or,	at	the	receiver’s	own	risk,	at	any	other	place	he
may	have	designated.
(8)	 The	 capital	may	 be	 delivered	 against	 receipt,	 at	 the	 Society’s	will,	 either	 in	 cash,	 or	 by	 the
transfer	of	financial	values.	The	payment	of	 the	Prize	will	be	considered	as	accomplished	by	the
transmission	of	these	financial	values,	even	though	their	total	value	at	the	day’s	end	may	not	attain
100,000	Marks.
(9)	If	the	Prize	is	not	awarded	by	13	September	2007,	no	ulterior	claim	will	be	accepted.
The	competition	for	the	Wolfskehl	Prize	is	open,	as	of	today,	under	the	above	conditions.

Göttingen,	27	June	1908
Die	Königliche	Gesellschaft	der	Wissenschaften

It	is	worth	noting	that	although	the	Committee	would	give	100,000	Marks	to
the	 first	 mathematician	 to	 prove	 that	 Fermat’s	 Last	 Theorem	 is	 true,	 they
would	not	award	a	single	pfennig	to	anybody	who	might	prove	that	it	is	false.
The	Wolfskehl	Prize	was	 announced	 in	 all	 the	mathematical	 journals	 and

news	of	 the	competition	 rapidly	spread	across	Europe.	Despite	 the	publicity
campaign	 and	 the	 added	 incentive	 of	 an	 enormous	 prize	 the	 Wolfskehl
Committee	 failed	 to	 arouse	 a	 great	 deal	 of	 interest	 among	 serious
mathematicians.	 The	 majority	 of	 professional	 mathematicians	 viewed



Fermat’s	Last	Theorem	as	a	lost	cause	and	decided	that	they	could	not	afford
to	 waste	 their	 careers	 working	 on	 a	 fool’s	 errand.	 However,	 the	 prize	 did
succeed	in	introducing	the	problem	to	a	whole	new	audience,	a	hoard	of	eager
minds	 who	 were	 willing	 to	 apply	 themselves	 to	 the	 ultimate	 riddle	 and
approach	it	from	a	path	of	complete	innocence.

The	Era	of	Puzzles,	Riddles	and	Enigmas

Ever	 since	 the	 Greeks,	 mathematicians	 have	 sought	 to	 spice	 up	 their
textbooks	 by	 rephrasing	 proofs	 and	 theorems	 in	 the	 form	 of	 solutions	 to
number	puzzles.	During	 the	 latter	half	of	 the	nineteenth	century	 this	playful
approach	 to	 the	 subject	 found	 its	 way	 into	 the	 popular	 press,	 and	 number
puzzles	were	to	be	found	alongside	crosswords	and	anagrams.	In	due	course
there	 was	 a	 growing	 audience	 for	 mathematical	 conundrums,	 as	 amateurs
contemplated	 everything	 from	 the	 most	 trivial	 riddles	 to	 profound
mathematical	problems,	including	Fermat’s	Last	Theorem.
Perhaps	the	most	prolific	creator	of	riddles	was	Henry	Dudeney,	who	wrote

for	dozens	of	newspapers	and	magazines,	including	the	Strand,	Cassell’s,	the
Queen,	 Tit-Bits,	 the	 Weekly	 Dispatch	 and	 Blighty.	 Another	 of	 the	 great
puzzlers	of	the	Victorian	Age	was	the	Reverend	Charles	Dodgson,	lecturer	in
mathematics	at	Christ	Church,	Oxford,	and	better	known	as	the	author	Lewis
Carroll.	Dodgson	devoted	several	years	to	compiling	a	giant	compendium	of
puzzles	 entitled	 Curiosa	 Mathematica,	 and	 although	 the	 series	 was	 not
completed	he	did	write	several	volumes,	including	Pillow	Problems.
The	 greatest	 riddler	 of	 them	 all	 was	 the	 American	 prodigy	 Sam	 Loyd

(1841–1911),	who	as	a	teenager	was	making	a	healthy	profit	by	creating	new
puzzles	and	reinventing	old	ones.	He	recalls	in	Sam	Loyd	and	his	Puzzles:	An
Autobiographical	Review	that	some	of	his	early	puzzles	were	created	for	the
circus	owner	and	trickster	P.T.	Barnum:

Many	years	ago,	when	Barnum’s	Circus	was	of	a	 truth	 ‘the	greatest	 show	on	earth’,	 the	 famous
showman	 got	 me	 to	 prepare	 for	 him	 a	 series	 of	 prize	 puzzles	 for	 advertising	 purposes.	 They
became	widely	known	as	the	‘Questions	of	the	Sphinx’,	on	account	of	the	large	prizes	offered	to
anyone	who	could	master	them.

Strangely	 this	 autobiography	 was	 written	 in	 1928,	 seventeen	 years	 after
Loyd’s	death.	Loyd	passed	his	cunning	on	 to	his	 son,	also	called	Sam,	who
was	 the	 real	 author	 of	 the	 book,	 knowing	 full	 well	 that	 anybody	 buying	 it
would	mistakenly	assume	 that	 it	had	been	written	by	 the	more	 famous	Sam



Loyd	Senior.
Loyd’s	most	 famous	creation	was	 the	Victorian	equivalent	of	 the	Rubik’s

Cube,	the	‘14–15’	puzzle,	which	is	still	found	in	toyshops	today.	Fifteen	tiles
numbered	1	to	15	are	arranged	in	a	4	×	4	grid,	and	the	aim	is	to	slide	the	tiles
and	rearrange	them	into	the	correct	order.	Loyd’s	offered	a	significant	reward
to	whoever	 could	 complete	 the	 puzzle	 by	 swapping	 the	 ‘	 14’	 and	 ‘15’	 into
their	proper	positions	via	any	series	of	tile	slides.	Loyd’s	son	wrote	about	the
fuss	generated	by	this	tangible	but	essentially	mathematical	puzzle:

A	prize	of	 $1,000,	 offered	 for	 the	 first	 correct	 solution	 to	 the	problem,	has	 never	 been	 claimed,
although	there	are	thousands	of	persons	who	say	they	performed	the	required	feat.	People	became
infatuated	with	the	puzzle	and	ludicrous	tales	are	told	of	shopkeepers	who	neglected	to	open	their
stores;	of	a	distinguished	clergyman	who	stood	under	a	street	lamp	all	through	a	wintry	night	trying
to	recall	the	way	he	had	performed	the	feat.	The	mysterious	feature	of	the	puzzle	is	that	none	seem
to	be	able	to	remember	the	sequence	of	moves	whereby	they	feel	sure	they	succeeded	in	solving
the	 puzzle.	 Pilots	 are	 said	 to	 have	 wrecked	 their	 ships,	 and	 engineers	 rushed	 their	 trains	 past
stations.	A	famous	Baltimore	editor	tells	how	he	went	for	his	noon	lunch	and	was	discovered	by
his	frantic	staff	long	past	midnight	pushing	little	pieces	of	pie	around	on	a	plate!

Loyd	was	always	confident	 that	he	would	never	have	 to	pay	out	 the	$1,000
because	 he	 knew	 that	 it	 is	 impossible	 to	 swap	 just	 two	 pieces	 without
destroying	 the	 order	 elsewhere	 in	 the	 puzzle.	 In	 the	 same	 way	 that	 a
mathematician	 can	 prove	 that	 a	 particular	 equation	 has	 no	 solutions,	 Loyd
could	prove	that	his	‘14–15’	puzzle	is	insoluble.

Figure	12.	By	sliding	the	tiles	it	is	possible	to	create	various	disordered	arrangements.	For	each
arrangement	it	is	possible	to	measure	the	amount	of	disorder,	via	the	disorder	parameter	Dp.

Loyd’s	proof	began	by	defining	a	quantity	which	measured	how	disordered
a	puzzle	is,	the	disorder	parameter	Dp.	The	disorder	parameter	for	any	given
arrangement	is	 the	number	of	 tile	pairs	which	arc	in	the	wrong	order,	so	for
the	correct	puzzle,	as	shown	in	Figure	12(a),	Dp	=	0,	because	no	 tiles	are	 in
the	wrong	order.



By	starting	with	 the	ordered	puzzle	and	 then	sliding	 the	 tiles	around,	 it	 is
relatively	easy	to	get	to	the	arrangement	shown	in	Figure	12(b).	The	tiles	are
in	 the	 correct	 order	 until	 we	 reach	 tiles	 12	 and	 11.	 Obviously	 the	 11	 tile
should	come	before	the	12	tile	and	so	this	pair	of	tiles	is	in	the	wrong	order.
The	 complete	 list	 of	 tile	 pairs	 which	 are	 in	 the	 wrong	 order	 is	 as	 follows:
(12,11),	 (15,13),	 (15,14),	 (15,11),	 (13,11)	 and	 (14,11).	With	 six	 tile	 pairs	 in
the	wrong	order	in	this	arrangment,	Dp	=	6.	(Note	that	tile	10	and	tile	12	are
next	 to	each	other,	which	 is	clearly	 incorrect,	but	 they	are	not	 in	 the	wrong
order.	Therefore	this	tile	pair	does	not	contribute	to	the	disorder	parameter.)
After	a	bit	more	sliding	we	get	to	the	arrangement	in	Figure	12(c).	 If	you

compile	a	list	of	tile	pairs	in	the	wrong	order	then	you	will	discover	that	Dp	=
12.	The	important	point	to	notice	is	that	in	all	these	cases,	(a),	(b)	and	(c),	the
value	of	the	disorder	parameter	is	an	even	number	(0,	6	and	12).	In	fact,	if	you
begin	 with	 the	 correct	 arrangement	 and	 proceed	 to	 rearrange	 it,	 then	 this
statement	is	always	true.	As	long	as	the	empty	square	ends	up	in	the	bottom
right-hand	 corner,	 any	 amount	 of	 tile	 sliding	 will	 always	 result	 in	 an	 even
value	for	Dp.	The	even	value	for	the	disorder	parameter	is	an	integral	property
of	 any	 arrangement	 derived	 from	 the	 original	 correct	 arrangement.	 In
mathematics	a	property	which	always	holds	true	no	matter	what	is	done	to	the
object	is	called	an	invariant.
However,	if	you	examine	the	arrangement	which	was	being	sold	by	Loyd,

in	 which	 the	 14	 and	 15	 were	 swapped,	 then	 the	 value	 of	 the	 disorder
parameter	is	one,	Dp	=	1,	i.e.	the	only	pair	of	tiles	out	of	order	are	the	14	and
15.	For	Loyd’s	arrangement	the	disorder	parameter	has	an	odd	value!	Yet	we
know	that	any	arrangement	derived	from	the	correct	arrangement	has	an	even
value	for	 the	disorder	parameter.	The	conclusion	 is	 that	Loyd’s	arrangement
cannot	 be	 derived	 from	 the	 correct	 arrangement,	 and	 conversely	 it	 is
impossible	to	get	from	Loyd’s	arrangement	back	to	the	correct	one	–	Loyd’s
$1,000	was	safe.
Loyd’s	 puzzle	 and	 the	 disorder	 parameter	 demonstrate	 the	 power	 of	 an

invariant.	 Invariants	 provide	 mathematicians	 with	 an	 important	 strategy	 to
prove	that	it	is	impossible	to	transform	one	object	into	another.	For	example,
an	area	of	current	excitement	concerns	the	study	of	knots,	and	naturally	knot
theorists	 are	 interested	 in	 trying	 to	 prove	 whether	 or	 not	 one	 knot	 can	 be
transformed	into	another	by	twisting	and	looping	but	without	cutting.	In	order
to	answer	this	question	they	attempt	to	find	a	property	of	the	first	knot	which
cannot	be	destroyed	no	matter	how	much	twisting	and	looping	occurs	–	a	knot
invariant.	They	 then	 calculate	 the	 same	property	 for	 the	 second	knot.	 If	 the
values	 are	 different	 then	 the	 conclusion	 is	 that	 it	must	 be	 impossible	 to	 get



from	the	first	knot	to	the	second.
Until	this	technique	was	invented	in	the	1920s	by	Kurt	Reidemeister	it	was

impossible	 to	 prove	 that	 one	 knot	 could	 not	 be	 transformed	 into	 any	 other
knot.	In	other	words	before	knot	invariants	were	discovered	it	was	impossible
to	 prove	 that	 a	 granny	 knot	 is	 fundamentally	 different	 from	 a	 reef	 knot,	 an
overhand	knot	or	even	a	simple	 loop	with	no	knot	at	all.	The	concept	of	an
invariant	 property	 is	 central	 to	many	 other	mathematical	 proofs	 and,	 as	we
shall	see	in	Chapter	5,	it	would	be	crucial	in	bringing	Fermat’s	Last	Theorem
back	into	the	mainstream	of	mathematics.
By	the	turn	of	the	century,	thanks	to	the	likes	of	Sam	Loyd	and	his	‘14–15’

puzzle,	 there	 were	 millions	 of	 amateur	 problem-solvers	 throughout	 Europe
and	America	eagerly	looking	for	new	challenges.	Once	news	of	Wolfskehl’s
legacy	 filtered	 down	 to	 these	 budding	 mathematicians,	 Fermat’s	 Last
Theorem	 was	 once	 again	 the	 world’s	 most	 famous	 problem.	 The	 Last
Theorem	 was	 infinitely	 more	 complex	 than	 even	 the	 hardest	 of	 Loyd’s
puzzles,	but	 the	prize	was	vastly	greater.	Amateurs	dreamed	that	 they	might
be	able	to	find	a	relatively	simple	trick	which	had	eluded	the	great	professors
of	the	past.	The	keen	twentieth-century	amateur	was	to	a	large	extent	on	a	par
with	 Pierre	 de	 Fermat	 when	 it	 came	 to	 knowledge	 of	 mathematical
techniques.	The	challenge	was	to	match	the	creativity	with	which	Fermat	used
his	techniques.
Within	 a	 few	weeks	 of	 announcing	 the	Wolfskehl	 Prize	 an	 avalanche	 of

entries	poured	into	the	University	of	Göttingen.	Not	surprisingly	all	the	proofs
were	 fallacious.	Although	 each	 entrant	was	 convinced	 that	 they	 had	 solved
this	 centuries-old	 problem	 they	 had	 all	made	 subtle,	 and	 sometimes	 not	 so
subtle,	errors	in	their	 logic.	The	art	of	number	theory	is	so	abstract	 that	 it	 is
frighteningly	easy	to	wander	off	the	path	of	logic	and	be	completely	unaware
that	one	has	strayed	into	absurdity.	Appendix	7	shows	the	sort	of	classic	error
which	can	easily	be	overlooked	by	an	enthusiastic	amateur.
Regardless	of	who	had	sent	in	a	particular	proof,	every	single	one	of	them

had	 to	 be	 scrupulously	 checked	 just	 in	 case	 an	 unknown	 amateur	 had
stumbled	upon	 the	most	sought	after	proof	 in	mathematics.	The	head	of	 the
mathematics	department	at	Göttingen	between	1909	and	1934	was	Professor
Edmund	Landau	and	 it	was	his	 responsibility	 to	examine	 the	entries	 for	 the
Wolfskehl	 Prize.	 Landau	 found	 that	 his	 research	 was	 being	 continually
interrupted	 by	 having	 to	 deal	 with	 the	 dozens	 of	 confused	 proofs	 which
arrived	on	his	desk	each	month.	To	cope	with	the	situation	he	invented	a	neat
method	 of	 off-loading	 the	 work.	 The	 professor	 printed	 hundreds	 of	 cards
which	read:



Landau	would	then	hand	each	new	entry,	along	with	a	printed	card,	to	one	of
his	students	and	ask	them	to	fill	in	the	blanks.
The	 entries	 continued	 unabated	 for	 years,	 even	 following	 the	 dramatic

devaluation	 of	 the	Wolfskehl	 Prize	 –	 the	 result	 of	 the	 hyperinflation	which
followed	 the	 First	 World	 War.	 There	 are	 rumours	 which	 say	 that	 anyone
winning	 the	 competition	 today	 would	 hardly	 be	 able	 to	 purchase	 a	 cup	 of
coffee	with	 the	prize	money,	but	 these	claims	are	 somewhat	exaggerated.	A
letter	 written	 by	 Dr	 F.	 Schlichting,	 who	 was	 responsible	 for	 dealing	 with
entries	 during	 the	 1970s,	 explains	 that	 the	 prize	 was	 then	 still	 worth	 over
10,000	Marks.	 The	 letter,	written	 to	 Paulo	Ribenboim	 and	 published	 in	 his
book	13	Lectures	on	Fermat’s	Last	Theorem,	gives	a	unique	 insight	 into	 the
work	of	the	Wolfskehl	committee:

Dear	Sir,
There	 is	 no	 count	of	 the	 total	 number	of	 ‘solutions’	 submitted	 so	 far.	 In	 the	 first	 year	 (1907–

1908)	621	solutions	were	registered	in	the	files	of	the	Akademie,	and	today	they	have	stored	about
3	metres	of	correspondence	concerning	the	Fermat	problem.	In	recent	decades	it	was	handled	in	the
following	way:	the	secretary	of	the	Akademie	divides	the	arriving	manuscripts	into:
(1)	complete	nonsense,	which	is	sent	back	immediately,
(2)	material	which	looks	like	mathematics.
The	second	part	is	given	to	the	mathematical	department,	and	there	the	work	of	reading,	finding

mistakes	and	answering	is	delegated	to	one	of	the	scientific	assistants	(at	German	universities	these
are	 graduated	 individuals	working	 for	 their	 Ph.D.)	 –	 at	 the	moment	 I	 am	 the	 victim.	 There	 are
about	3	or	4	letters	to	answer	each	month,	and	this	includes	a	lot	of	funny	and	curious	material,	e.g.
like	the	one	sending	the	first	half	of	his	solution	and	promising	the	second	if	we	would	pay	1,000
DM	in	advance;	or	another	one,	who	promised	me	1%	of	his	profits	from	publications,	radio	and
TV	interviews	after	he	got	famous,	if	only	I	would	support	him	now;	if	not,	he	threatened	to	send	it
to	a	Russian	mathematics	department	to	deprive	us	of	the	glory	of	discovering	him.	From	time	to
time	someone	appears	in	Göttingen	and	insists	on	personal	discussion.
Nearly	all	 ‘solutions’	are	written	on	a	very	elementary	 level	 (using	 the	notions	of	high	school

mathematics	and	perhaps	some	undigested	papers	in	number	theory),	but	can	nevertheless	be	very



complicated	to	understand.	Socially,	the	senders	are	often	persons	with	a	technical	education	but	a
failed	 career	 who	 try	 to	 find	 success	 with	 a	 proof	 of	 the	 Fermat	 problem.	 I	 gave	 some	 of	 the
manuscripts	to	physicians	who	diagnosed	heavy	schizophrenia.
One	condition	of	Wolfskehl’s	last	will	was	that	the	Akademie	had	to	publish	the	announcement

of	 the	 prize	 yearly	 in	 the	 main	 mathematical	 periodicals.	 But	 already	 after	 the	 first	 years	 the
periodicals	refused	to	print	the	announcement,	because	they	were	overflowed	by	letters	and	crazy
manuscripts.
I	hope	that	this	information	is	of	interest	to	you.

Yours	sincerely,
F.	Schlichting

As	 Dr	 Schlichting	 mentions,	 competitors	 did	 not	 restrict	 themselves	 to
sending	 their	 ‘solutions’	 to	 the	Akademie.	Every	mathematics	 department	 in
the	 world	 probably	 has	 its	 cupboard	 of	 purported	 proofs	 from	 amateurs.
While	 most	 institutions	 ignore	 these	 amateur	 proofs,	 other	 recipients	 have
dealt	with	 them	 in	more	 imaginative	ways.	The	mathematical	writer	Martin
Gardner	recalls	a	friend	who	would	send	back	a	note	explaining	that	he	was
not	competent	to	examine	the	proof.	Instead	he	would	provide	them	with	the
name	and	address	of	an	expert	in	the	field	who	could	help	–	that	is	to	say,	the
details	of	the	last	amateur	to	send	him	a	proof.	Another	of	his	friends	would
write:	 ‘I	 have	 a	 remarkable	 refutation	 of	 your	 attempted	 proof,	 but
unfortunately	this	page	is	not	large	enough	to	contain	it.’
Although	amateur	mathematicians	around	the	world	have	spent	this	century

trying	 and	 failing	 to	 prove	 Fermat’s	 Last	 Theorem	 and	 win	 the	Wolfskehl
Prize,	the	professionals	have	continued	largely	to	ignore	the	problem.	Instead
of	building	on	the	work	of	Kummer	and	the	other	nineteenth-century	number
theorists,	mathematicians	began	to	examine	the	foundations	of	their	subject	in
order	 to	 address	 some	 of	 the	 most	 fundamental	 questions	 about	 numbers.
Some	 of	 the	 greatest	 figures	 of	 the	 twentieth	 century,	 including	 Bertrand
Russell,	David	Hilbert	and	Kurt	Gödel,	tried	to	understand	the	most	profound
properties	 of	 numbers	 in	 order	 to	 grasp	 their	 true	meaning	 and	 to	 discover
what	 questions	 number	 theory	 can	 and,	 more	 importantly,	 cannot	 answer.
Their	work	would	shake	the	foundations	of	mathematics	and	ultimately	have
repercussions	for	Fermat’s	Last	Theorem.

The	Foundations	of	Knowledge

For	hundreds	of	years	mathematicians	had	been	busy	using	 logical	proof	 to
build	from	the	known	into	the	unknown.	Progress	had	been	phenomenal,	with



each	 new	 generation	 of	 mathematicians	 expanding	 on	 their	 grand	 structure
and	 creating	 new	 concepts	 of	 number	 and	 geometry.	However,	 towards	 the
end	 of	 the	 nineteenth	 century,	 instead	 of	 looking	 forward,	 mathematical
logicians	began	 to	 look	back	 to	 the	foundations	of	mathematics	upon	which
everything	 else	 was	 built.	 They	 wanted	 to	 verify	 the	 fundamentals	 of
mathematics	and	rigorously	rebuild	everything	from	first	principles,	in	order
to	reassure	themselves	that	those	first	principles	were	reliable.
Mathematicians	are	notorious	for	being	sticklers	when	it	comes	to	requiring

absolute	 proof	 before	 accepting	 any	 statement.	 Their	 reputation	 is	 clearly
expressed	in	a	story	told	by	Ian	Stewart	in	Concepts	of	Modern	Mathematics:

An	astronomer,	a	physicist,	and	a	mathematician	(it	is	said)	were	holidaying	in	Scotland.	Glancing
from	 a	 train	 window,	 they	 observed	 a	 black	 sheep	 in	 the	 middle	 of	 a	 field.	 ‘How	 interesting,’
observed	the	astronomer,	‘all	Scottish	sheep	are	black!’	To	which	the	physicist	responded,	‘No,	no!
Some	 Scottish	 sheep	 are	black!’	The	mathematician	gazed	heavenward	 in	 supplication,	 and	 then
intoned,	‘In	Scotland	there	exists	at	least	one	field,	containing	at	least	one	sheep,	at	least	one	side
of	which	is	black.’

Even	 more	 rigorous	 than	 the	 ordinary	 mathematician	 is	 the	 mathematician
who	 specialises	 in	 the	 study	 of	mathematical	 logic.	Mathematical	 logicians
began	to	question	ideas	which	other	mathematicians	had	taken	for	granted	for
centuries.	 For	 example,	 the	 law	 of	 trichotomy	 states	 that	 every	 number	 is
either	 negative,	 positive	 or	 zero.	 This	 seems	 to	 be	 obvious	 and
mathematicians	 had	 tacitly	 assumed	 it	 to	 be	 true,	 but	 nobody	 had	 ever
bothered	 to	prove	 that	 this	 really	was	 the	case.	Logicians	realised	 that,	until
the	law	of	trichotomy	had	been	proved	true,	then	it	might	be	false,	and	if	that
turned	out	to	be	the	case	then	an	entire	edifice	of	knowledge,	everything	that
relied	on	the	law,	would	collapse.	Fortunately	for	mathematics,	at	the	end	of
the	last	century	the	law	of	trichotomy	was	proved	to	be	true.
Ever	 since	 the	 ancient	Greeks,	mathematics	 had	been	 accumulating	more

and	more	theorems	and	truths,	and	although	most	of	them	had	been	rigorously
proved	mathematicians	were	concerned	that	some	of	them,	such	as	the	law	of
trichotomy,	 had	 crept	 in	without	 being	 properly	 examined.	 Some	 ideas	 had
become	part	of	the	folklore	and	yet	nobody	was	quite	sure	how	they	had	been
originally	proved,	if	indeed	they	ever	had	been,	so	logicians	decided	to	prove
every	theorem	from	first	principles.	However,	every	truth	had	to	be	deduced
from	other	truths.	Those	truths,	in	turn,	first	had	to	be	proved	from	even	more
fundamental	 truths,	 and	 so	 on.	 Eventually	 the	 logicians	 found	 themselves
dealing	with	a	few	essential	statements	which	were	so	fundamental	that	they
themselves	 could	 not	 be	 proved.	 These	 fundamental	 assumptions	 are	 the



axioms	of	mathematics.
One	 example	 of	 the	 axioms	 is	 the	 commutative	 law	 of	 addition,	 which

simply	states	that,	for	any	numbers	m	and	n,

m	+	n	=	n	+	m

This	 and	 the	 handful	 of	 other	 axioms	 are	 taken	 to	 be	 self-evident,	 and	 can
easily	 be	 tested	 by	 applying	 them	 to	 particular	 numbers.	 So	 far	 the	 axioms
have	 passed	 every	 test	 and	 have	 been	 accepted	 as	 being	 the	 bedrock	 of
mathematics.	 The	 challenge	 for	 the	 logicians	 was	 to	 rebuild	 all	 of
mathematics	 from	 these	 axioms.	 Appendix	 8	 defines	 the	 set	 of	 arithmetic
axioms	 and	 gives	 an	 idea	 of	 how	 logicians	 set	 about	 building	 the	 rest	 of
mathematics.
A	 legion	 of	 logicians	 participated	 in	 the	 slow	 and	 painful	 process	 of

rebuilding	 the	 immensely	 complex	 body	 of	 mathematical	 knowledge	 using
only	 a	 minimal	 number	 of	 axioms.	 The	 idea	 was	 to	 consolidate	 what
mathematicians	 thought	 they	 already	 knew	 by	 employing	 only	 the	 most
rigorous	 standards	 of	 logic.	 The	 German	 mathematician	 Hermann	 Weyl
summarised	 the	mood	of	 the	 time:	 ‘Logic	 is	 the	hygiene	 the	mathematician
practises	to	keep	his	ideas	healthy	and	strong.’	In	addition	to	cleansing	what
was	known,	the	hope	was	that	this	fundamentalist	approach	would	also	throw
light	on	as	yet	unsolved	problems,	including	Fermat’s	Last	Theorem.
The	programme	was	headed	by	the	most	eminent	figure	of	the	age,	David

Hilbert.	Hilbert	believed	that	everything	in	mathematics	could	and	should	be
proved	 from	 the	 basic	 axioms.	 The	 result	 of	 this	 would	 be	 to	 demonstrate
conclusively	 the	 two	most	 important	 elements	 of	 the	mathematical	 system.
First,	mathematics	 should,	 at	 least	 in	 theory,	be	able	 to	 answer	every	 single
question	 –	 this	 is	 the	 same	 ethos	 of	 completeness	 which	 had	 in	 the	 past
demanded	 the	 invention	 of	 new	 numbers	 like	 the	 negatives	 and	 the
imaginaries.	Second,	mathematics	should	be	free	of	 inconsistencies	–	 that	 is
to	say,	having	shown	that	a	statement	is	true	by	one	method,	it	should	not	be
possible	to	show	that	the	same	statement	is	false	via	another	method.	Hilbert
was	convinced	 that,	by	assuming	 just	a	 few	axioms,	 it	would	be	possible	 to
answer	any	imaginable	mathematical	question	without	fear	of	contradiction.
On	8	August	1900	Hilbert	gave	a	historic	talk	at	the	International	Congress

of	Mathematicians	in	Paris.	Hilbert	posed	twenty-three	unsolved	problems	in
mathematics	 which	 he	 believed	 were	 of	 the	 most	 immediate	 importance.
Some	of	the	problems	related	to	more	general	areas	of	mathematics,	but	most
of	 them	 concentrated	 on	 the	 logical	 foundations	 of	 the	 subject.	 These
problems	were	intended	to	focus	the	attention	of	the	mathematical	world	and



provide	a	programme	of	research.	Hilbert	wanted	to	galvanise	the	community
into	helping	him	realise	his	vision	of	a	mathematical	system	free	of	doubt	and
inconsistency	–	an	ambition	he	had	inscribed	on	his	tombstone:

Wir	müssen	wissen,
Wir	werden	wissen.
We	must	know,
We	will	know.

Although	 sometimes	 a	 bitter	 rival	 of	Hilbert,	Gottlob	Frege	was	 one	 of	 the
leading	 lights	 in	 the	 so-called	Hilbert	 programme.	For	 over	 a	 decade	Frege
devoted	 himself	 to	 deriving	 hundreds	 of	 complicated	 theorems	 from	 the
simple	axioms,	and	his	successes	led	him	to	believe	that	he	was	well	on	the
way	to	completing	a	significant	chunk	of	Hilbert’s	dream.	One	of	Frege’s	key
breakthroughs	was	 to	 create	 the	 very	 definition	 of	 a	 number.	 For	 example,
what	do	we	actually	mean	by	the	number	3?	It	turns	out	that	to	define	3,	Frege
first	had	to	define	‘threeness’.
‘Threeness’	 is	 the	 abstract	 quality	which	belongs	 to	 collections	or	 sets	 of

objects	 containing	 three	 objects.	 For	 instance	 ‘threeness’	 could	 be	 used	 to
describe	 the	 collection	 of	 blind	 mice	 in	 the	 popular	 nursery	 rhyme,	 or
‘threeness’	is	equally	appropriate	for	describing	the	set	of	sides	of	a	triangle.
Frege	noticed	that	there	were	numerous	sets	which	exhibited	‘threeness’	and
used	 the	 idea	 of	 sets	 to	 define	 ‘3’	 itself.	 He	 created	 a	 new	 set	 and	 placed
inside	it	all	the	sets	exhibiting	‘threeness’	and	called	this	new	set	of	sets	‘3’.
Therefore,	a	set	has	three	members	if	and	only	if	it	is	inside	the	set	‘3’.
This	might	appear	 to	be	an	over-complex	definition	 for	a	concept	we	use

every	 day,	 but	 Frege’s	 description	 of	 ‘3’	 is	 rigorous	 and	 indisputable	 and
wholly	necessary	for	Hilbert’s	uncompromising	programme.
In	1902	Frege’s	ordeal	 seemed	 to	be	coming	 to	an	end	as	he	prepared	 to

publish	Grundgesetze	der	Arithmetik	 (Fundamental	Laws	of	Arithmetic)	–	a
gigantic	 and	 authoritative	 two-volume	 work	 intended	 to	 establish	 a	 new
standard	 of	 certainty	 within	 mathematics.	 At	 the	 same	 time	 the	 English
logician	 Bertrand	 Russell,	 who	 was	 also	 contributing	 to	 Hilbert’s	 great
project,	was	making	a	devastating	discovery.	Despite	 following	 the	 rigorous
protocol	of	Hilbert,	he	had	come	up	against	an	inconsistency.	Russell	recalled
his	 own	 reaction	 to	 the	 dreaded	 realisation	 that	 mathematics	 might	 be
inherently	contradictory:

At	 first	 I	 supposed	 that	 I	 should	 be	 able	 to	 overcome	 the	 contradiction	 quite	 easily,	 and	 that
probably	there	was	some	trivial	error	in	the	reasoning.	Gradually,	however,	it	became	clear	that	this



was	not	the	case	…	Throughout	the	latter	half	of	1901	I	supposed	the	solution	would	be	easy,	but
by	 the	end	of	 that	 time	I	had	concluded	 that	 it	was	a	big	 job	…	I	made	a	practice	of	wandering
about	 the	 common	 every	 night	 from	 eleven	 until	 one,	 by	which	 time	 I	 came	 to	 know	 the	 three
different	noises	made	by	nightjars.	 (Most	people	only	know	one.)	 I	was	 trying	hard	 to	 solve	 the
contradiction.	Every	morning	I	would	sit	down	before	a	blank	sheet	of	paper.	Throughout	the	day,
with	a	brief	interval	for	lunch,	I	would	stare	at	the	blank	sheet.	Often	when	evening	came	it	was
still	empty.

There	was	 no	 escaping	 from	 the	 contradiction.	Russell’s	work	would	 cause
immense	 damage	 to	 the	 dream	 of	 a	 mathematical	 system	 free	 of	 doubt,
inconsistency	and	paradox.	He	wrote	to	Frege,	whose	manuscript	was	already
at	the	printers.	The	letter	made	Frege’s	life’s	work	effectively	worthless,	but
despite	the	mortal	blow	he	published	his	magnum	opus	regardless	and	merely
added	 a	 postscript	 to	 the	 second	 volume:	 ‘A	 scientist	 can	 hardly	meet	with
anything	more	undesirable	 than	 to	have	 the	 foundation	give	way	 just	 as	 the
work	 is	 finished.	 In	 this	 position	 I	 was	 put	 by	 a	 letter	 from	 Mr	 Bertrand
Russell	as	the	work	was	nearly	through	the	press.’
Ironically	Russell’s	contradiction	grew	out	of	Frege’s	much	 loved	sets,	or

collections.	Many	years	later,	in	his	book	My	Philosophical	Development,	he
recalled	the	thoughts	that	sparked	his	questioning	of	Frege’s	work:	‘It	seemed
to	me	that	a	class	sometimes	is,	and	sometimes	is	not,	a	member	of	itself.	The
class	 of	 teaspoons,	 for	 example,	 is	 not	 another	 teaspoon,	 but	 the	 class	 of
things	 that	 are	 not	 teaspoons	 is	 one	 of	 the	 things	 that	 are	 not	 teaspoons.’	 It
was	 this	 curious	 and	 apparently	 innocuous	 observation	 that	 led	 to	 the
catastrophic	paradox.
Russell’s	 paradox	 is	 often	 explained	 using	 the	 tale	 of	 the	 meticulous

librarian.	 One	 day,	 while	 wandering	 between	 the	 shelves,	 the	 librarian
discovers	a	collection	of	catalogues.	There	are	separate	catalogues	for	novels,
reference,	poetry,	and	so	on.	The	librarian	notices	that	some	of	the	catalogues
list	themselves,	while	others	do	not.
In	order	 to	 simplify	 the	 system	 the	 librarian	makes	 two	more	 catalogues,

one	 of	 which	 lists	 all	 the	 catalogues	 which	 do	 list	 themselves	 and,	 more
interestingly,	one	which	lists	all	the	catalogues	which	do	not	list	themselves.
Upon	completing	 the	 task	 the	 librarian	has	 a	problem:	 should	 the	 catalogue
which	lists	all	the	catalogues	which	do	not	list	themselves,	be	listed	in	itself?
If	 it	 is	 listed,	 then	by	definition	 it	 should	not	be	 listed.	However,	 if	 it	 is	not
listed,	 then	 by	 definition	 it	 should	 be	 listed.	 The	 librarian	 is	 in	 a	 no-win
situation.
The	catalogues	are	very	similar	to	the	sets	or	classes	which	Frege	used	as

the	 fundamental	 definition	 of	 numbers.	 Therefore	 the	 inconsistency	 which



plagues	 the	 librarian	 will	 also	 cause	 problems	 in	 the	 supposedly	 logical
structure	 of	 mathematics.	 Mathematics	 cannot	 tolerate	 inconsistencies,
paradoxes	 or	 contradictions.	 For	 example,	 the	 powerful	 tool	 of	 proof	 by
contradiction	relies	on	a	mathematics	free	of	paradox.	Proof	by	contradiction
states	 that	 if	 an	 assumption	 leads	 to	 absurdity	 then	 the	 assumption	must	 be
false,	 but	 according	 to	 Russell	 even	 the	 axioms	 can	 lead	 to	 absurdity.
Therefore	 proof	 by	 contradiction	 could	 show	 an	 axiom	 to	 be	 false,	 and	 yet
axioms	are	the	foundations	of	mathematics	and	acknowledged	to	be	true.
Many	 intellectuals	 questioned	 Russell’s	 work,	 claiming	 that	mathematics

was	 an	 obviously	 successful	 and	 unflawed	 pursuit.	 He	 responded	 by
explaining	the	significance	of	his	work	in	the	following	way:

‘But,’	you	might	say,	‘none	of	this	shakes	my	belief	that	2	and	2	are	4.’	You	are	quite	right,	except
in	marginal	cases	–	and	it	is	only	in	marginal	cases	that	you	are	doubtful	whether	a	certain	animal
is	a	dog	or	a	certain	length	is	less	than	a	metre.	Two	must	be	two	of	something,	and	the	proposition
‘2	and	2	are	4’	is	useless	unless	it	can	be	applied.	Two	dogs	and	two	dogs	are	certainly	four	dogs,
but	cases	arise	in	which	you	are	doubtful	whether	two	of	them	are	dogs.	‘Well,	at	any	rate	there	are
four	 animals,’	 you	 might	 say.	 But	 there	 are	 microorganisms	 concerning	 which	 it	 is	 doubtful
whether	they	are	animals	or	plants.	‘Well,	then	living	organisms,’	you	say.	But	there	are	things	of
which	it	is	doubtful	whether	they	are	living	or	not.	You	will	be	driven	into	say:	‘Two	entities	and
two	entities	are	four	entities.’	When	you	have	told	me	what	you	mean	by	‘entity’,	we	will	resume
the	argument.

Russell’s	work	 shook	 the	 fundations	of	mathematics	and	 threw	 the	 study	of
mathematical	 logic	 into	 a	 state	 of	 chaos.	 The	 logicians	 were	 aware	 that	 a
paradox	lurking	in	the	foundations	of	mathematics	could	sooner	or	later	rear
its	 illogical	 head	and	cause	profound	 problems.	Along	with	Hilbert	 and	 the
other	 logicians,	Russell	 set	 about	 trying	 to	 remedy	 the	 situation	 and	 restore
sanity	to	mathematics.
This	inconsistency	was	a	direct	consequence	of	working	with	the	axioms	of

mathematics,	which	until	this	point	had	been	assumed	to	be	self-evident	and
sufficient	 to	 define	 the	 rest	 of	mathematics.	One	 approach	was	 to	 create	 an
additional	axiom	which	forbade	any	class	from	being	a	member	of	itself.	This
would	 prevent	 Russell’s	 paradox	 by	 making	 redundant	 the	 question	 of
whether	 or	 not	 to	 enter	 the	 catalogue	 of	 catalogues	 which	 do	 not	 list
themselves	in	itself.
Russell	spent	 the	next	decade	considering	the	axioms	of	mathematics,	 the

very	essence	of	 the	subject.	Then	 in	1910,	 in	partnership	with	Alfred	North
Whitehead,	he	published	the	first	of	three	volumes	of	Principia	Mathematica
—	an	apparently	successful	attempt	to	partly	address	the	problem	created	by



his	 own	 paradox.	 For	 the	 next	 two	 decades	 others	 used	 Principia
Mathematica	as	a	guide	for	establishing	a	flawless	mathematical	edifice,	and
by	the	time	Hilbert	retired	in	1930	he	felt	confident	that	mathematics	was	well
on	the	road	to	recovery.	His	dream	of	a	consistent	logic,	powerful	enough	to
answer	every	question,	was	apparently	on	its	way	to	becoming	a	reality.
Then	in	1931	an	unknown	twenty-five-year-old	mathematician	published	a

paper	which	would	forever	destroy	Hilbert’s	hopes.	Kurt	Gödel	would	force
mathematicians	 to	accept	 that	mathematics	could	never	be	 logically	perfect,
and	 implicit	 in	 his	 works	 was	 the	 idea	 that	 problems	 like	 Fermat’s	 Last
Theorem	might	even	be	impossible	to	solve.
Kurt	Gödel	was	born	on	28	April	1906	in	Moravia,	then	part	of	the	Austro-

Hungarian	 Empire,	 now	 part	 of	 the	Czech	Republic.	 From	 an	 early	 age	 he
suffered	from	severe	illness,	the	most	serious	being	a	bout	of	rheumatic	fever
at	 the	 age	 of	 six.	 This	 early	 brush	with	 death	 caused	Gödel	 to	 develop	 an
obsessive	hypochondria	which	stayed	with	him	throughout	his	life.	At	the	age
of	eight,	having	read	a	medical	textbook,	he	became	convinced	that	he	had	a
weak	heart,	even	though	his	doctors	could	find	no	evidence	of	the	condition.
Later,	 towards	 the	end	of	his	 life,	he	mistakenly	believed	 that	he	was	being
poisoned	and	refused	to	eat,	almost	starving	himself	to	death.
As	a	child	Gödel	displayed	a	 talent	 for	 science	and	mathematics,	 and	his

inquisitive	nature	led	his	family	to	nickname	him	der	Herr	Warum	(Mr	Why).
He	 went	 to	 the	 University	 of	 Vienna	 unsure	 of	 whether	 to	 specialise	 in
mathematics	 or	 physics,	 but	 an	 inspiring	 and	 passionate	 lecture	 course	 on
number	theory	by	Professor	P.	Furtwängler	persuaded	Gödel	to	devote	his	life
to	numbers.	The	lectures	were	all	the	more	extraordinary	because	Furtwängler
was	 paralysed	 from	 the	 neck	 down	 and	 had	 to	 lecture	 from	 his	wheelchair
without	notes	while	his	assistant	wrote	on	the	blackboard.
By	 his	 early	 twenties	 Gödel	 had	 established	 himself	 in	 the	 mathematics

department,	 but	 along	 with	 his	 colleagues	 he	 would	 occasionally	 wander
down	the	corridor	to	attend	meetings	of	the	Wiener	Kreis	(Viennese	Circle),	a
group	of	philosophers	who	would	gather	to	discuss	the	day’s	great	questions
of	logic.	It	was	during	this	period	that	Gödel	developed	the	ideas	that	would
devastate	the	foundations	of	mathematics.
In	1931	Gödel	published	his	book	Über	formal	unentscheidbare	Sätze	der

Principia	Mathematica	 und	 verwandter	 Systeme	 (On	 Formally	Undecidable
Propositions	 in	 Principia	 Mathematica	 and	 Related	 Systems),	 which
contained	 his	 so-called	 theorems	 of	 undecidability.	 When	 news	 of	 the
theorems	 reached	 America	 the	 great	 mathematician	 John	 von	 Neumann
immediately	cancelled	a	lecture	series	he	was	giving	on	Hilbert’s	programme
and	 replaced	 the	 remainder	 of	 the	 course	 with	 a	 discussion	 of	 Gödel’s



revolutionary	work.
Gödel	 had	 proved	 that	 trying	 to	 create	 a	 complete	 and	 consistent

mathematical	system	was	an	impossible	task.	His	ideas	could	be	encapsulated
in	two	statements.

First	theorem	of	undecidability
If	axiomatic	set	theory	is	consistent,	there	exist	theorems	which	can	neither	be
proved	or	disproved.

Second	theorem	of	undecidability
There	 is	no	constructive	procedure	which	will	prove	axiomatic	 theory	 to	be
consistent.

Essentially	Gödel’s	first	statement	said	that	no	matter	what	set	of	axioms	were
being	used	there	would	be	questions	which	mathematics	could	not	answer	–
completeness	could	never	be	achieved.	Worse	still,	the	second	statement	said
that	 mathematicians	 could	 never	 even	 be	 sure	 that	 their	 choice	 of	 axioms
would	not	lead	to	a	contradiction	–	consistency	could	never	be	proved.	Gödel
had	shown	that	the	Hilbert	programme	was	an	impossible	exercise.
Decades	later,	in	Portraits	from	Memory,	Bertrand	Russell	reflected	on	his

reaction	to	Gödel’s	discovery:

I	wanted	certainty	in	the	kind	of	way	in	which	people	want	religious	faith.	I	thought	that	certainty
is	more	likely	to	be	found	in	mathematics	than	elsewhere.	But	I	discovered	that	many	mathematical
demonstrations,	 which	 my	 teachers	 expected	 me	 to	 accept,	 were	 full	 of	 fallacies,	 and	 that,	 if
certainty	were	indeed	discoverable	in	mathematics,	it	would	be	in	a	new	field	of	mathematics,	with
more	 solid	 foundations	 than	 those	 that	 had	 hitherto	 been	 thought	 secure.	 But	 as	 the	 work
proceeded,	 I	was	 continually	 reminded	 of	 the	 fable	 about	 the	 elephant	 and	 the	 tortoise.	Having
constructed	 an	 elephant	 upon	 which	 the	 mathematical	 world	 could	 rest,	 I	 found	 the	 elephant
tottering,	and	proceeded	to	construct	a	tortoise	to	keep	the	elephant	from	falling.	But	the	tortoise
was	no	more	secure	than	the	elephant,	and	after	some	twenty	years	of	arduous	toil,	I	came	to	the
conclusion	 that	 there	 was	 nothing	 more	 that	 I	 could	 do	 in	 the	 way	 of	 making	 mathematical
knowledge	indubitable.

Although	Gödel’s	second	statement	said	that	 it	was	impossible	 to	prove	that
the	 axioms	 were	 consistent,	 this	 did	 not	 necessarily	 mean	 that	 they	 were
inconsistent.	 In	 their	 hearts	 many	 mathematicians	 still	 believed	 that	 their
mathematics	would	remain	consistent,	but	in	their	minds	they	could	not	prove
it.	Many	years	 later	 the	great	 number	 theorist	Andre	Weil	would	 say:	 ‘God
exists	 since	mathematics	 is	 consistent,	 and	 the	Devil	 exists	 since	we	cannot



prove	it.’
The	proof	of	Gödel’s	theorems	of	undecidability	is	immensely	complicated,

and	in	fact	a	more	rigorous	statement	of	the	First	Theorem	should	be:

To	every	ω-consistent	recursive	class	k	of	formulae	there	correspond	recursive	class-signs	r,	such
that	neither	ν	Gen	r	nor	Neg(ν	Gen	r)	belongs	to	Flg(k)	(where	ν	is	the	free	variable	of	r).

Fortunately,	 as	with	Russell’s	 paradox	 and	 the	 tale	 of	 the	 librarian,	Gödel’s
first	 theorem	 can	 be	 illustrated	 with	 another	 logical	 analogy	 due	 to
Epimenides	and	known	as	the	Cretan	paradox,	or	liar’s	paradox.	Epimenides
was	a	Cretan	who	exclaimed:

‘I	am	a	liar!’

The	paradox	arises	when	we	try	and	determine	whether	this	statement	is	true
or	false.	First	let	us	see	what	happens	if	we	assume	that	the	statement	is	true.
A	 true	 statement	 implies	 that	Epimenides	 is	 a	 liar,	 but	we	 initially	 assumed
that	he	made	a	true	statement	and	therefore	Epimenides	is	not	a	liar	–	we	have
an	inconsistency.	On	the	other	hand	let	us	see	what	happens	if	we	assume	that
the	statement	is	false.	A	false	statement	implies	that	Epimenides	is	not	a	liar,
but	 we	 initially	 assumed	 that	 he	 made	 a	 false	 statement	 and	 therefore
Epimenides	 is	 a	 liar	 –	we	 have	 another	 inconsistency.	Whether	we	 assume
that	 the	 statement	 is	 true	 or	 false	 we	 end	 up	 with	 an	 inconsistency,	 and
therefore	the	statement	is	neither	true	nor	false.
Gödel	reinterpreted	the	liar’s	paradox	and	introduced	the	concept	of	proof.

The	result	was	a	statement	along	the	following	lines:

This	statement	does	not	have	any	proof.

If	 the	 statement	 were	 false	 then	 the	 statement	 would	 be	 provable,	 but	 this
would	contradict	the	statement.	Therefore	the	statement	must	be	true	in	order
to	avoid	the	contradiction.	However,	although	the	statement	is	true	it	cannot
be	proven,	because	this	statement	(which	we	now	know	to	be	true)	says	so.
Because	 Gödel	 could	 translate	 the	 above	 statement	 into	 mathematical

notation,	 he	 was	 able	 to	 demonstrate	 that	 there	 existed	 statements	 in
mathematics	which	are	 true	but	which	could	never	be	proven	to	be	true,	so-
called	 undecidable	 statements.	 This	 was	 the	 death-blow	 for	 the	 Hilbert
programme.
In	many	ways	Gödel’s	work	paralleled	 similar	discoveries	being	made	 in

quantum	 physics.	 Just	 four	 years	 before	 Gödel	 published	 his	 work	 on



undecidability,	 the	 German	 physicist	 Werner	 Heisenberg	 uncovered	 the
uncertainty	principle.	Just	as	there	was	a	fundamental	limit	to	what	theorems
mathematicians	could	prove,	Heisenberg	showed	that	there	was	a	fundamental
limit	to	what	properties	physicists	could	measure.	For	example,	if	they	wanted
to	 measure	 the	 exact	 position	 of	 an	 object,	 then	 they	 could	 measure	 the
object’s	velocity	with	only	relatively	poor	accuracy.	This	is	because	in	order
to	measure	 the	 position	 of	 the	 object	 it	would	 be	 necessary	 to	 illuminate	 it
with	 photons	 of	 light,	 but	 to	 pinpoint	 its	 exact	 locality	 the	 photons	 of	 light
would	 have	 to	 have	 enormous	 energy.	 However,	 if	 the	 object	 is	 being
bombarded	 by	 high-energy	 photons	 its	 own	 velocity	 will	 be	 affected	 and
becomes	inherently	uncertain.	Hence,	by	demanding	knowledge	of	an	object’s
position,	physicists	would	have	to	give	up	some	knowledge	of	its	velocity.
Heisenberg’s	uncertainty	principle	only	reveals	itself	at	atomic	scales,	when

high-precision	 measurements	 become	 critical.	 Therefore	 much	 of	 physics
could	 carry	 on	 regardless	 while	 quantum	 physicists	 concerned	 themselves
with	 profound	 questions	 about	 the	 limits	 of	 knowledge.	 The	 same	 was
happening	 in	 the	 world	 of	 mathematics.	 While	 the	 logicians	 concerned
themselves	with	a	highly	esoteric	debate	about	undecidability,	the	rest	of	the
mathematical	community	carried	on	 regardless.	Although	Gödel	had	proved
that	there	were	some	statements	which	could	not	be	proven,	there	were	plenty
of	 statements	 which	 could	 be	 proven	 and	 his	 discovery	 did	 not	 invalidate
anything	proven	in	the	past.	Furthermore,	many	mathematicians	believed	that
Gödel’s	undecidable	statements	would	only	be	found	in	the	most	obscure	and
extreme	 regions	 of	mathematics	 and	might	 therefore	 never	 be	 encountered.
After	 all	 Gödel	 had	 only	 said	 that	 these	 statements	 existed;	 he	 could	 not
actually	point	 to	one.	Then	 in	1963	Gödel’s	 theoretical	nightmare	became	a
full-blooded	reality.
Paul	Cohen,	a	 twenty-nine-year-old	mathematician	at	Stanford	University,

developed	 a	 technique	 for	 testing	 whether	 or	 not	 a	 particular	 question	 is
undecidable.	 The	 technique	 only	works	 in	 a	 few	 very	 special	 cases,	 but	 he
was	 nevertheless	 the	 first	 person	 to	 discover	 specific	 questions	which	were
indeed	undecidable.	Having	made	his	discovery	Cohen	 immediately	 flew	 to
Princeton,	proof	in	hand,	to	have	it	verified	by	Gödel	himself.	Gödel,	who	by
now	 was	 entering	 a	 paranoid	 phase	 of	 his	 life,	 opened	 the	 door	 slightly,
snatched	 the	 papers	 and	 slammed	 the	 door	 shut.	 Two	 days	 later	 Cohen
received	an	invitation	to	tea	at	Gödel’s	house,	a	sign	that	the	master	had	given
the	 proof	 his	 stamp	 of	 authority.	 What	 was	 particularly	 dramatic	 was	 that
some	of	 these	undecidable	questions	were	central	 to	mathematics.	 Ironically
Cohen	proved	 that	one	of	 the	questions	which	David	Hilbert	declared	 to	be
among	 the	 twenty-three	 most	 important	 problems	 in	 mathematics,	 the



continuum	hypothesis,	was	undecidable.
Gödel’s	 work,	 compounded	 by	 Cohen’s	 undecidable	 statements,	 sent	 a

disturbing	 message	 to	 all	 those	 mathematicians,	 professional	 and	 amateur,
who	 were	 persisting	 in	 their	 attempts	 to	 prove	 Fermat’s	 Last	 Theorem	 –
perhaps	Fermat’s	Last	Theorem	was	undecidable!	What	 if	Pierre	 de	Fermat
had	made	a	mistake	when	he	claimed	to	have	found	a	proof?	If	so,	then	there
was	the	possibility	that	the	Last	Theorem	was	undecidable.	Proving	Fermat’s
Last	 Theorem	might	 be	more	 than	 just	 difficult,	 it	 might	 be	 impossible.	 If
Fermat’s	 Last	 Theorem	 were	 undecidable,	 then	 mathematicians	 had	 spent
centuries	in	search	of	a	proof	that	did	not	exist.
Curiously	if	Fermat’s	Last	Theorem	turned	out	to	be	undecidable,	then	this

would	imply	that	it	must	be	true.	The	reason	is	as	follows.	The	Last	Theorem
says	that	there	are	no	whole	number	solutions	to	the	equation

If	the	Last	Theorem	were	in	fact	false,	then	it	would	be	possible	to	prove	this
by	 identifying	 a	 solution	 (a	 counter-example).	 Therefore	 the	 Last	 Theorem
would	 be	 decidable.	 Being	 false	 would	 be	 inconsistent	 with	 being
undecidable.	 However,	 if	 the	 Last	 Theorem	 were	 true,	 there	 would	 not
necessarily	 be	 such	 an	 unequivocal	 way	 of	 proving	 it	 so,	 i.e.	 it	 could	 be
undecidable.	 In	conclusion,	Fermat’s	Last	Theorem	might	be	 true,	but	 there
may	be	no	way	of	proving	it.

The	Compulsion	of	Curiosity

Pierre	 de	 Fermat’s	 casual	 jotting	 in	 the	margin	 of	 Diophantus’	Arithmetica
had	 led	 to	 the	most	 infuriating	 riddle	 in	 history.	 Despite	 three	 centuries	 of
glorious	failure	and	Gödel’s	suggestion	that	they	might	be	hunting	for	a	non-
existent	proof,	some	mathematicians	continued	to	be	attracted	to	the	problem.
The	Last	Theorem	was	a	mathematical	siren,	luring	geniuses	towards	it,	only
to	dash	their	hopes.	Any	mathematician	who	got	involved	with	Fermat’s	Last
Theorem	risked	wasting	their	career,	and	yet	whoever	could	make	the	crucial
breakthrough	would	 go	 down	 in	 history	 as	 having	 solved	 the	world’s	most
difficult	problem.
Generations	of	mathematicians	were	obsessed	with	Fermat’s	Last	Theorem

for	 two	 reasons.	 First,	 there	 was	 the	 ruthless	 sense	 of	 one-upmanship.	 The
Last	 Theorem	 was	 the	 ultimate	 test	 and	 whoever	 could	 prove	 it	 would
succeed	where	Cauchy,	Euler,	Kummer,	and	countless	others	had	failed.	Just



as	Fermat	himself	took	great	pleasure	in	solving	problems	which	baffled	his
contemporaries,	whoever	could	prove	the	Last	Theorem	could	enjoy	the	fact
that	they	had	solved	a	problem	which	had	confounded	the	entire	community
of	 mathematicians	 for	 hundreds	 of	 years.	 Second,	 whoever	 could	 meet
Fermat’s	challenge	could	enjoy	 the	 innocent	satisfaction	of	solving	a	 riddle.
The	delight	derived	from	solving	esoteric	questions	in	number	theory	is	not	so
different	 from	 the	 simple	 joy	of	 tackling	 the	 trivial	 riddles	of	Sam	Loyd.	A
mathematician	 once	 said	 to	 me	 that	 the	 pleasure	 he	 derived	 from	 solving
mathematical	problems	is	similar	to	that	gained	by	crossword	addicts.	Filling
in	 the	 last	 clue	 of	 a	 particularly	 tough	 crossword	 is	 always	 a	 satisfying
experience,	but	 imagine	 the	 sense	of	achievement	after	 spending	years	on	a
puzzle,	 which	 nobody	 else	 in	 the	 world	 has	 been	 able	 to	 solve,	 and	 then
figuring	out	the	solution.
These	 are	 the	 same	 reasons	 why	 Andrew	 Wiles	 became	 fascinated	 by

Fermat:	 ‘Pure	 mathematicians	 just	 love	 a	 challenge.	 They	 love	 unsolved
problems.	 When	 doing	 maths	 there’s	 this	 great	 feeling.	 You	 start	 with	 a
problem	that	just	mystifies	you.	You	can’t	understand	it,	it’s	so	complicated,
you	just	can’t	make	head	nor	tail	of	it.	But	then	when	you	finally	resolve	it,
you	have	this	incredible	feeling	of	how	beautiful	it	is,	how	it	all	fits	together
so	elegantly.	Most	deceptive	are	the	problems	which	look	easy,	and	yet	they
turn	 out	 to	 be	 extremely	 intricate.	 Fermat	 is	 the	most	 beautiful	 example	 of
this.	It	just	looked	as	though	it	had	to	have	a	solution	and,	of	course,	it’s	very
special	because	Fermat	said	that	he	had	a	solution.’
Mathematics	has	its	applications	in	science	and	technology,	but	that	is	not

what	drives	mathematicians.	They	are	inspired	by	the	joy	of	discovery.	G.H.
Hardy	 tried	 to	 explain	 and	 justify	 his	 own	 career	 in	 a	 book	 entitled	 A
Mathematician’s	Apology:

I	will	only	say	that	if	a	chess	problem	is,	in	the	crude	sense,	‘useless’,	then	that	is	equally	true	of
most	of	 the	best	mathematics	…	I	have	never	done	anything	‘useful’.	No	discovery	of	mine	has
made,	or	is	likely	to	make,	directly	or	indirectly,	for	good	or	ill,	the	least	difference	to	the	amenity
of	the	world.	Judged	by	all	practical	standards,	the	value	of	my	mathematical	life	is	nil;	and	outside
mathematics	it	is	trivial	anyhow.	I	have	just	one	chance	of	escaping	a	verdict	of	complete	triviality,
that	I	may	be	judged	to	have	created	something	worth	creating.	And	that	I	have	created	something
is	undeniable:	the	question	is	about	its	value.

The	desire	 for	a	 solution	 to	any	mathematical	problem	 is	 largely	 fired	by
curiosity,	and	the	reward	is	the	simple	but	enormous	satisfaction	derived	from
solving	any	riddle.	The	mathematician	E.C.	Titchmarsh	once	said:	‘It	can	be
of	no	practical	use	to	know	that	π	is	irrational,	but	if	we	can	know,	it	surely



would	be	intolerable	not	to	know.’
In	 the	 case	of	Fermat’s	Last	Theorem	 there	was	no	 shortage	of	 curiosity.

Gödel’s	 work	 on	 undecidability	 had	 introduced	 an	 element	 of	 doubt	 as	 to
whether	the	problem	was	soluble,	but	this	was	not	enough	to	discourage	the
true	Fermat	fanatic.	What	was	more	dispiriting	was	the	fact	that	by	the	1930s
mathematicians	had	exhausted	all	 their	techniques	and	had	little	else	at	 their
disposal.	 What	 was	 needed	 was	 a	 new	 tool,	 something	 that	 would	 raise
mathematical	morale.	The	Second	World	War	was	 to	provide	 just	what	was
required	 –	 the	 greatest	 leap	 in	 calculating	 power	 since	 the	 invention	 of	 the
slide-rule.

The	Brute	Force	Approach

When	 in	 1940	 G.H.	 Hardy	 declared	 that	 the	 best	 mathematics	 is	 largely
useless,	he	was	quick	to	add	that	this	was	not	necessarily	a	bad	thing:	‘Real
mathematics	 has	 no	 effects	 on	war.	No	 one	 has	 yet	 discovered	 any	warlike
purpose	to	be	served	by	the	theory	of	numbers.’	Hardy	was	soon	to	be	proved
wrong.
In	1944	John	von	Neumann	co-wrote	the	book	The	Theory	of	Games	and

Economic	Behavior,	 in	which	he	coined	the	term	game	theory.	Game	theory
was	von	Neumann’s	attempt	 to	use	mathematics	 to	describe	 the	structure	of
games	 and	how	humans	play	 them.	He	began	by	 studying	chess	 and	poker,
and	 then	 went	 on	 to	 try	 and	 model	 more	 sophisticated	 games	 such	 as
economics.	After	the	Second	World	War	the	RAND	corporation	realised	the
potential	of	von	Neumann’s	ideas	and	hired	him	to	work	on	developing	Cold
War	strategies.	From	that	point	on,	mathematical	game	theory	has	become	a
basic	 tool	 for	 generals	 to	 test	 their	military-strategies	 by	 treating	 battles	 as
complex	 games	 of	 chess.	 A	 simple	 illustration	 of	 the	 application	 of	 game
theory	in	battles	is	the	story	of	the	truel.
A	truel	 is	 similar	 to	a	duel,	except	 there	are	 three	participants	 rather	 than

two.	 One	 morning	 Mr	 Black,	 Mr	 Grey	 and	 Mr	White	 decide	 to	 resolve	 a
conflict	by	truelling	with	pistols	until	only	one	of	them	survives.	Mr	Black	is
the	worst	shot,	hitting	his	target	on	average	only	one	time	in	three.	Mr	Grey	is
a	better	shot	hitting	his	target	two	times	out	of	three.	Mr	White	is	the	best	shot
hitting	his	target	every	time.	To	make	the	truel	fairer	Mr	Black	is	allowed	to
shoot	first,	followed	by	Mr	Grey	(if	he	is	still	alive),	followed	by	Mr	White	(if
he	is	still	alive),	and	round	again	until	only	one	of	them	is	alive.	The	question
is	this:	Where	should	Mr	Black	aim	his	first	shot?	You	might	like	to	make	a
guess	based	on	intuition,	or	better	still	based	on	game	theory.	The	answer	is



discussed	in	Appendix	9.
Even	more	 influential	 in	wartime	 than	game	 theory	 is	 the	mathematics	of

code	breaking.	During	the	Second	World	War	the	Allies	realised	that	in	theory
mathematical	 logic	 could	 be	 used	 to	 unscramble	German	messages,	 if	 only
the	 calculations	 could	 be	 performed	 quickly	 enough.	 The	 challenge	was	 to
find	a	way	of	automating	mathematics	 so	 that	 a	machine	could	perform	 the
calculations,	and	the	Englishman	who	contributed	most	to	this	code-cracking
effort	was	Alan	Turing.
In	 1938	 Turing	 returned	 to	 Cambridge	 having	 completed	 a	 stint	 at

Princeton	 University.	 He	 had	 witnessed	 first-hand	 the	 turmoil	 caused	 by
Gödel’s	theorems	of	undecidability	and	had	become	involved	in	trying	to	pick
up	the	pieces	of	Hilbert’s	dream.	In	particular	he	wanted	to	know	if	there	was
a	way	 to	 define	which	 questions	were	 and	were	 not	 decidable,	 and	 tried	 to
develop	a	methodical	way	of	answering	this	question.	At	the	time	calculating
devices	 were	 primitive	 and	 effectively	 useless	 when	 it	 came	 to	 serious
mathematics,	 and	 so	 instead	 Turing	 based	 his	 ideas	 on	 the	 concept	 of	 an
imaginary	 machine	 which	 was	 capable	 of	 infinite	 computation.	 This
hypothetical	machine,	which	consumed	infinite	amounts	of	imaginary	ticker-
tape	and	could	compute	for	an	eternity,	was	all	that	he	required	to	explore	his
abstract	 questions	 of	 logic.	 What	 Turing	 was	 unaware	 of	 was	 that	 his
imagined	mechanisation	of	hypothetical	questions	would	eventually	lead	to	a
breakthrough	in	performing	real	calculations	on	real	machines.
Despite	 the	outbreak	of	war,	Turing	continued	his	 research	as	a	 fellow	of

King’s	College,	until	on	4	September	1939	his	contented	life	as	a	Cambridge
don	came	to	an	abrupt	end.	He	had	been	commandeered	by	the	Government
Code	and	Cypher	School,	whose	task	it	was	to	unscramble	the	enemy’s	coded
messages.	 Prior	 to	 the	war	 the	Germans	 had	 devoted	 considerable	 effort	 to
developing	 a	 superior	 system	of	 encryption,	 and	 this	was	 a	matter	 of	 grave
concern	to	British	Intelligence	who	had	in	the	past	been	able	to	decipher	their
enemy’s	communications	with	relative	ease.	The	HMSO’s	official	war	history
British	Intelligence	in	the	Second	World	War	describes	the	state	of	play	in	the
1930s:

By	1937	it	was	established	that,	unlike	their	Japanese	and	Italian	counterparts,	the	German	army,
the	 German	 navy	 and	 probably	 the	 air	 force,	 together	 with	 other	 state	 organisations	 like	 the
railways	 and	 the	SS	 used,	 for	 all	 except	 their	 tactical	 communications,	 different	 versions	 of	 the
same	cypher	 system	–	 the	Enigma	machine	which	had	been	put	on	 the	market	 in	 the	1920s	but
which	 the	 Germans	 had	 rendered	 more	 secure	 by	 progressive	 modifications.	 In	 1937	 the
Government	Code	and	Cypher	School	broke	into	the	less	modified	and	less	secure	model	of	 this
machine	that	was	being	used	by	the	Germans,	the	Italians	and	the	Spanish	nationalist	forces.	But



apart	from	this	the	Enigma	still	resisted	attack,	and	it	seemed	likely	that	it	would	continue	to	do	so.

The	Enigma	machine	consisted	of	a	keyboard	connected	to	a	scrambler	unit.
The	 scrambler	 unit	 contained	 three	 separate	 rotors	 and	 the	 positions	 of	 the
rotors	 determined	 how	 each	 letter	 on	 the	 keyboard	 would	 be	 enciphered.
What	made	the	Enigma	code	so	difficult	to	crack	was	the	enormous	number
of	ways	 in	which	 the	machine	could	be	 set	up.	First,	 the	 three	 rotors	 in	 the
machine	 were	 chosen	 from	 a	 selection	 of	 five,	 and	 could	 be	 changed	 and
swapped	 around	 to	 confuse	 the	 code-breakers.	 Second,	 each	 rotor	 could	 be
positioned	in	one	of	twenty-six	different	ways.	This	means	that	the	machine
could	 be	 set	 up	 in	 over	 a	 million	 different	 ways.	 In	 addition	 to	 the
permutations	provided	by	the	rotors,	plugboard	connections	at	the	back	of	the
machine	 could	 be	 changed	 by	 hand	 to	 provide	 a	 total	 of	 over	 150	million
million	million	 possible	 setups.	 To	 increase	 security	 even	 further,	 the	 three
rotors	were	continually	changing	their	orientation,	so	that	every	time	a	letter
was	transmitted,	 the	set-up	for	 the	machine,	and	therefore	the	encipherment,
would	 change	 for	 the	 next	 letter.	 So	 typing	 ‘DODO’	 could	 generate	 the
message	‘FGTB’	–	the	‘D’	and	the	‘O’	are	sent	twice,	but	encoded	differently
each	time.
Enigma	machines	were	given	to	the	German	army,	navy	and	air	force,	and

were	 even	 operated	 by	 the	 railways	 and	 other	 government	 departments.	As
with	all	code	systems	used	during	this	period,	a	weakness	of	the	Enigma	was
that	 the	 receiver	 had	 to	 know	 the	 sender’s	 Enigma	 setting.	 To	 maintain
security	the	Enigma	settings	had	to	be	changed	on	a	daily	basis.	One	way	for
senders	 to	 change	 settings	 regularly	 and	 keep	 receivers	 informed	 was	 to
publish	 the	daily	settings	 in	a	secret	code-book.	The	risk	with	 this	approach
was	that	the	British	might	capture	a	U-boat	and	obtain	the	code-book	with	all
the	daily	settings	for	the	following	month.	The	alternative	approach,	and	the
one	 adopted	 for	 the	 bulk	 of	 the	war,	was	 to	 transmit	 the	 daily	 settings	 in	 a
preamble	to	the	actual	message,	encoded	using	the	previous	day’s	settings.
When	 the	 war	 started,	 the	 British	 Cypher	 School	 was	 dominated	 by

classicists	 and	 linguists.	 The	 Foreign	 Office	 soon	 realised	 that	 number
theorists	had	a	better	chance	of	finding	the	key	to	cracking	the	German	codes
and,	 to	 begin	 with,	 nine	 of	 Britain’s	 most	 brilliant	 number	 theorists	 were
gathered	 at	 the	 Cypher	 School’s	 new	 home	 at	 Bletchley	 Park,	 a	 Victorian
mansion	 in	 Bletchley,	 Buckinghamshire.	 Turing	 had	 to	 abandon	 his
hypothetical	machines	with	 infinite	 ticker-tape	 and	 endless	 processing	 time
and	come	to	terms	with	a	practical	problem	with	finite	resources	and	a	very
real	deadline.
Cryptography	 is	 an	 intellectual	 battle	 between	 the	 code-maker	 and	 the



code-breaker.	The	challenge	for	the	code-maker	is	to	shuffle	and	scramble	an
outgoing	message	to	the	point	where	it	would	be	indecipherable	if	intercepted
by	 the	 enemy.	 However,	 there	 is	 a	 limit	 on	 the	 amount	 of	 mathematical
manipulation	possible	because	of	the	need	to	dispatch	messages	quickly	and
efficiently.	 The	 strength	 of	 the	 German	 Enigma	 code	 was	 that	 the	 coded
message	 underwent	 several	 levels	 of	 encryption	 at	 very	 high	 speed.	 The
challenge	 for	 the	 code-breaker	 was	 to	 take	 an	 intercepted	 message	 and	 to
crack	 the	 code	 while	 the	 contents	 of	 the	 message	 were	 still	 relevant.	 A
German	message	ordering	a	British	 ship	 to	be	destroyed	had	 to	be	decoded
before	the	ship	was	sunk.
Turing	led	a	team	of	mathematicians	who	attempted	to	build	mirror-images

of	 the	Enigma	machine.	Turing	 incorporated	 his	 pre-war	 abstract	 ideas	 into
these	 devices,	 which	 could	 in	 theory	 methodically	 check	 all	 the	 possible
Enigma	machine	 set-ups	until	 the	 code	was	 cracked.	 The	British	machines,
over	two	metres	tall	and	equally	wide,	employed	electromechanical	relays	to
check	all	the	potential	Enigma	settings.	The	constant	ticking	of	the	relays	led
to	 them	being	nicknamed	bombes.	Despite	 their	speed	 it	was	 impossible	 for
the	 bombes	 to	 check	 every	 one	 of	 the	 150	million	million	million	 possible
Enigma	 settings	within	 a	 reasonable	 amount	 of	 time,	 and	 so	 Turing’s	 team
had	 to	 find	 ways	 to	 significantly	 reduce	 the	 number	 of	 permutations	 by
gleaning	whatever	information	they	could	from	the	sent	messages.
One	of	 the	greatest	breakthroughs	made	by	the	British	was	the	realisation

that	 the	 Enigma	machine	 could	 never	 encode	 a	 letter	 into	 itself,	 i.e.	 if	 the
sender	 tapped	 ‘R’	 then	 the	 machine	 could	 potentially	 send	 out	 any	 letter,
depending	 on	 the	 settings	 of	 the	 machine,	 apart	 from	 ‘R’.	 This	 apparently
innocuous	fact	was	all	that	was	needed	to	drastically	reduce	the	time	required
to	decipher	a	message.	The	Germans	fought	back	by	limiting	the	length	of	the
messages	 they	 sent.	 All	 messages	 inevitably	 contain	 clues	 for	 the	 team	 of
code-breakers,	 and	 the	 longer	 the	 message,	 the	 more	 clues	 it	 contains.	 By
limiting	 all	 messages	 to	 a	 maximum	 of	 250	 letters,	 the	 Germans	 hoped	 to
compensate	for	the	Enigma	machine’s	reluctance	to	encode	a	letter	as	itself.
In	 order	 to	 crack	 codes	 Turing	 would	 often	 try	 to	 guess	 keywords	 in

messages.	 If	he	was	right	 it	would	speed	up	enormously	 the	cracking	of	 the
rest	of	the	code.	For	example,	if	the	code-breakers	suspected	that	a	message
contained	a	weather	report,	a	frequent	type	of	coded	report,	then	they	would
guess	that	the	message	contained	words	such	as	‘fog’	or	‘windspeed’.	If	they
were	 right	 they	 could	 quickly	 crack	 that	 message,	 and	 thereby	 deduce	 the
Enigma	 settings	 for	 that	 day.	 For	 the	 rest	 of	 the	 day,	 other,	more	 valuable,
messages	could	be	broken	with	ease.
When	 they	 failed	 to	 guess	weather	words,	 the	British	would	 try	 and	 put



themselves	 in	 the	 position	 of	 the	German	 Enigma	 operators	 to	 guess	 other
keywords.	A	sloppy	operator	might	address	the	receiver	by	a	first	name	or	he
might	have	developed	idiosyncrasies	which	were	known	to	the	code-breakers.
When	all	else	failed	and	German	traffic	was	flowing	unchecked,	it	is	said	that
the	 British	 Cypher	 School	 even	 resorted	 to	 asking	 the	 RAF	 to	 mine	 a
particular	 German	 harbour.	 Immediately	 the	 German	 harbour-master	 would
send	 an	 encrypted	message	which	would	 be	 intercepted	by	 the	British.	The
code-breakers	 could	 be	 confident	 that	 the	 message	 contained	 words	 like
‘mine’,	 ‘avoid’	 and	 ‘map	 reference’.	 Having	 cracked	 this	 message,	 Turing
would	 have	 that	 day’s	 Enigma	 settings	 and	 any	 further	German	 traffic	was
vulnerable	to	rapid	decipherment.
On	 1	 February	 1942	 the	 Germans	 added	 a	 fourth	 wheel	 to	 Enigma

machines	 which	 were	 employed	 for	 sending	 particularly	 sensitive
information.	This	was	the	greatest	escalation	in	the	level	of	encryption	during
the	war,	but	eventually	Turing’s	team	fought	back	by	increasing	the	efficiency
of	 the	 bombes.	 Thanks	 to	 the	 Cypher	 School,	 the	 Allies	 knew	more	 about
their	 enemy	 than	 the	 Germans	 could	 ever	 have	 suspected.	 The	 impact	 of
German	 U-boats	 in	 the	 Atlantic	 was	 greatly	 reduced	 and	 the	 British	 had
advanced	 warning	 of	 attacks	 by	 the	 Luftwaffe.	 The	 code-breakers	 also
intercepted	 and	 deciphered	 the	 exact	 position	 of	 German	 supply	 ships,
allowing	British	destroyers	to	be	sent	out	to	sink	them.
At	all	times	the	Allied	forces	had	to	take	care	that	their	evasive	actions	and

uncanny	 attacks	 did	 not	 betray	 their	 ability	 to	 decipher	 German
communications.	If	the	Germans	suspected	that	Enigma	had	been	broken	then
they	would	increase	their	level	of	encryption,	and	the	British	might	be	back	to
square	 one.	Hence	 there	were	 occasions	when	 the	Cypher	 School	 informed
the	Allies	 of	 an	 imminent	 attack,	 and	 the	Allies	 chose	 not	 to	 take	 extreme
countermeasures.	There	are	even	rumours	that	Churchill	knew	that	Coventry
was	 to	 be	 targeted	 for	 a	 devastating	 raid,	 yet	 he	 chose	 not	 to	 take	 special
precautions	in	case	the	Germans	became	suspicious.	Stuart	Milner-Barry	who
worked	with	Turing	denies	 the	 rumour,	and	states	 that	 the	 relevant	message
concerning	Coventry	was	not	cracked	until	it	was	too	late.
The	 restrained	 use	 of	 decoded	 information	worked	 perfectly.	 Even	when

the	 British	 used	 intercepted	 communications	 to	 inflict	 heavy	 losses,	 the
Germans	 did	 not	 suspect	 that	 the	 Enigma	 code	 had	 been	 broken.	 They
believed	that	their	level	of	encryption	was	so	high	that	it	would	be	absolutely
impossible	 to	 crack	 their	 codes.	 Instead	 they	blamed	any	exceptional	 losses
on	the	British	secret	service	infiltrating	their	own	ranks.
Because	 of	 the	 secrecy	 surrounding	 the	work	 carried	 out	 at	Bletchley	 by

Turing	and	his	team,	their	immense	contribution	to	the	war	effort	could	never



be	publicly	 acknowledged,	 even	 for	many	years	 after	 the	war.	 It	 used	 to	be
said	 that	 the	 First	 World	 War	 was	 the	 chemists’	 war	 and	 that	 the	 Second
World	War	was	the	physicists’	war.	In	fact,	from	the	information	revealed	in
recent	decades,	it	is	probably	true	to	say	that	the	Second	World	War	was	also
the	 mathematicians’	 war	 –	 and	 in	 the	 case	 of	 a	 third	 world	 war	 their
contribution	would	be	even	more	critical.
Throughout	 his	 code-breaking	 career	 Turing	 never	 lost	 sight	 of	 his

mathematical	goals.	The	hypothetical	machines	had	been	 replaced	with	 real
ones,	but	 the	esoteric	questions	remained.	By	the	end	of	the	war	Turing	had
helped	build	Colossus,	a	fully	electronic	machine	consisting	of	1500	valves,
which	were	much	 faster	 than	 the	 electromechanical	 relays	 employed	 in	 the
bombes.	Colossus	was	a	computer	in	the	modern	sense	of	the	word,	and	with
the	extra	speed	and	sophistication	Turing	began	 to	 think	of	 it	as	a	primitive
brain	–	 it	had	a	memory,	 it	could	process	 information,	and	 states	within	 the
computer	 resembled	 states	 of	 mind.	 Turing	 had	 transformed	 his	 imaginary
machine	into	the	first	real	computer.
When	 the	 war	 ended	 Turing	 continued	 to	 build	 increasingly	 complex

machines,	 such	 as	 the	 Automatic	 Computing	 Engine	 (ACE).	 In	 1948	 he
moved	to	Manchester	University	and	built	the	world’s	first	computer	to	have
an	electronically	stored	program.	Turing	had	provided	Britain	with	 the	most
advanced	computers	 in	 the	world,	but	he	would	not	 live	 long	enough	 to	see
their	most	remarkable	calculations.
In	the	years	after	the	war	Turing	had	been	under	surveillance	from	British

Intelligence,	who	were	aware	that	he	was	a	practising	homosexual.	They	were
concerned	 that	 the	man	who	knew	more	about	Britain’s	 security	codes	 than
anyone	 else	 was	 vulnerable	 to	 blackmail	 and	 decided	 to	monitor	 his	 every
move.	Turing	had	largely	come	to	terms	with	being	constantly	shadowed,	but
in	1952	he	was	arrested	for	violation	of	British	homosexuality	statutes.	This
humiliation	 made	 life	 intolerable	 for	 Turing.	 Andrew	 Hodges,	 Turing’s
biographer,	describes	the	events	leading	up	to	his	death:

Alan	Turing’s	death	came	as	a	shock	to	those	who	knew	him	…	That	he	was	an	unhappy,	tense,
person;	 that	 he	was	 consulting	 a	 psychiatrist	 and	 suffered	 a	 blow	 that	 would	 have	 felled	many
people	–	all	this	was	clear.	But	the	trial	was	two	years	in	the	past,	the	hormone	treatment	had	ended
a	year	before,	and	he	seemed	to	have	risen	above	it	all.
The	inquest,	on	10	June	1954,	established	that	it	was	suicide.	He	had	been	found	lying	neatly	in

his	 bed.	 There	was	 froth	 round	 his	mouth,	 and	 the	 pathologist	who	 did	 the	 post-mortem	 easily
identified	the	cause	of	death	as	cyanide	poisoning	…	In	the	house	was	a	jar	of	potassium	cyanide,
and	also	a	jar	of	cyanide	solution.	By	the	side	of	his	bed	was	half	an	apple,	out	of	which	several
bites	had	been	taken.	They	did	not	analyse	the	apple,	and	so	it	was	never	properly	established	that,



as	seemed	perfectly	obvious,	the	apple	had	been	dipped	in	the	cyanide.

Turing’s	 legacy	 was	 a	 machine	 which	 could	 take	 an	 unpractically	 long
calculation,	 if	performed	by	a	human,	 and	complete	 it	 in	 a	matter	of	hours.
Today’s	 computers	perform	more	 calculations	 in	 a	 split	 second	 than	Fermat
performed	in	his	entire	career.	Mathematicians	who	were	still	struggling	with
Fermat’s	Last	Theorem	began	to	use	computers	to	attack	the	problem,	relying
on	a	computerised	version	of	Kummer’s	nineteenth-century	approach.
Kummer,	 having	 discovered	 a	 flaw	 in	 the	 work	 of	 Cauchy	 and	 Lamé,

showed	that	the	outstanding	problem	in	proving	Fermat’s	Last	Theorem	was
disposing	of	the	cases	when	n	equals	an	irregular	prime	–	for	values	of	n	up	to
100	 the	only	 irregular	primes	are	37,	59	and	67.	At	 the	same	 time	Kummer
showed	that	in	theory	all	irregular	primes	could	be	dealt	with	on	an	individual
basis,	 the	 only	 problem	 being	 that	 each	 one	 would	 require	 an	 enormous
amount	of	calculation.	To	make	his	point	Kummer	and	his	colleague	Dimitri
Mirimanoff	 put	 in	 the	 weeks	 of	 calculation	 required	 to	 dispel	 the	 three
irregular	primes	less	than	100.	However,	they	and	other	mathematicians	were
not	prepared	to	begin	on	the	next	batch	of	irregular	primes	between	100	and
1,000.
A	few	decades	later	the	problems	of	immense	calculation	began	to	vanish.

With	 the	 arrival	 of	 the	 computer	 awkward	 cases	 of	 Fermat’s	 Last	 Theorem
could	 be	 dispatched	with	 speed,	 and	 after	 the	 Second	World	War	 teams	 of
computer	scientists	and	mathematicians	proved	Fermat’s	Last	Theorem	for	all
values	of	n	up	 to	500,	 then	1,000,	and	 then	10,000.	 In	 the	1980s	Samuel	S.
Wagstaff	 of	 the	 University	 of	 Illinois	 raised	 the	 limit	 to	 25,000	 and	 more
recently	mathematicians	could	claim	that	Fermat’s	Last	Theorem	was	true	for
all	values	of	n	up	to	4	million.
Although	 outsiders	 felt	 that	 modern	 technology	 was	 at	 last	 getting	 the

better	 of	 the	 Last	 Theorem,	 the	 mathematical	 community	 were	 aware	 that
their	 success	 was	 purely	 cosmetic.	 Even	 if	 supercomputers	 spent	 decades
proving	one	value	of	n	after	another	they	could	never	prove	every	value	of	n
up	 to	 infinity,	 and	 therefore	 they	 could	 never	 claim	 to	 prove	 the	 entire
theorem.	Even	if	the	theorem	was	to	be	proved	true	for	up	to	a	billion,	there	is
no	reason	why	it	should	be	true	for	a	billion	and	one.	If	the	theorem	was	to	be
proved	up	to	a	trillion,	there	is	no	reason	why	it	should	be	true	for	a	trillion
and	one,	 and	 so	on	ad	 infinitum.	 Infinity	 is	 unobtainable	 by	 the	mere	 brute
force	of	computerised	number	crunching.
David	Lodge	in	his	book	The	Picturegoers	gives	a	beautiful	description	of

eternity	which	is	also	relevant	to	the	parallel	concept	of	infinity:	‘Think	of	a
ball	of	steel	as	large	as	the	world,	and	a	fly	alighting	on	it	once	every	million



years.	When	the	ball	of	steel	is	rubbed	away	by	the	friction,	eternity	will	not
even	have	begun.’
All	 that	 computers	 could	 offer	 was	 evidence	 in	 favour	 of	 Fermat’s	 Last

Theorem.	 To	 the	 casual	 observer	 the	 evidence	 might	 seem	 to	 be
overwhelming,	 but	 no	 amount	 of	 evidence	 is	 enough	 to	 satisfy
mathematicians,	a	community	of	sceptics	who	will	accept	nothing	other	than
absolute	proof.	Extrapolating	a	theory	to	cover	an	infinity	of	numbers	based
on	evidence	from	a	few	numbers	is	a	risky	(and	unacceptable)	gamble.
One	particular	sequence	of	primes	shows	that	extrapolation	is	a	dangerous

crutch	upon	which	to	rely.	In	the	seventeenth	century	mathematicians	showed
by	detailed	examination	that	the	following	numbers	are	all	prime:

31;	331;	3,331;	33,331;	333,331;	3,333,331;	33,333,331.

The	next	numbers	 in	 the	 sequence	become	 increasingly	giant,	 and	checking
whether	or	not	 they	are	also	prime	would	have	taken	considerable	effort.	At
the	time	some	mathematicians	were	tempted	to	extrapolate	from	the	pattern	so
far,	 and	 assume	 that	 all	 numbers	of	 this	 form	are	prime.	However,	 the	next
number	in	the	pattern,	333,333,331,	turned	out	not	to	be	a	prime:

Another	good	example	which	demonstrates	why	mathematicians	refused	to	be
persuaded	 by	 the	 evidence	 of	 computers	 is	 the	 case	 of	 Euler’s	 conjecture.
Euler	 claimed	 that	 there	were	 no	 solutions	 to	 an	 equation	 not	 dissimilar	 to
Fermat’s	equation:

For	 two	 hundred	 years	 nobody	 could	 prove	 Euler’s	 conjecture,	 but	 on	 the
other	 hand	 nobody	 could	 disprove	 it	 by	 finding	 a	 counterexample.	 First
manual	searches	and	then	years	of	computer	sifting	failed	to	find	a	solution.
Lack	of	a	counter-example	was	strong	evidence	 in	 favour	of	 the	conjecture.
Then	 in	 1988	Naom	Elkies	 of	Harvard	University	 discovered	 the	 following
solution:

Despite	 all	 the	 evidence	 Euler’s	 conjecture	 turned	 out	 to	 be	 false.	 In	 fact
Elkies	proved	 that	 there	were	 infinitely	many	solutions	 to	 the	equation.	The



moral	is	that	you	cannot	use	evidence	from	the	first	million	numbers	to	prove
a	conjecture	about	all	numbers.
But	 the	deceptive	nature	of	Euler’s	conjecture	 is	nothing	compared	to	 the

overestimated	 prime	 conjecture.	 By	 scouring	 through	 larger	 and	 larger
regimes	of	numbers,	it	becomes	clear	that	the	prime	numbers	become	harder
and	harder	 to	find.	For	 instance,	between	0	and	100	there	are	25	primes	but
between	10,000,000	and	10,000,100	there	are	only	2	prime	numbers.	In	1791,
when	he	was	 just	 fourteen	years	 old,	Carl	Gauss	 predicted	 the	 approximate
manner	 in	 which	 the	 frequency	 of	 prime	 numbers	 among	 all	 the	 other
numbers	would	 diminish.	 The	 formula	was	 reasonably	 accurate	 but	 always
seemed	 slightly	 to	 overestimate	 the	 true	 distribution	 of	 primes.	 Testing	 for
primes	up	to	a	million,	a	billion	or	a	trillion	would	always	show	that	Gauss’s
formula	 was	 marginally	 too	 generous	 and	 mathematicians	 were	 strongly
tempted	to	believe	that	this	would	hold	true	for	all	numbers	up	to	infinity,	and
thus	was	born	the	overestimated	prime	conjecture.
Then,	 in	 1914,	 J.E.	 Littlewood,	G.H.	Hardy’s	 collaborator	 at	Cambridge,

proved	 that	 in	 a	 sufficiently	 large	 regime	 Gauss’s	 formula	 would
underestimate	 the	 number	 of	 primes.	 In	 1955	 S.	 Skewes	 showed	 that	 the
underestimate	would	occur	sometime	before	reaching	the	number

This	 is	 a	 number	 beyond	 the	 imagination,	 and	 beyond	 any	 practical
application.	 Hardy	 called	 Skewes’s	 number	 ‘the	 largest	 number	 which	 has
ever	 served	 any	definite	 purpose	 in	mathematics’.	He	 calculated	 that	 if	 one
played	chess	with	all	the	particles	in	the	universe	(1087),	where	a	move	meant
simply	 interchanging	 any	 two	 particles,	 then	 the	 number	 of	 possible	 games
was	roughly	Skewes’s	number.
There	was	no	reason	why	Fermat’s	Last	Theorem	should	not	turn	out	to	be

as	 cruel	 and	 deceptive	 as	 Euler’s	 conjecture	 or	 the	 overestimated	 prime
conjecture.

The	Graduate

In	1975	Andrew	Wiles	began	his	career	as	a	graduate	student	at	Cambridge
University.	Over	the	next	three	years	he	was	to	work	on	his	Ph.D.	thesis	and
in	 that	way	serve	his	mathematical	apprenticeship.	Each	student	was	guided
and	nurtured	by	a	supervisor	and	in	Wiles’s	case	that	was	the	Australian	John
Coates,	 a	 professor	 at	 Emmanuel	 College,	 originally	 from	 Possum	 Brush,



New	South	Wales.
Coates	still	recalls	how	he	adopted	Wiles:	‘I	remember	a	colleague	told	me

that	 he	 had	 a	 very	 good	 student	 who	 was	 just	 finishing	 part	 III	 of	 the
mathematical	 tripos,	 and	 he	 urged	me	 to	 take	 him	 as	 a	 student.	 I	was	 very
fortunate	to	have	Andrew	as	a	student.	Even	as	a	research	student	he	had	very
deep	ideas	and	it	was	always	clear	that	he	was	a	mathematician	who	would	do
great	 things.	Of	 course,	 at	 that	 stage	 there	was	 no	question	of	 any	 research
student	starting	work	directly	on	Fermat’s	Last	Theorem.	It	was	too	difficult
even	for	a	thoroughly	experienced	mathematician.’
For	 the	 past	 decade	 everything	 Wiles	 had	 done	 was	 directed	 towards

preparing	himself	to	meet	Fermat’s	challenge,	but	now	that	he	had	joined	the
ranks	 of	 the	 professional	mathematicians	 he	 had	 to	 be	more	 pragmatic.	He
remembers	how	he	had	to	temporarily	surrender	his	dream:	‘When	I	went	to
Cambridge	 I	 really	 put	 aside	Fermat.	 It’s	 not	 that	 I	 forgot	 about	 it	 –	 it	was
always	there	–	but	I	realised	that	the	only	techniques	we	had	to	tackle	it	had
been	 around	 for	 130	 years.	 It	 didn’t	 seem	 that	 these	 techniques	were	 really
getting	to	the	root	of	the	problem.	The	problem	with	working	on	Fermat	was
that	you	could	spend	years	getting	nowhere.	It’s	fine	to	work	on	any	problem,
so	 long	as	 it	generates	 interesting	mathematics	along	 the	way	–	even	 if	you
don’t	 solve	 it	 at	 the	 end	 of	 the	 day.	The	 definition	 of	 a	 good	mathematical
problem	is	the	mathematics	it	generates	rather	than	the	problem	itself.’
It	 was	 John	 Coates’s	 responsibility	 to	 find	 Andrew	 a	 new	 obsession,

something	which	would	occupy	his	research	for	at	least	the	next	three	years.
‘I	think	all	a	research	supervisor	can	do	for	a	student	is	try	and	push	him	in	a
fruitful	 direction.	 Of	 course,	 it’s	 impossible	 to	 be	 sure	 what	 is	 a	 fruitful
direction	 in	 terms	 of	 research	 but	 perhaps	 one	 thing	 that	 an	 older
mathematician	can	do	 is	use	his	horse	sense,	his	 intuition	of	what	 is	a	good
area,	 and	 then	 it’s	 really	 up	 to	 the	 student	 as	 to	 how	 far	 he	 can	 go	 in	 that
direction.’	 In	 the	 end	 Coates	 decided	 that	 Wiles	 should	 study	 an	 area	 of
mathematics	known	as	elliptic	curves.	This	decision	would	eventually	prove
to	be	a	turning	point	in	Wiles’s	career	and	give	him	the	techniques	he	would
require	for	a	new	approach	to	tackling	Fermat’s	Last	Theorem.
The	 name	 ‘elliptic	 curves’	 is	 somewhat	 misleading	 for	 they	 are	 neither

ellipses	nor	even	curved	in	the	normal	sense	of	the	word.	Rather	they	are	any
equations	which	have	the	form

They	 got	 their	 name	 because	 in	 the	 past	 they	 were	 used	 to	 measure	 the
perimeters	of	ellipses	and	the	lengths	of	planetary	orbits,	but	for	clarity	I	will



simply	refer	to	them	as	elliptic	equations	rather	than	elliptic	curves.
The	challenge	with	elliptic	equations,	as	with	Fermat’s	Last	Theorem,	is	to

figure	 out	 if	 they	 have	whole	 number	 solutions,	 and,	 if	 so,	 how	many.	 For
example,	the	elliptic	equation

has	only	one	set	of	whole	number	solutions,	namely

Proving	that	this	elliptic	equation	has	only	one	set	of	whole	number	solutions
is	 an	 immensely	 difficult	 task,	 and	 in	 fact	 it	 was	 Pierre	 de	 Fermat	 who
discovered	 the	proof.	You	might	 remember	 that	 in	Chapter	2	 it	was	Fermat
who	proved	that	26	is	the	only	number	in	the	universe	sandwiched	between	a
square	 and	 a	 cube	 number.	 This	 is	 equivalent	 to	 showing	 that	 the	 above
elliptic	equation	has	only	one	solution,	i.e.	52	and	33	are	the	only	square	and
cube	 that	 differ	 by	 2,	 and	 therefore	 26	 is	 the	 only	 number	 that	 can	 be
sandwiched	between	two	such	numbers.
What	makes	elliptic	equations	particularly	fascinating	is	that	they	occupy	a

curious	 niche	 between	 other	 simpler	 equations	which	 are	 almost	 trivial	 and
other	more	complicated	equations	which	are	 impossible	 to	solve.	By	simply
changing	 the	 values	 of	 a,	 b	 and	 c	 in	 the	 general	 elliptic	 equation
mathematicians	can	generate	an	infinite	variety	of	equations,	each	one	with	its
own	characteristics,	but	all	of	them	just	within	the	realm	of	solubility.
Elliptic	 equations	 were	 originally	 studied	 by	 the	 ancient	 Greek

mathematicians,	 including	 Diophantus	 who	 devoted	 large	 parts	 of	 his
Arithmetica	 to	 exploring	 their	 properties.	 Probably	 inspired	 by	Diophantus,
Fermat	also	took	up	the	challenge	of	elliptic	equations,	and,	because	they	had
been	studied	by	his	hero,	Wiles	was	happy	to	explore	them	further.	Even	after
two	 thousand	 years	 elliptic	 equations	 still	 offered	 formidable	 problems	 for
students	such	as	Wiles:	‘They	are	very	far	from	being	completely	understood.
There	are	many	apparently	simple	questions	I	could	pose	on	elliptic	equations
that	 are	 still	 unresolved.	Even	questions	 that	Fermat	 himself	 considered	 are
still	unresolved.	In	some	way	all	the	mathematics	that	I’ve	done	can	trace	its
ancestry	to	Fermat,	if	not	Fermat’s	Last	Theorem.’
In	the	equations	which	Wiles	studied	as	a	graduate	student,	determining	the

exact	 number	 of	 solutions	 was	 so	 difficult	 that	 the	 only	 way	 to	 make	 any
progress	 was	 to	 simplify	 the	 problem.	 For	 example,	 the	 following	 elliptic
equation	is	almost	impossible	to	tackle	directly:	



The	challenge	is	to	figure	out	how	many	whole	number	solutions	there	are	to
the	equation.	One	fairly	trivial	solution	is	x	=	0	and	y	=	0:

A	slightly	more	interesting	solution	is	x	=	1	and	y	=	0:

There	may	be	other	solutions	but,	with	an	infinite	quantity	of	whole	numbers
to	investigate,	giving	a	complete	list	of	solutions	to	this	particular	equation	is
an	 impossible	 task.	 A	 simpler	 task	 is	 to	 look	 for	 solutions	 within	 a	 finite
number	space,	so-called	clock	arithmetic.
Earlier	we	saw	how	numbers	can	be	thought	of	as	marks	along	the	number

line	which	 extends	 to	 infinity,	 as	 shown	 in	Figure	13.	To	make	 the	number
space	finite,	clock	arithmetic	involves	truncating	the	line	and	looping	it	back
on	itself	to	form	a	number	ring	as	opposed	to	a	number	line.	Figure	14	shows
a	5-clock,	where	the	number	line	has	been	truncated	at	5	and	looped	back	to
0.	The	number	5	vanishes	and	becomes	equivalent	to	0,	and	therefore	the	only
numbers	in	5-clock	arithmetic	are	0,	1,	2,	3,	4.

Figure	13.	Conventional	arithmetic	can	be	thought	of	as	movements	up	and	down	the	number	line.

In	normal	arithmetic	we	can	 think	of	addition	as	moving	along	 the	 line	a
certain	number	of	spaces.	For	example,	4	+	2	=	6	is	the	same	as	saying:	begin
at	4,	and	move	along	the	number	line	2	spaces,	and	arrive	at	6.
However,	in	5-clock	arithmetic:

This	is	because	if	we	start	at	4	and	move	round	2	spaces	then	we	arrive	back
at	 1.	 Clock	 arithmetic	 might	 appear	 unfamiliar	 but	 in	 fact,	 as	 the	 name
suggests,	it	is	used	every	day	when	people	discuss	the	time.	Four	hours	after
11	o’clock	(that	is	to	say,	11	=	4)	is	generally	not	called	15	o’clock,	but	rather
3	o’clock.	This	is	12-clock	arithmetic.
As	well	 as	 addition	we	 can	 perform	 all	 the	 other	 common	mathematical



operations,	 such	 as	multiplication.	 In	 12-clock	 arithmetic	 5	 ×	 7	 =	 11.	 This
multiplication	can	be	thought	of	as	follows:	if	you	start	at	0,	then	move	along
5	lots	of	7	spaces,	you	will	eventually	arrive	at	11.	Although	this	is	one	way
of	thinking	about	multiplication	in	clock	arithmetic,	there	are	short	cuts	which
speed	up	calculations.	For	example,	to	calculate	5	×	7	in	12-clock	arithmetic,
we	 can	 begin	 by	 just	 working	 out	 the	 normal	 result	 which	 is	 35.	We	 then
divide	 35	 by	 12	 and	 work	 out	 the	 remainder,	 which	 is	 the	 answer	 to	 the
original	question.	So	12	goes	into	35	only	twice,	with	a	remainder	of	11,	and
sure	enough	5	×	7	in	12-clock	arithmetic	is	11.	This	is	equivalent	to	imagining
going	around	the	clock	twice	and	still	having	11	spaces	to	travel.
Because	 clock	 arithmetics	 only	 deal	 with	 a	 limited	 number	 space,	 it	 is

relatively	easy	to	work	out	all	the	possible	solutions	to	an	elliptic	equation	for
a	 given	 clock	 arithmetic.	 For	 example,	 working	 in	 5-clock	 arithmetic	 it	 is
possible	to	list	all	the	possible	solutions	to	the	elliptic	equation

Figure	14.	In	5-clock	arithmetic	the	number	line	is	truncated	at	5	and	looped	back	on	itself.	The	number
5	coincides	with	0,	and	therefore	is	replaced	by	it.

The	solutions	are:

Although	some	of	these	solutions	would	not	be	valid	in	normal	arithmetic,	in
5-clock	arithmetic	they	are	acceptable.	For	example,	the	fourth	solution	(x	=
1,	y	=	4)	works	as	follows:



But	 remember,	 20	 is	 equivalent	 to	 0	 in	 5-clock	 arithmetic,	 because	 5	 will
divide	into	20	with	a	remainder	of	0.
Because	they	could	not	list	all	the	solutions	to	an	elliptic	equation	working

in	infinite	space,	mathematicians,	including	Wiles,	settled	for	working	out	the
number	 of	 solutions	 in	 all	 the	 different	 clock	 arithmetics.	 For	 the	 elliptic
equation	 given	 above	 the	 number	 of	 solutions	 in	 5-clock	 arithmetic	 is	 four,
and	 so	mathematicians	 say	E5	 =	 4.	 The	 number	 of	 solutions	 in	 other	 clock
arithmetics	 can	 also	 be	 calculated.	 For	 example,	 in	 7-clock	 arithmetic	 the
number	of	solutions	is	nine,	and	so	E7	=	9.
To	summarise	their	results,	mathematicians	list	the	number	of	solutions	in

each	 clock	 arithmetic	 and	 call	 this	 list	 the	L-series	 for	 the	 elliptic	 equation.
What	the	L	stands	for	has	been	long	forgotten	although	some	have	suggested
that	it	is	the	L	of	Gustav	Lejeune-Dirichlet,	who	worked	on	elliptic	equations.
For	 clarity	 I	will	 use	 the	 term	E-series	 –	 the	 series	 that	 is	 derived	 from	 an
elliptic	equation.	For	the	example	given	above	the	E-series	is	as	follows:

Because	 mathematicians	 cannot	 say	 how	 many	 solutions	 some	 elliptic
equations	have	 in	normal	number	space	which	extends	up	 to	 infinity,	 the	E-
series	appears	to	be	next	best	thing.	In	fact	the	E-series	encapsulates	a	great
deal	of	 information	about	 the	elliptic	equation	 it	describes.	 In	 the	same	way
that	biological	DNA	carries	all	the	information	required	to	construct	a	living
organism,	 the	E-series	 carries	 the	essence	of	 the	elliptic	 equation.	The	hope
was	 that	 by	 studying	 the	E-series,	 this	mathematical	DNA,	mathematicians
would	ultimately	be	able	to	calculate	everything	they	could	ever	wish	to	know
about	an	elliptic	equation.
Working	alongside	John	Coates,	Wiles	rapidly	established	his	reputation	as

a	brilliant	number	theorist	with	a	profound	understanding	of	elliptic	equations



and	their	E-series.	As	each	new	result	was	achieved	and	each	paper	published,
Wiles	did	not	realise	that	he	was	gathering	the	experience	which	would	many
years	later	bring	him	to	the	verge	of	a	proof	for	Fermat’s	Last	Theorem.
Although	nobody	was	aware	of	it	at	the	time,	the	mathematicians	of	post-

war	Japan	had	already	 triggered	a	chain	of	events	which	would	 inextricably
link	 elliptic	 equations	 to	 Fermat’s	 Last	 Theorem.	 By	 encouraging	Wiles	 to
study	 elliptic	 equations,	 Coates	 had	 given	 him	 the	 tools	 which	would	 later
enable	him	to	work	on	his	dream.



5
Proof	by	Contradiction

The	mathematician’s	patterns,	like	the	painter’s	or	the	poet’s,	must	be	beautiful;	the	ideas,	like	the
colours	or	 the	words,	must	 fit	 together	 in	a	harmonious	way.	Beauty	 is	 the	 first	 test:	 there	 is	no
permanent	place	in	the	world	for	ugly	mathematics.

G.H.	Hardy

In	 the	 January	of	1954	a	 talented	young	mathematician	at	 the	University	of
Tokyo	paid	a	 routine	visit	 to	his	departmental	 library.	Goro	Shimura	was	 in
search	 of	 a	 copy	 of	Mathematische	 Annalen,	 Vol.	 24.	 In	 particular	 he	 was
after	 a	paper	by	Deuring	on	his	 algebraic	 theory	of	 complex	multiplication,
which	 he	 needed	 in	 order	 to	 help	 him	 with	 a	 particularly	 awkward	 and
esoteric	calculation.
To	his	surprise	and	dismay,	the	volume	was	already	out.	The	borrower	was

Yutaka	Taniyama,	 a	 vague	 acquaintance	of	Shimura	who	 lived	on	 the	other
side	of	 the	campus.	Shimura	wrote	 to	Taniyama	explaining	 that	he	urgently
needed	the	journal	to	complete	the	nasty	calculation,	and	politely	asked	when
it	would	be	returned.
A	 few	 days	 later,	 a	 postcard	 landed	 on	 Shimura’s	 desk.	 Taniyama	 had

replied,	saying	that	he	too	was	working	on	the	exact	same	calculation	and	was
stuck	at	the	same	point	in	the	logic.	He	suggested	that	they	share	their	ideas
and	perhaps	collaborate	on	the	problem.	This	chance	encounter	over	a	library
book	 ignited	 a	 partnership	which	would	 change	 the	 course	 of	mathematical
history.
Taniyama	was	 born	 on	 12	November	 1927	 in	 a	 small	 town	 a	 few	miles

north	 of	 Tokyo.	 The	 Japanese	 character	 symbolising	 his	 first	 name	 was
intended	to	read	‘Toyo’,	but	most	people	outside	his	family	misinterpreted	it
as	‘Yutaka’,	and	as	Taniyama	grew	up	he	accepted	and	adopted	this	title.	As	a
child	 Taniyama’s	 education	 was	 constantly	 interrupted.	 He	 suffered	 several
bouts	 of	 ill	 health,	 and	 during	 his	 teenage	 years	 he	 was	 struck	 down	 by
tuberculosis	 and	 had	 to	 miss	 two	 years	 of	 high	 school.	 The	 onset	 of	 war
caused	even	greater	disruption	to	his	schooling.
Goro	Shimura,	one	year	younger	than	Taniyama,	had	his	education	stopped

altogether	 during	 the	war	 years.	 His	 school	was	 shut	 down	 and,	 instead	 of



attending	lessons,	Shimura	had	to	help	the	war	effort	by	working	in	a	factory
assembling	aircraft	parts.	Each	evening	he	would	attempt	to	make	up	for	his
lost	 schooling	 and	 in	 particular	 found	 himself	 drawn	 to	 mathematics.	 ‘Of
course	 there	 are	 many	 subjects	 to	 learn,	 but	 mathematics	 was	 the	 easiest
because	 I	 could	 simply	 read	 mathematical	 textbooks.	 I	 learnt	 calculus	 by
reading	books.	If	I’d	wanted	to	pursue	chemistry	or	physics	then	I	would	have
needed	 scientific	 equipment	 and	 I	 had	 no	 access	 to	 such	 things.	 I	 never
thought	that	I	was	talented.	I	was	just	curious.’
A	 few	 years	 after	 the	 war	 had	 finished,	 Shimura	 and	 Taniyama	 found

themselves	at	university.	By	the	time	they	had	exchanged	postcards	over	the
library	 book,	 life	 in	 Tokyo	was	 beginning	 to	 return	 to	 normal	 and	 the	 two
young	 academics	 could	 afford	 one	 or	 two	 small	 luxuries.	 They	 spent	 their
afternoons	in	the	coffee-shops,	in	the	evenings	they	dined	in	a	little	restaurant
specialising	 in	whale	meat,	 and	 at	 weekends	 they	 would	 stroll	 through	 the
botanical	 gardens	 or	 the	 city	 park.	 All	 ideal	 locations	 for	 discussing	 their
latest	mathematical	thoughts.
Although	 Shimura	 had	 a	 whimsical	 streak	 –	 even	 today	 he	 retains	 his

fondness	for	Zen	jokes	–	he	was	far	more	conservative	and	conventional	than
his	 intellectual	 partner.	 Shimura	 would	 rise	 at	 dawn	 and	 immediately	 get
down	to	work,	whereas	his	colleague	would	often	still	be	awake	at	this	time,
having	worked	through	the	night.	Visitors	 to	his	apartment	would	often	find
Taniyama	fast	asleep	in	the	middle	of	the	afternoon.
While	 Shimura	 was	 fastidious,	 Taniyama	 was	 sloppy	 to	 the	 point	 of

laziness.	Surprisingly	 this	was	 a	 trait	 that	Shimura	 admired:	 ‘He	was	gifted
with	 the	 special	 capability	 of	 making	 many	 mistakes,	 mostly	 in	 the	 right
direction.	I	envied	him	for	this	and	tried	in	vain	to	imitate	him,	but	found	it
quite	difficult	to	make	good	mistakes.’
Taniyama	 was	 the	 epitome	 of	 the	 absent-minded	 genius	 and	 this	 was

reflected	in	his	appearance.	He	was	incapable	of	tying	a	decent	knot,	and	so
he	decided	that	rather	than	tie	his	shoelaces	a	dozen	times	a	day	he	would	not
tie	 them	 at	 all.	 He	would	 always	wear	 the	 same	 peculiar	 green	 suit	with	 a
strange	metallic	 sheen.	 It	was	made	 from	a	 fabric	which	was	 so	outrageous
that	it	had	been	rejected	by	the	other	members	of	his	family.
When	 they	met	 in	1954	Taniyama	and	Shimura	were	 just	beginning	 their

mathematical	careers.	The	tradition	was,	and	still	is,	for	young	researchers	to
be	taken	under	the	wing	of	a	professor	who	would	guide	the	fledgling	brain,
but	Taniyama	 and	Shimura	 rejected	 this	 form	of	 apprenticeship.	During	 the
war	real	research	had	ground	to	a	halt	and	even	by	the	1950s	the	mathematics
faculty	 had	 still	 not	 recovered.	 According	 to	 Shimura,	 the	 professors	 were
‘tired,	 jaded	 and	 disillusioned’.	 In	 comparison	 the	 post-war	 students	 were



passionate	 and	 eager	 to	 learn,	 and	 they	 soon	 realised	 that	 the	 only	 way
forward	 would	 be	 for	 them	 to	 teach	 themselves.	 The	 students	 organised
regular	seminars,	taking	it	in	turn	to	inform	each	other	of	the	latest	techniques
and	breakthroughs.	Despite	his	otherwise	lackadaisical	attitude,	when	it	came
to	 the	 seminars	 Taniyama	 provided	 a	 ferocious	 driving	 force.	 He	 would
encourage	the	more	senior	students	to	explore	uncharted	territory,	and	for	the
younger	students	he	acted	as	a	father	figure.
Because	of	their	isolation,	the	seminars	would	occasionally	cover	subjects

which	were	generally	considered	passe	in	Europe	and	America.	The	students’
naïvety	meant	 that	 they	studied	equations	which	had	been	abandoned	 in	 the
West.	One	particularly	 unfashionable	 topic	which	 fascinated	both	Taniyama
and	Shimura	was	the	study	of	modular	forms.
Modular	 forms	 are	 some	 of	 the	 weirdest	 and	 most	 wonderful	 objects	 in

mathematics.	They	are	one	of	 the	most	 esoteric	 entities	 in	mathematics	 and
yet	the	twentieth-century	number	theorist	Martin	Eichler	rated	them	as	one	of
the	five	fundamental	operations:	addition,	subtraction,	multiplication,	division
and	modular	forms.	Most	mathematicians	would	consider	themselves	masters
of	the	first	four	operations,	but	the	fifth	one	they	still	find	a	little	confusing.
The	 key	 feature	 of	modular	 forms	 is	 their	 inordinate	 level	 of	 symmetry.

Although	most	people	are	familiar	with	the	everyday	concept	of	symmetry,	it
has	 a	 very	 particular	 meaning	 in	 mathematics,	 which	 is	 that	 an	 object	 has
symmetry	 if	 it	 can	 be	 transformed	 in	 a	 particular	 way	 and	 yet	 afterwards
appear	 to	be	unchanged.	To	appreciate	 the	 immense	symmetry	of	a	modular
form	it	helps	to	first	examine	the	symmetry	of	a	more	mundane	object	such	as
a	simple	square.

Figure	15.	A	simple	square	exhibits	both	rotational	and	reflectional	symmetry.

In	the	case	of	a	square,	one	form	of	symmetry	is	rotational.	That	is	to	say,	if
we	 imagine	 a	 pivot	 at	 the	 point	where	 the	x-axis	 and	y-axis	 cross,	 then	 the
square	in	Figure	15	can	be	rotated	by	one	quarter	of	a	turn,	and	afterwards	it
will	appear	to	be	unchanged.	Similarly,	rotations	by	half	a	turn,	three-quarters
of	a	turn	and	one	full	turn	will	also	leave	the	square	apparently	unchanged.



In	 addition	 to	 rotational	 symmetry	 the	 square	 also	 possesses	 reflectional
symmetry.	If	we	imagine	a	mirror	placed	along	the	x-axis	then	the	top	half	of
the	square	would	reflect	exactly	onto	the	lower	half,	and	vice	versa,	so	after
the	 transformation	 the	 square	would	 appear	 to	 remain	unchanged.	Similarly
we	 can	 define	 three	 other	 mirrors	 (along	 the	 y-axis	 and	 along	 the	 two
diagonals)	for	which	the	reflected	square	would	appear	to	be	identical	to	the
original	one.
The	simple	 square	 is	 relatively	 symmetric,	possessing	both	 rotational	and

reflectional	 symmetries,	 but	 it	 does	 not	 possess	 any	 translational	 symmetry.
This	means	that	if	the	square	were	to	be	shifted	in	any	direction,	an	observer
would	 spot	 the	 movement	 immediately	 because	 its	 position	 relative	 to	 the
axes	would	have	changed.	However,	if	the	whole	of	the	space	were	tiled	with
squares,	as	shown	in	Figure	16,	this	infinite	collection	of	squares	would	then
have	translational	symmetry.	If	the	infinite	tiled	surface	were	to	be	shifted	up
or	down	by	one	or	more	tile	spaces,	then	the	translated	tiling	would	appear	to
be	identical	to	the	original	one.	

Figure	16.	An	infinite	surface	tiled	with	squares	exhibits	rotational	and	reflectional	symmetry,	and	in
addition	has	translational	symmetry.

The	symmetry	of	 tiled	surfaces	 is	a	relatively	straightforward	 idea,	but	as
with	many	seemingly	simple	concepts	there	are	many	subtleties	hidden	within
it.	 For	 example,	 in	 the	 1970s	 the	 British	 physicist	 and	 recreational
mathematician	Roger	Penrose	began	dabbling	with	different	tiles	on	the	same
surface.	Eventually	he	identified	two	particularly	interesting	shapes,	called	the
kite	and	the	dart,	which	are	shown	in	Figure	17.	On	their	own,	 there	 is	only
one	way	these	shapes	can	be	used	to	tile	a	surface	without	gaps	or	overlaps,



but	together	they	could	be	used	to	create	a	rich	set	of	tiling	patterns.	The	kites
and	darts	can	be	fitted	 together	 in	an	 infinite	number	of	ways,	and	although
each	pattern	 is	 apparently	 similar,	 in	 detail	 they	 all	 vary.	One	pattern	made
from	kites	and	darts	is	shown	in	Figure	17.	

Figure	17.	By	using	two	different	tiles,	the	kite	and	the	dart,	Roger	Penrose	was	able	to	cover	a	surface.
However,	Penrose	tiling	does	not	possess	translational	symmetry.

Another	 remarkable	 feature	 of	 Penrose	 tilings	 (the	 patterns	 generated	 by
tiles	such	as	the	kite	and	dart)	is	that	they	can	exhibit	a	very	restricted	level	of
symmetry.	At	 first	 sight	 it	would	 appear	 that	 the	 tiling	 shown	 in	 Figure	 17
would	have	 translational	 symmetry,	 and	yet	 any	 attempt	 to	 shift	 the	 pattern
across	so	that	it	effectively	remains	unchanged	ends	in	failure.	Penrose	tilings
are	deceptively	unsymmetrical,	and	this	is	why	they	fascinate	mathematicians
and	have	become	the	starting	point	for	a	whole	new	area	of	mathematics.
Curiously	 Penrose	 tiling	 has	 also	 had	 repercussions	 in	 material	 science.

Crystallographers	 always	 believed	 that	 crystals	 had	 to	 be	 built	 on	 the
principles	 behind	 square	 tiling,	 possessing	 a	 high	 level	 of	 translational
symmetry.	In	theory	building	crystals	relied	on	a	highly	regular	and	repetitive
structure.	However,	 in	1984	scientists	discovered	a	metallic	crystal	made	of
aluminium	 and	 manganese	 which	 was	 built	 along	 Penrose	 principles.	 The
mosaic	 of	 aluminium	 and	 manganese	 behaved	 like	 the	 kites	 and	 darts,
generating	 a	 crystal	 which	 was	 almost	 regular,	 but	 not	 quite.	 A	 French
company	has	 recently	developed	a	Penrose	crystal	 into	a	coating	for	 frying-
pans.
While	the	fascinating	thing	about	Penrose’s	tiled	surfaces	is	their	restricted

symmetry,	 the	 interesting	 property	 of	 modular	 forms	 is	 that	 they	 exhibit
infinite	symmetry.	The	modular	forms	studied	by	Taniyama	and	Shimura	can
be	shifted,	switched,	swapped,	reflected	and	rotated	in	an	infinite	number	of
ways	and	still	they	remain	unchanged,	making	them	the	most	symmetrical	of
mathematical	 objects.	 When	 the	 French	 polymath	 Henri	 Poincaré	 studied



modular	 forms	 in	 the	 nineteenth	 century,	 he	 had	 great	 difficulty	 coming	 to
terms	with	 their	 immense	 symmetry.	 After	working	 on	 a	 particular	 type	 of
modular	form,	he	described	to	his	colleagues	how	every	day	for	two	weeks	he
would	wake	up	and	try	and	find	an	error	in	his	calculations.	On	the	fifteenth
day	he	realised	and	accepted	that	modular	forms	were	indeed	symmetrical	in
the	extreme.
Unfortunately,	drawing,	or	even	imagining,	a	modular	form	is	impossible.

In	 the	 case	 of	 the	 square	 tiling	 we	 have	 an	 object	 which	 lives	 in	 two
dimensions,	 its	space	being	defined	by	 the	x-axis	and	 the	y-axis.	A	modular
form	is	also	defined	by	two	axes,	but	the	axes	are	both	complex,	i.e.	each	axis
has	a	real	and	an	imaginary	part	and	effectively	becomes	two	axes.	Therefore
the	first	complex	axis	must	be	represented	by	two	axes,	xr-axis	(real)	and	xi-
axis	(imaginary),	and	the	second	complex	axis	is	represented	by	two	axes,	yr-
axis	 (real)	and	yi-axis	 (imaginary).	To	be	precise,	modular	 forms	 live	 in	 the
upper	 half-plane	 of	 this	 complex	 space,	 but	 what	 is	 most	 important	 to
appreciate	is	that	this	is	a	four-dimensional	space	(xr,	xi,	yr,	yi).
This	 four-dimensional	 space	 is	 called	 hyperbolic	 space.	 The	 hyperbolic

universe	is	tricky	to	comprehend	for	humans,	who	are	constrained	to	living	in
a	 conventional	 three-dimensional	 world,	 but	 four-dimensional	 space	 is	 a
mathematically	valid	concept,	and	it	 is	 this	extra	dimension	which	gives	the
modular	forms	such	an	immensely	high	level	of	symmetry.	The	artist	Mauritz
Escher	 was	 fascinated	 by	 mathematical	 ideas	 and	 attempted	 to	 convey	 the
concept	of	hyperbolic	space	 in	some	of	his	etchings	and	paintings.	Escher’s
Circle	Limit	IV	embeds	the	hyperbolic	world	into	the	two-dimensional	page.
In	true	hyperbolic	space	the	devils	and	angels	would	be	the	same	size,	and	the
repetition	is	indicative	of	the	high	level	of	symmetry.	Although	some	of	this
symmetry	 can	 be	 seen	 on	 the	 two-dimensional	 page,	 there	 is	 an	 increasing
distortion	towards	the	edge	of	the	picture.
The	modular	forms	which	live	in	hyperbolic	space	come	in	various	shapes

and	 sizes,	 but	 each	 one	 is	 built	 from	 the	 same	 basic	 ingredients.	 What
differentiates	each	modular	form	is	the	amount	of	each	ingredient	it	contains.
The	ingredients	of	a	modular	form	are	labelled	from	one	to	infinity	(M1,	M2,
M3,	 M4,	 …)	 and	 so	 a	 particular	 modular	 form	 might	 contain	 one	 lot	 of
ingredient	 one	 (M1	 =	 1),	 three	 lots	 of	 ingredient	 two	 (M2	 =	 3),	 two	 lots	 of
ingredient	 three	 (M3	 =	 2),	 etc.	 This	 information	 describing	 how	 a	modular
form	 is	constructed	can	be	summarised	 in	a	so-called	modular	series,	or	M-
series,	a	list	of	the	ingredients	and	the	quantity	of	each	one	required:



Just	as	the	E-series	is	the	DNA	for	elliptic	equations,	the	M-series	is	the	DNA
for	modular	 forms.	 The	 amount	 of	 each	 ingredient	 listed	 in	 the	M-series	 is
critical.	Depending	how	you	 change	 the	 amount	 of,	 say,	 the	 first	 ingredient
you	might	generate	a	completely	different,	but	equally	symmetrical,	modular
form,	 or	 you	 might	 destroy	 the	 symmetry	 altogether	 and	 generate	 a	 new
object	 which	 is	 not	 a	 modular	 form.	 If	 the	 quantity	 of	 each	 ingredient	 is
arbitrarily	chosen,	then	the	result	will	probably	be	an	object	with	little	or	no
symmetry.
Modular	 forms	 stand	 very	 much	 on	 their	 own	 within	 mathematics.	 In

particular,	 they	 would	 seem	 to	 be	 completely	 unrelated	 to	 the	 subject	 that
Wiles	would	study	at	Cambridge,	elliptic	equations.	The	modular	form	is	an
enormously	 complicated	 beast,	 studied	 largely	 because	 of	 its	 symmetry	 and
only	discovered	in	the	nineteenth	century.	The	elliptic	equation	dates	back	to
the	ancient	Greeks	and	has	nothing	to	do	with	symmetry.	Modular	forms	and
elliptic	 equations	 live	 in	 completely	 different	 regions	 of	 the	 mathematical
cosmos,	 and	 nobody	would	 ever	 have	 believed	 that	 there	was	 the	 remotest
link	 between	 the	 two	 subjects.	 However,	 Taniyama	 and	 Shimura	 were	 to
shock	the	mathematical	community	by	suggesting	that	elliptic	equations	and
modular	 forms	were	effectively	one	and	 the	 same	 thing.	According	 to	 these
two	 maverick	 mathematicians,	 they	 could	 unify	 the	 modular	 and	 elliptic
worlds.

Wishful	Thinking

In	September	1955	an	 international	symposium	was	held	 in	Tokyo.	It	was	a
unique	opportunity	 for	 the	many	young	Japanese	 researchers	 to	 show	off	 to
the	rest	of	the	world	what	they	had	learned.	They	handed	round	a	collection	of
thirty-six	 problems	 related	 to	 their	 work,	 accompanied	 by	 a	 humble
introduction	 –	 Some	 unsolved	 problems	 in	 mathematics:	 no	 mature
preparation	has	been	made,	 so	 there	may	be	 some	 trivial	or	already	 solved
ones	among	these.	The	participants	are	requested	to	give	comments	on	any	of
these	problems.
Four	of	 the	questions	were	 from	Taniyama,	 and	 these	hinted	 at	 a	 curious

relationship	 between	 modular	 forms	 and	 elliptic	 equations.	 These	 innocent



questions	would	ultimately	 lead	 to	a	 revolution	 in	number	 theory.	Taniyama
had	looked	at	the	first	few	terms	in	the	M-series	of	a	particular	modular	form.
He	 recognised	 the	 pattern	 and	 realised	 that	 it	 was	 identical	 to	 the	 list	 of
numbers	in	the	E-series	of	a	well-known	elliptic	equation.	He	calculated	a	few
more	terms	in	each	series,	and	still	the	M-series	of	the	modular	form	and	E-
series	of	the	elliptic	equation	matched	perfectly.
This	 was	 an	 astonishing	 discovery	 because,	 for	 no	 apparent	 reason,	 this

modular	form	could	be	related	to	an	elliptic	equation	through	their	respective
M-series	and	E-series	–	 these	 series	were	 identical.	The	mathematical	DNA
which	made	up	 these	 two	entities	was	exactly	 the	 same.	This	was	a	doubly
profound	 discovery.	 First,	 it	 suggested	 that	 deep	 down	 there	 was	 a
fundamental	relationship	between	the	modular	form	and	the	elliptic	equation,
objects	which	come	from	opposite	ends	of	mathematics.	Second,	it	meant	that
mathematicians,	who	already	knew	the	M-series	for	the	modular	form,	would
not	 have	 to	 calculate	 the	 E-series	 for	 the	 corresponding	 elliptic	 equation
because	it	would	be	the	same	as	the	M-series.
Relationships	 between	 apparently	 different	 subjects	 are	 as	 creatively

important	in	mathematics	as	they	are	in	any	discipline.	The	relationship	hints
at	 some	 underlying	 truth	 which	 enriches	 both	 subjects.	 For	 instance,
originally	scientists	had	studied	electricity	and	magnetism	as	two	completely
separate	 phenomena.	 Then,	 in	 the	 nineteenth	 century,	 theorists	 and
experimentalists	 realised	 that	 electricity	 and	 magnetism	 were	 intimately
related.	 This	 resulted	 in	 a	 deeper	 understanding	 of	 both	 of	 them.	 Electric
currents	generate	magnetic	fields,	and	magnets	can	induce	electricity	in	wires
passing	 close	 to	 them.	 This	 led	 to	 the	 invention	 of	 dynamos	 and	 electric
motors,	and	ultimately	the	discovery	that	light	itself	is	the	result	of	magnetic
and	electric	fields	oscillating	in	harmony.
Taniyama	 examined	 a	 few	 other	modular	 forms	 and	 in	 each	 case	 the	M-

series	seemed	to	correspond	perfectly	with	the	E-series	of	an	elliptic	equation.
He	began	 to	wonder	 if	 it	 could	be	 that	 every	 single	modular	 form	could	be
matched	with	an	elliptic	equation.	Perhaps	every	modular	form	has	the	same
DNA	 as	 an	 elliptic	 equation:	 perhaps	 each	 modular	 form	 is	 an	 elliptic
equation	 in	 disguise?	 The	 questions	 he	 handed	 out	 at	 the	 symposium	were
related	to	this	hypothesis.
The	idea	that	every	elliptic	equation	was	related	to	a	modular	form	was	so

extraordinary	that	those	who	glanced	at	Taniyama’s	questions	treated	them	as
nothing	 more	 than	 a	 curious	 observation.	 Sure	 enough	 Taniyama	 had
demonstrated	 that	 a	 few	 elliptic	 equations	 could	 be	 related	 to	 particular
modular	 forms,	 but	 they	 claimed	 that	 this	 was	 nothing	 more	 than	 a
coincidence.	According	 to	 the	 sceptics	Taniyama’s	 claim	of	 a	more	 general



and	 universal	 relationship	 seemed	 to	 be	 largely	 unsubstantiated.	 The
hypothesis	was	based	on	intuition	rather	than	on	any	real	evidence.
Taniyama’s	only	ally	was	Shimura,	who	believed	in	the	power	and	depth	of

his	 friend’s	 idea.	Following	 the	symposium	he	worked	with	Taniyama	 in	an
attempt	to	develop	the	hypothesis	to	a	level	where	the	rest	of	the	world	could
no	longer	 ignore	 their	work.	Shimura	wanted	 to	find	more	evidence	 to	back
up	the	relationship	between	the	modular	and	elliptic	worlds.	The	collaboration
was	 temporarily	 halted	 when	 in	 1957	 Shimura	 was	 invited	 to	 attend	 the
Institute	 for	 Advanced	 Study	 in	 Princeton.	 Following	 his	 two	 years	 as	 a
visiting	professor	in	America	he	intended	to	resume	working	with	Taniyama,
but	 this	 was	 never	 to	 happen.	 On	 17	 November	 1958,	 Yutaka	 Taniyama
committed	suicide.

Death	of	a	Genius

Shimura	still	keeps	the	postcard	that	Taniyama	sent	him	when	they	first	made
contact	over	the	library	book.	He	also	keeps	the	last	letter	Taniyama	wrote	to
him	while	he	was	away	in	Princeton,	but	it	contains	not	the	merest	hint	as	to
what	 would	 happen	 just	 two	 months	 later.	 To	 this	 day	 Shimura	 has	 no
understanding	 of	 what	 was	 behind	 Taniyama’s	 suicide.	 ‘I	 was	 very	 much
puzzled.	Puzzlement	may	be	the	best	word.	Of	course	I	was	sad,	but	it	was	so
sudden.	 I	 got	 his	 letter	 in	September	 and	he	died	 in	 early	November,	 and	 I
was	unable	to	make	sense	out	of	this.	Of	course,	later	I	heard	various	things
and	I	 tried	to	reconcile	myself	with	his	death.	Some	people	said	that	he	lost
confidence	in	himself	but	not	mathematically.’
What	 was	 particularly	 confusing	 for	 Taniyama’s	 friends	 was	 that	 he	 had

just	 fallen	 in	 love	with	Misako	 Suzuki	 and	 planned	 to	marry	 her	 later	 that
year.	 In	 a	 personal	 tribute	 published	 in	 the	 Bulletin	 of	 the	 London
Mathematical	 Society,	 Goro	 Shimura	 recollects	 Taniyama’s	 engagement	 to
Misako	and	the	weeks	which	led	up	to	his	suicide:

When	informed	of	 their	engagement,	I	was	somewhat	surprised,	since	I	had	vaguely	thought	she
was	not	his	type,	but	I	felt	no	misgivings.	I	was	told	afterward	that	they	had	signed	a	lease	for	an
apartment,	apparently	a	better	one,	for	their	new	home,	had	bought	some	kitchenware	together,	and
had	 been	 preparing	 for	 their	 wedding.	 Everything	 looked	 promising	 for	 them	 and	 their	 friends.
Then	the	catastrophe	befell	them.
On	the	morning	of	Monday,	November	17,	1958,	the	superintendent	of	his	apartment	found	him

dead	in	his	room	with	a	note	left	on	a	desk.	It	was	written	on	three	pages	of	a	notebook	of	the	type
he	had	been	using	for	his	scholastic	work;	its	first	paragraph	read	like	this:



‘Until	 yesterday,	 I	 had	 no	 definite	 intention	 of	 killing	myself.	 But	more	 than	 a	 few	must	 have
noticed	that	lately	I	have	been	tired	both	physically	and	mentally.	As	to	the	cause	of	my	suicide,	I
don’t	quite	understand	 it	myself,	but	 it	 is	not	 the	result	of	a	particular	 incident,	nor	of	a	specific
matter.	Merely	may	I	say,	I	am	in	the	frame	of	mind	that	I	lost	confidence	in	my	future.	There	may
be	someone	to	whom	my	suicide	will	be	troubling	or	a	blow	to	a	certain	degree.	I	sincerely	hope
that	this	incident	will	cast	no	dark	shadow	over	the	future	of	that	person.	At	any	rate,	I	cannot	deny
that	this	is	a	kind	of	betrayal,	but	please	excuse	it	as	my	last	act	in	my	own	way,	as	I	have	been
doing	my	own	way	all	my	life.’

He	went	on	to	describe,	quite	methodically,	his	wish	of	how	his	belongings	should	be	disposed	of,
and	which	books	and	records	were	the	ones	he	had	borrowed	from	the	library	or	from	his	friends,
and	so	on.	Specifically	he	says:	‘I	would	like	to	leave	the	records	and	the	player	to	Misako	Suzuki
provided	she	will	not	be	upset	by	me	leaving	them	to	her’.	Also	he	explains	how	far	he	reached	in
the	undergraduate	courses	on	calculus	and	linear	algebra	he	was	teaching,	and	concludes	the	note
with	an	apology	to	his	colleagues	for	the	inconveniences	this	act	could	cause.
Thus	one	of	the	most	brilliant	and	pioneering	minds	of	the	time	ended	his	life	by	his	own	will.

He	had	attained	the	age	of	thirty-one	only	five	days	earlier.

A	 few	 weeks	 after	 the	 suicide,	 tragedy	 struck	 a	 second	 time.	 His	 fiancée,
Misako	Suzuki,	also	took	her	own	life.	She	reportedly	left	a	note	which	read:
‘We	promised	each	other	that	no	matter	where	we	went,	we	would	never	be
separated.	Now	that	he	is	gone,	I	must	go	too	in	order	to	join	him.’

Philosophy	of	Goodness

During	 his	 short	 career	 Taniyama	 contributed	 many	 radical	 ideas	 to
mathematics.	 The	 questions	 he	 handed	 out	 at	 the	 symposium	 contained	 his
greatest	insight,	but	it	was	so	ahead	of	its	time	that	he	would	never	live	to	see
its	enormous	influence	on	number	theory.	His	intellectual	creativity	was	to	be
sadly	 missed,	 along	 with	 his	 guiding	 role	 within	 the	 community	 of	 young
Japanese	 scientists.	 Shimura	 clearly	 remembers	 Taniyama’s	 influence:	 ‘He
was	always	kind	to	his	colleagues,	especially	to	his	juniors,	and	he	genuinely
cared	 about	 their	welfare.	He	was	 the	moral	 support	 of	many	of	 those	who
came	 into	 mathematical	 contact	 with	 him,	 including	 of	 course	 myself.
Probably	 he	was	 never	 concious	 of	 this	 role	 he	was	 playing.	But	 I	 feel	 his
noble	 generosity	 in	 this	 respect	 even	more	 strongly	 now	 than	when	he	was
alive.	And	yet	nobody	was	able	to	give	him	any	support	when	he	desperately
needed	it.	Reflecting	on	this,	I	am	overwhelmed	by	the	bitterest	grief.’



Following	 Taniyama’s	 death,	 Shimura	 concentrated	 all	 his	 efforts	 on
understanding	 the	exact	 relationship	between	elliptic	equations	and	modular
forms.	As	the	years	passed	he	struggled	to	gather	more	evidence	and	one	or
two	pieces	of	 logic	 to	support	 the	 theory.	Gradually	he	became	 increasingly
convinced	 that	 every	 single	 elliptic	 equation	 must	 be	 related	 to	 a	 modular
form.	 Other	 mathematicians	 were	 still	 dubious	 and	 Shimura	 recalls	 a
conversation	with	an	eminent	colleague.	The	professor	 inquired,	‘I	hear	 that
you	propose	that	some	elliptic	equations	can	be	linked	to	modular	forms.’
‘No,	 you	 don’t	 understand,’	 replied	 Shimura.	 ‘It’s	 not	 just	 some	 elliptic

equations,	it’s	every	elliptic	equation!’
Shimura	could	not	prove	that	this	was	the	case	but	every	time	he	tested	the

hypothesis	it	seemed	to	be	true,	and	in	any	case	it	all	seemed	to	fit	in	with	his
broad	 mathematical	 philosophy.	 ‘I	 have	 this	 philosophy	 of	 goodness.
Mathematics	should	contain	goodness.	So	in	the	case	of	the	elliptic	equation,
one	might	 call	 the	 equation	good	 if	 it	 is	parametrised	by	a	modular	 form.	 I
expect	all	elliptic	equations	to	be	good.	It’s	a	rather	crude	philosophy	but	one
can	 always	 take	 it	 as	 a	 starting	 point.	 Then,	 of	 course,	 I	 had	 to	 develop
various	 technical	 reasons	 for	 the	 conjecture.	 I	might	 say	 that	 the	 conjecture
stemmed	 from	 that	 philosophy	 of	 goodness.	 Most	 mathematicians	 do
mathematics	from	an	aesthetic	point	of	view	and	that	philosophy	of	goodness
comes	from	my	aesthetic	viewpoint.’
Eventually	Shimura’s	accumulation	of	evidence	meant	that	his	theory	about

elliptic	equations	and	modular	forms	became	more	widely	accepted.	He	could
not	prove	to	the	rest	of	the	world	that	it	was	true,	but	at	least	it	was	now	more
than	mere	wishful	thinking.	There	was	enough	evidence	for	it	to	be	worthy	of
the	 title	 of	 conjecture.	 Initially	 it	was	 referred	 to	 as	 the	Taniyama–Shimura
conjecture	 in	 recognition	of	 the	man	who	 inspired	 it	 and	his	 colleague	who
went	on	to	develop	it	fully.
In	 due	 course	 André	 Weil,	 one	 of	 the	 godfathers	 of	 twentieth-century

number	theory,	was	to	adopt	the	conjecture	and	publicise	it	in	the	West.	Weil
investigated	 the	 idea	of	Shimura	 and	Taniyama,	 and	 found	 even	more	 solid
evidence	 in	favour	of	 it.	As	a	result,	 the	hypothesis	was	often	referred	 to	as
the	 Taniyama–Shimura–Weil	 conjecture,	 sometimes	 as	 the	 Taniyama–Weil
conjecture	 and	 occasionally	 as	 the	Weil	 conjecture.	 In	 fact	 there	 has	 been
much	debate	and	controversy	over	the	official	naming	of	the	conjecture.	For
those	 of	 you	 interested	 in	 combinatorics	 there	 are	 15	 possible	 permutations
given	 the	 three	 names	 involved,	 and	 it	 is	 quite	 probable	 that	 every	 one	 of
those	combinations	has	appeared	in	print	over	the	years.	However,	I	will	refer
to	the	conjecture	by	its	original	title,	the	Taniyama–Shimura	conjecture.
Professor	John	Coates,	who	guided	Andrew	Wiles	when	he	was	a	student,



was	 himself	 a	 student	 when	 the	 Taniyama–Shimura	 conjecture	 became	 a
talking	point	 in	 the	West.	 ‘I	began	 research	 in	1966	when	 the	conjecture	of
Taniyama	 and	 Shimura	 was	 sweeping	 through	 the	 world.	 Everyone	 was
amazed	 and	 began	 to	 look	 seriously	 at	 the	 issue	 of	 whether	 all	 elliptic
equations	could	be	modular.	This	was	a	tremendously	exciting	time;	the	only
problem,	of	course,	was	that	it	seemed	very	hard	to	make	progress.	I	think	it’s
fair	 to	 say	 that	 beautiful	 though	 this	 idea	 was	 it	 seemed	 very	 difficult	 to
actually	 prove,	 and	 that’s	 what	 we’re	 primarily	 interested	 in	 as
mathematicians.’
During	 the	 late	 sixties	 hoards	 of	 mathematicians	 repeatedly	 tested	 the

Taniyama–Shimura	 conjecture.	 Starting	with	 an	 elliptic	 equation	 and	 its	E-
series	 they	would	 search	 for	 a	modular	 form	with	 an	 identical	M-series.	 In
every	single	case	the	elliptic	equation	did	indeed	have	an	associated	modular
form.	Although	 this	was	good	evidence	 in	 favour	of	 the	Taniyama–Shimura
conjecture,	it	was	by	no	means	a	proof.	Mathematicians	suspected	that	it	was
true,	but	until	somebody	could	find	a	logical	proof	it	would	remain	merely	a
conjecture.
Barry	Mazur,	 a	professor	at	Harvard	University,	witnessed	 the	 rise	of	 the

Taniyama–Shimura	conjecture.	‘It	was	a	wonderful	conjecture	–	the	surmise
that	every	elliptic	equation	is	associated	with	a	modular	form	–	but	to	begin
with	 it	 was	 ignored	 because	 it	 was	 so	 ahead	 of	 its	 time.	When	 it	 was	 first
proposed	it	was	not	taken	up	because	it	was	so	astounding.	On	the	one	hand
you	 have	 the	 elliptic	world,	 and	 on	 the	 other	 you	 have	 the	modular	world.
Both	 these	 branches	 of	 mathematics	 had	 been	 studied	 intensively	 but
separately.	 Mathematicians	 studying	 elliptic	 equations	 might	 not	 be	 well
versed	 in	 things	modular,	and	conversely.	Then	along	comes	 the	Taniyama–
Shimura	conjecture	which	is	the	grand	surmise	that	there’s	a	bridge	between
these	two	completely	different	worlds.	Mathematicians	love	to	build	bridges.’
The	value	of	mathematical	bridges	is	enormous.	They	enable	communities

of	mathematicians	who	have	been	living	on	separate	islands	to	exchange	ideas
and	 explore	 each	 other’s	 creations.	 Mathematics	 consists	 of	 islands	 of
knowledge	in	a	sea	of	ignorance.	For	example,	there	is	the	island	occupied	by
geometers	 who	 study	 shape	 and	 form,	 and	 then	 there	 is	 the	 island	 of
probability	where	mathematicians	discuss	risk	and	chance.	There	are	dozens
of	such	islands,	each	one	with	its	own	unique	language,	incomprehensible	to
the	inhabitants	of	other	islands.	The	language	of	geometry	is	quite	different	to
the	language	of	probability,	and	the	slang	of	calculus	is	meaningless	to	those
who	speak	only	statistics.
The	great	potential	of	the	Taniyama–Shimura	conjecture	was	that	it	would

connect	two	islands	and	allow	them	to	speak	to	each	other	for	the	first	time.



Barry	 Mazur	 thinks	 of	 the	 Taniyama–Shimura	 conjecture	 as	 a	 translating
device	 similar	 to	 the	 Rosetta	 stone,	 which	 contained	 Egyptian	 demotic,
ancient	Greek	 and	 hieroglyphics.	 Because	 demotic	 and	Greek	were	 already
understood,	 archaeologists	 could	 decipher	 hieroglyphics	 for	 the	 first	 time.
‘It’s	as	if	you	know	one	language	and	this	Rosetta	stone	is	going	to	give	you
an	 intense	 understanding	 of	 the	 other	 language,’	 says	 Mazur.	 ‘But	 the
Taniyama–Shimura	 conjecture	 is	 a	 Rosetta	 stone	 with	 a	 certain	 magical
power.	The	conjecture	has	 the	very	pleasant	feature	 that	simple	 intuitions	 in
the	 modular	 world	 translate	 into	 deep	 truths	 in	 the	 elliptic	 world,	 and
conversely.	What’s	more,	very	profound	problems	in	the	elliptic	world	can	get
solved	 sometimes	 by	 translating	 them	 using	 this	 Rosetta	 stone	 into	 the
modular	 world,	 and	 discovering	 that	 we	 have	 the	 insights	 and	 tools	 in	 the
modular	world	to	 treat	 the	translated	problem.	Back	in	 the	elliptic	world	we
would	have	been	at	a	loss.’
If	 the	 Taniyama–Shimura	 conjecture	 was	 true	 it	 would	 enable

mathematicians	to	tackle	elliptic	problems	which	had	remained	unsolved	for
centuries	by	approaching	them	through	the	modular	world.	The	hope	was	that
the	 fields	 of	 elliptic	 equations	 and	 modular	 forms	 could	 be	 unified.	 The
conjecture	also	inspired	the	hope	that	links	might	exist	between	various	other
mathematical	subjects.
During	 the	 1960s	Robert	Langlands,	 at	 the	 Institute	 for	Advanced	Study,

Princeton,	was	 struck	 by	 the	 potency	 of	 the	 Taniyama–Shimura	 conjecture.
Even	 though	 the	conjecture	had	not	been	proved,	Langlands	believed	 that	 it
was	 just	 one	 element	 of	 a	 much	 grander	 scheme	 of	 unification.	 He	 was
confident	that	there	were	links	between	all	the	main	mathematical	topics	and
began	 to	 look	 for	 these	 unifications.	Within	 a	 few	 years	 a	 number	 of	 links
began	 to	emerge.	All	 these	other	unification	conjectures	were	much	weaker
and	more	 speculative	 than	Taniyama–Shimura,	 but	 they	 formed	 an	 intricate
network	 of	 hypothetical	 connections	 between	 many	 areas	 of	 mathematics.
Langlands’s	dream	was	 to	see	each	of	 these	conjectures	proved	one	by	one,
leading	to	a	grand	unified	mathematics.
Langlands	 discussed	 his	 plan	 for	 the	 future	 and	 tried	 to	 persuade	 other

mathematicians	 to	 take	 part	 in	 what	 became	 known	 as	 the	 Langlands
programme,	 a	 concerted	 effort	 to	 prove	 his	 myriad	 of	 conjectures.	 There
seemed	to	be	no	obvious	way	to	prove	such	speculative	links,	but	if	the	dream
could	be	made	a	 reality	 then	 the	 reward	would	be	enormous.	Any	 insoluble
problem	in	one	area	of	mathematics	could	be	transformed	into	an	analogous
problem	in	another	area,	where	a	whole	new	arsenal	of	 techniques	could	be
brought	 to	 bear	 on	 it.	 If	 a	 solution	was	 still	 elusive,	 the	 problem	 could	 be
transformed	 and	 transported	 to	 yet	 another	 area	 of	mathematics,	 and	 so	 on,



until	 it	 was	 solved.	 One	 day,	 according	 to	 the	 Langlands	 programme,
mathematicians	 would	 be	 able	 to	 solve	 their	 most	 esoteric	 and	 intractable
problems	by	shuffling	them	around	the	mathematical	landscape.
There	 were	 also	 important	 implications	 for	 the	 applied	 sciences	 and

engineering.	 Whether	 it	 is	 modelling	 the	 interactions	 between	 colliding
quarks	 or	 discovering	 the	 most	 efficient	 way	 to	 organise	 a
telecommunications	 network,	 often	 the	 key	 to	 the	 problem	 is	 performing	 a
mathematical	 calculation.	 In	 some	 areas	 of	 science	 and	 technology	 the
complexity	of	the	calculations	is	so	immense	that	progress	in	the	subject	has
been	 severely	 hindered.	 If	 only	 mathematicians	 could	 prove	 the	 linking
conjectures	 of	 the	Langlands	 programme,	 then	 there	would	 be	 short	 cuts	 to
solving	real-world	problems,	as	well	as	abstract	ones.
By	 the	 1970s	 the	 Langlands	 programme	 had	 become	 a	 blueprint	 for	 the

future	 of	 mathematics,	 but	 this	 route	 to	 a	 problem-solver’s	 paradise	 was
blocked	by	the	simple	fact	that	nobody	had	any	real	idea	how	to	prove	any	of
Langlands’s	conjectures.	The	strongest	conjecture	within	the	programme	was
still	 Taniyama–Shimura,	 but	 even	 this	 seemed	 out	 of	 reach.	A	 proof	 of	 the
Taniyama–Shimura	 conjecture	 would	 be	 the	 first	 step	 in	 the	 Langlands
programme,	and	as	 such	 it	had	become	one	of	 the	biggest	prizes	 in	modern
number	theory
Despite	 its	 status	as	an	unproven	conjecture,	Taniyama–Shimura	was	still

mentioned	 in	 hundreds	 of	 mathematical	 research	 papers	 speculating	 about
what	would	happen	if	it	could	be	proved.	The	papers	would	begin	by	clearly
stating	 the	 caveat	 Assuming	 that	 the	 Taniyama–Shimura	 conjecture	 is
true	…’,	and	then	they	would	continue	to	outline	a	solution	for	some	unsolved
problem.	 Of	 course,	 these	 results	 could	 themselves	 only	 be	 hypothetical,
because	 they	 relied	 on	 the	 Taniyama–Shimura	 conjecture	 being	 true.	 These
new	 hypothetical	 results	 were	 in	 turn	 incorporated	 into	 other	 results	 until
there	 existed	 a	 plethora	 of	 mathematics	 which	 relied	 on	 the	 truth	 of	 the
Taniyama–Shimura	 conjecture.	 This	 one	 conjecture	 was	 a	 foundation	 for	 a
whole	new	architecture	of	mathematics,	but	until	it	could	be	proved	the	whole
structure	was	vulnerable.
At	 the	 time,	 Andrew	 Wiles	 was	 a	 young	 researcher	 at	 Cambridge

University,	 and	 he	 recalls	 the	 trepidation	 that	 plagued	 the	 mathematics
community	 in	 the	 1970s:	 ‘We	 built	 more	 and	 more	 conjectures	 which
stretched	further	and	further	into	the	future,	but	they	would	all	be	ridiculous	if
the	 Taniyama–Shimura	 conjecture	 was	 not	 true.	 So	 we	 had	 to	 prove
Taniyama–Shimura	to	show	that	this	whole	design	we	had	hopefully	mapped
out	for	the	future	was	correct.’
Mathematicians	 had	 constructed	 a	 fragile	 house	 of	 cards.	 They	 dreamed



that	 one	 day	 someone	 would	 give	 their	 architecture	 the	 solid	 foundation	 it
needed.	They	also	had	to	live	with	the	nightmare	that	one	day	someone	might
prove	that	Taniyama	and	Shimura	were	in	fact	wrong,	causing	two	decades’
worth	of	research	to	crash	to	the	ground.

The	Missing	Link

During	the	autumn	of	1984	a	select	group	of	number	theorists	gathered	for	a
symposium	 in	Oberwolfach,	 a	 small	 town	 in	 the	 heart	 of	Germany’s	Black
Forest.	They	had	been	brought	 together	 to	discuss	various	breakthroughs	 in
the	 study	 of	 elliptic	 equations,	 and	 naturally	 some	 of	 the	 speakers	 would
occasionally	 report	any	minor	progress	 that	 they	had	made	 towards	proving
the	 Taniyama–Shimura	 conjecture.	 One	 of	 the	 speakers,	 Gerhard	 Frey,	 a
mathematician	from	Saarbrücken,	could	not	offer	any	new	ideas	as	to	how	to
attack	 the	 conjecture,	 but	 he	 did	make	 the	 remarkable	 claim	 that	 if	 anyone
could	 prove	 the	 Taniyama–Shimura	 conjecture	 then	 they	 would	 also
immediately	prove	Fermat’s	Last	Theorem.
When	Frey	got	up	to	speak	he	began	by	writing	down	Fermat’s	equation:

Fermat’s	 Last	 Theorem	 claims	 that	 there	 are	 no	whole	 number	 solutions	 to
this	equation,	but	Frey	explored	what	would	happen	if	the	Last	Theorem	were
false,	 i.e.	 that	 there	 is	 at	 least	 one	 solution.	 Frey	 had	 no	 idea	 what	 his
hypothetical,	and	heretical,	solution	might	be	and	so	he	labelled	the	unknown
numbers	with	the	letters	A,	B	and	C:

Frey	 then	 proceeded	 to	 ‘rearrange’	 the	 equation.	 This	 is	 a	 rigorous
mathematical	 procedure	 which	 changes	 the	 appearance	 of	 the	 equation
without	altering	its	integrity.	By	a	deft	series	of	complicated	manoeuvres	Frey
fashioned	Fermat’s	original	equation,	with	the	hypothetical	solution,	into

Although	this	rearrangement	seems	very	different	from	the	original	equation,
it	is	a	direct	consequence	of	the	hypothetical	solution.	That	is	to	say	if,	and	it
is	 a	 big	 ‘if,	 there	 is	 a	 solution	 to	 Fermat’s	 equation	 and	 Fermat’s	 Last
Theorem	 is	 false,	 then	 this	 rearranged	 equation	 must	 also	 exist.	 Initially



Frey’s	audience	was	not	particularly	impressed	by	his	rearrangement,	but	then
he	pointed	out	that	this	new	equation	was	in	fact	an	elliptic	equation,	albeit	a
rather	convoluted	and	exotic	one.	Elliptic	equations	have	the	form

but	if	we	let

then	it	is	easier	to	appreciate	the	elliptical	nature	of	Frey’s	equation.
By	 turning	 Fermat’s	 equation	 into	 an	 elliptic	 equation,	 Frey	 had	 linked

Fermat’s	 Last	 Theorem	 to	 the	 Taniyama–Shimura	 conjecture.	 Frey	 then
pointed	out	to	his	audience	that	his	elliptic	equation,	created	from	the	solution
to	the	Fermat	equation,	is	truly	bizarre.	In	fact,	Frey	claimed	that	his	elliptic
equation	 is	 so	 weird	 that	 the	 repercussions	 of	 its	 existence	 would	 be
devastating	for	the	Taniyama–Shimura	conjecture.
Remember	 that	 Frey’s	 elliptic	 equation	 is	 only	 a	 phantom	 equation.	 Its

existence	 is	 conditional	 on	 that	 fact	 that	 Fermat’s	 Last	 Theorem	 is	 false.
However,	 if	 Frey’s	 elliptic	 equation	 does	 exist,	 then	 it	 is	 so	 strange	 that	 it
would	be	 seemingly	 impossible	 for	 it	 ever	 to	be	 related	 to	 a	modular	 form.
But	the	Taniyama–Shimura	conjecture	claims	that	every	elliptic	equation	must
be	 related	 to	 a	 modular	 form.	 Therefore	 the	 existence	 of	 Frey’s	 elliptic
equation	defies	the	Taniyama–Shimura	conjecture.
In	other	words,	Frey’s	argument	was	as	follows:

(1)	 If	 (and	 only	 if)	 Fermat’s	 Last	 Theorem	 is	 wrong,	 then	 Frey’s	 elliptic
equation	exists.
(2)	Frey’s	elliptic	equation	is	so	weird	that	it	can	never	be	modular.
(3)	 The	 Taniyama–Shimura	 conjecture	 claims	 that	 every	 elliptic	 equation
must	be	modular.
(4)	Therefore	the	Taniyama–Shimura	conjecture	must	be	false!

Alternatively,	and	more	importantly,	Frey	could	run	his	argument	backwards:

(1)	If	the	Taniyama–Shimura	conjecture	can	be	proved	to	be	true,	then	every
elliptic	equation	must	be	modular.
(2)	If	every	elliptic	equation	must	be	modular,	then	the	Frey	elliptic	equation
is	forbidden	to	exist.
(3)	If	the	Frey	elliptic	equation	does	not	exist,	then	there	can	be	no	solutions



to	Fermat’s	equation.
(4)	Therefore	Fermat’s	Last	Theorem	is	true!

Gerhard	Frey	had	come	to	the	dramatic	conclusion	that	the	truth	of	Fermat’s
Last	Theorem	would	be	an	immediate	consequence	of	the	Taniyama–Shimura
conjecture	being	proved.	Frey	claimed	that	if	mathematicians	could	prove	the
Taniyama–Shimura	conjecture	then	they	would	automatically	prove	Fermat’s
Last	 Theorem.	 For	 the	 first	 time	 in	 a	 hundred	 years	 the	 world’s	 hardest
mathematical	 problem	 looked	 vulnerable.	 According	 to	 Frey,	 proving	 the
Taniyama–Shimura	conjecture	was	 the	only	hurdle	 to	proving	Fermat’s	Last
Theorem.
Although	the	audience	was	impressed	by	Frey’s	brilliant	insight,	they	were

also	 struck	 by	 an	 elementary	 blunder	 in	 his	 logic.	 Almost	 everyone	 in	 the
auditorium,	except	Frey	himself,	had	spotted	it.	The	mistake	did	not	appear	to
be	 serious:	 nonetheless	 as	 it	 stood	 Frey’s	 work	 was	 incomplete.	 Whoever
could	 correct	 the	 error	 first	 would	 take	 the	 credit	 for	 linking	 Fermat	 and
Taniyama–Shimura.
Frey’s	 audience	 dashed	 out	 of	 the	 lecture	 theatre	 and	 headed	 for	 the

photocopying	 room.	 Often	 the	 importance	 of	 a	 talk	 can	 be	 gauged	 by	 the
length	of	the	queue	waiting	to	run	off	copies	of	the	lecture.	Once	they	had	a
complete	 outline	 of	 Frey’s	 ideas,	 they	 returned	 to	 their	 respective	 institutes
and	began	to	try	and	fill	in	the	gap.
Frey’s	 argument	 depended	 on	 the	 fact	 that	 his	 elliptic	 equation	 derived

from	Fermat’s	equation	was	so	weird	that	it	was	not	modular.	His	work	was
incomplete	 because	 he	 had	 not	 quite	 demonstrated	 that	 his	 elliptic	 equation
was	 sufficiently	 weird.	 Only	 when	 somebody	 could	 prove	 the	 absolute
weirdness	of	Frey’s	elliptic	equation	would	a	proof	of	the	Taniyama–Shimura
conjecture	then	imply	a	proof	of	Fermat’s	Last	Theorem.
Initially	 mathematicians	 believed	 that	 proving	 the	 weirdness	 of	 Frey’s

elliptic	 equation	 would	 be	 a	 fairly	 routine	 process.	 At	 first	 sight	 Frey’s
mistake	 seemed	 to	 have	 been	 elementary	 and	 everyone	 who	 had	 been	 at
Oberwolfach	assumed	that	it	was	going	to	be	a	race	to	see	who	could	shuffle
the	algebra	most	quickly.	The	expectation	was	that	somebody	would	send	out
an	e-mail	within	a	matter	of	days	describing	how	they	had	established	the	true
weirdness	of	Frey’s	elliptic	equation.
A	week	passed	and	there	was	no	such	e-mail.	Months	passed	and	what	was

supposed	 to	 be	 a	 mathematical	 mad	 dash	 was	 turning	 into	 a	 marathon.	 It
seemed	that	Fermat	was	still	teasing	and	tormenting	his	descendants.	Frey	had
outlined	 a	 tantalising	 strategy	 for	 proving	Fermat’s	Last	Theorem,	but	 even
the	 first	 elementary	 step,	 proving	 that	 Frey’s	 hypothetical	 elliptic	 equation



was	not	modular,	was	baffling	mathematicians	around	the	globe.
To	 prove	 that	 an	 elliptic	 equation	 is	 not	 modular,	 mathematicians	 were

looking	 for	 invariants	 similar	 to	 those	 described	 in	 Chapter	 4.	 The	 knot
invariant	 showed	 that	 one	 knot	 could	 not	 be	 transformed	 into	 another,	 and
Loyd’s	 puzzle	 invariant	 showed	 that	 his	 14–15	 puzzle	 could	 not	 be
transformed	into	the	correct	arrangement.	If	number	theorists	could	discover
an	appropriate	 invariant	 to	describe	Frey’s	elliptic	equation,	 then	 they	could
prove	that,	no	matter	what	was	done	to	it,	it	could	never	be	transformed	into	a
modular	form.
One	 of	 those	 toiling	 to	 prove	 and	 complete	 the	 connection	 between	 the

Taniyama–Shimura	conjecture	and	Fermat’s	Last	Theorem	was	Ken	Ribet,	a
professor	 at	 the	 University	 of	 California	 at	 Berkeley.	 Since	 the	 lecture	 at
Oberwolfach,	 Ribet	 had	 become	 obsessed	 with	 trying	 to	 prove	 that	 Frey’s
elliptic	equation	was	too	weird	to	be	modular.	After	eighteen	months	of	effort
he,	along	with	everybody	else,	was	getting	nowhere.	Then,	in	the	summer	of
1986,	 Ribet’s	 colleague	 Professor	 Barry	 Mazur	 was	 visiting	 Berkeley	 to
attend	the	International	Congress	of	Mathematicians.	The	two	friends	met	up
for	 a	 cappuccino	at	 the	Café	Strada	 and	began	 sharing	bad	 luck	 stories	 and
grumbling	about	the	state	of	mathematics.
Eventually	they	started	discussing	the	latest	news	on	the	various	attempts	to

prove	the	weirdness	of	Frey’s	elliptic	equation,	and	Ribet	began	explaining	a
tentative	strategy	which	he	had	been	exploring.	The	approach	seemed	vaguely
promising	but	he	could	only	prove	a	very	minor	part	of	 it.	 ‘I	sat	down	with
Barry	and	told	him	what	I	was	working	on.	I	mentioned	that	I’d	proved	a	very
special	case,	but	I	didn’t	know	what	to	do	next	to	generalise	it	to	get	the	full
strength	of	the	proof.’
Professor	Mazur	sipped	his	cappuccino	and	 listened	 to	Ribet’s	 idea.	Then

he	stopped	and	stared	at	Ken	in	disbelief.	‘But	don’t	you	see?	You’ve	already
done	it!	All	you	have	to	do	is	add	some	gamma-zero	of	(M)	structure	and	just
run	through	your	argument	and	it	works.	It	gives	you	everything	you	need.’
Ribet	 looked	 at	 Mazur,	 looked	 at	 his	 cappuccino,	 and	 looked	 back	 at

Mazur.	It	was	the	most	important	moment	of	Ribet’s	career	and	he	recalls	it	in
loving	detail.	 ‘I	said	you’re	absolutely	right	–	of	course	–	how	did	I	not	see
this?	I	was	completely	astonished	because	it	had	never	occurred	to	me	to	add
the	extra	gamma-zero	of	(M)	structure,	simple	as	it	sounds.’
It	 should	 be	 noted	 that,	 although	 adding	 gamma-zero	 of	 (M)	 structure

sounds	 simple	 to	 Ken	 Ribet,	 it	 is	 an	 esoteric	 step	 of	 logic	 which	 only	 a
handful	 of	 the	world’s	mathematicians	 could	 have	 concocted	 over	 a	 casual
cappuccino.
‘It	was	the	crucial	ingredient	that	I	had	been	missing	and	it	had	been	staring



me	 in	 the	 face.	 I	wandered	back	 to	my	apartment	on	a	cloud,	 thinking:	My
God	 is	 this	 really	 correct?	 I	was	 completely	 enthralled	 and	 I	 sat	 down	 and
started	 scribbling	 on	 a	 pad	 of	 paper.	 After	 an	 hour	 or	 two	 I’d	 written
everything	 out	 and	 verified	 that	 I	 knew	 the	 key	 steps	 and	 that	 it	 all	 fitted
together.	 I	 ran	 through	my	 argument	 and	 I	 said,	 yes,	 this	 absolutely	 has	 to
work.	 And	 there	 were	 of	 course	 thousands	 of	 mathematicians	 at	 the
International	Congress	and	I	sort	of	casually	mentioned	to	a	few	people	that
I’d	 proved	 that	 the	 Taniyama–Shimura	 conjecture	 implies	 Fermat’s	 Last
Theorem.	It	spread	like	wildfire	and	soon	large	groups	of	people	knew;	they
were	 running	 up	 to	 me	 asking,	 Is	 it	 really	 true	 you’ve	 proved	 that	 Frey’s
elliptic	equation	is	not	modular?	And	I	had	to	think	for	a	minute	and	all	of	a
sudden	I	said,	Yes,	I	have.’
Fermat’s	 Last	 Theorem	 was	 now	 inextricably	 linked	 to	 the	 Taniyama–

Shimura	conjecture.	 If	 somebody	could	prove	 that	 every	elliptic	 equation	 is
modular,	then	this	would	imply	that	Fermat’s	equation	had	no	solutions,	and
immediately	prove	Fermat’s	Last	Theorem.
For	 three	 and	half	 centuries	Fermat’s	Last	Theorem	had	been	 an	 isolated

problem,	 a	 curious	 and	 impossible	 riddle	on	 the	 edge	of	mathematics.	Now
Ken	Ribet,	 inspired	by	Gerhard	Frey,	had	brought	 it	 centre	 stage.	The	most
important	 problem	 from	 the	 seventeenth	 century	 was	 coupled	 to	 the	 most
significant	problem	of	the	twentieth	century.	A	puzzle	of	enormous	historical
and	emotional	importance	was	linked	to	a	conjecture	that	could	revolutionise
modern	 mathematics.	 In	 effect,	 mathematicians	 could	 now	 attack	 Fermat’s
Last	Theorem	by	adopting	a	strategy	of	proof	by	contradiction.	To	prove	that
the	Last	Theorem	is	 true,	mathematicians	would	begin	by	assuming	 it	 to	be
false.	 The	 implication	 of	 being	 false	 would	 be	 to	 make	 the	 Taniyama–
Shimura	 conjecture	 false.	 However,	 if	 Taniyama–Shimura	 could	 be	 proven
true,	then	this	would	be	incompatible	with	Fermat’s	Last	Theorem	being	false,
therefore	it,	too,	would	have	to	be	true.
Frey	 had	 clearly	 defined	 the	 task	 ahead.	 Mathematicians	 would

automatically	 prove	 Fermat’s	 Last	 Theorem	 if	 they	 could	 first	 prove	 the
Taniyama–Shimura	conjecture.
Initially	 there	 was	 renewed	 hope	 but	 then	 the	 reality	 of	 the	 situation

dawned.	 Mathematicians	 had	 been	 trying	 to	 prove	 Taniyama–Shimura	 for
thirty	years	 and	 they	had	 failed.	Why	 should	 they	make	any	progress	now?
The	 sceptics	 believed	 that	 what	 little	 hope	 there	 was	 of	 proving	 the
Taniyama–Shimura	 conjecture	 had	 now	 vanished.	 Their	 logic	 was	 that
anything	 that	 might	 lead	 to	 a	 solution	 of	 Fermat’s	 Last	 Theorem	must,	 by
definition,	be	impossible.
Even	Ken	Ribet,	who	had	made	the	crucial	breakthrough,	was	pessimistic:



‘I	was	one	of	 the	vast	majority	of	 people	who	believed	 that	 the	Taniyama–
Shimura	 conjecture	 was	 completely	 inaccessible.	 I	 didn’t	 bother	 to	 try	 and
prove	 it.	 I	 didn’t	 even	 think	 about	 trying	 to	 prove	 it.	 Andrew	 Wiles	 was
probably	one	of	the	few	people	on	earth	who	had	the	audacity	to	dream	that
you	can	actually	go	and	prove	this	conjecture.’



6
The	Secret	Calculation

An	 expert	 problem	 solver	 must	 be	 endowed	 with	 two	 incompatible	 qualities	 –	 a	 restless
imagination	and	a	patient	pertinacity.

Howard	W.	Eves

‘It	was	one	evening	at	the	end	of	the	summer	of	1986	when	I	was	sipping	iced
tea	at	the	house	of	a	friend.	Casually	in	the	middle	of	a	conversation	he	told
me	 that	 Ken	 Ribet	 had	 proved	 the	 link	 between	 Taniyama–Shimura	 and
Fermat’s	Last	Theorem.	I	was	electrified.	I	knew	that	moment	that	the	course
of	 my	 life	 was	 changing	 because	 this	 meant	 that	 to	 prove	 Fermat’s	 Last
Theorem	all	 I	 had	 to	 do	was	 to	 prove	 the	Taniyama–Shimura	 conjecture.	 It
meant	that	my	childhood	dream	was	now	a	respectable	thing	to	work	on.	I	just
knew	 that	 I	 could	 never	 let	 that	 go.	 I	 just	 knew	 that	 I	would	 go	 home	 and
work	on	the	Taniyama–Shimura	conjecture.’
Over	 two	 decades	 had	 passed	 since	 Andrew	 Wiles	 had	 discovered	 the

library	book	that	inspired	him	to	take	up	Fermat’s	challenge,	but	now,	for	the
first	time,	he	could	see	a	path	towards	achieving	his	childhood	dream.	Wiles
recalls	 how	 his	 attitude	 to	 Taniyama–Shimura	 changed	 overnight:	 ‘I
remembered	one	mathematician	who’d	written	about	the	Taniyama–Shimura
conjecture	and	cheekily	suggested	 it	as	an	exercise	for	 the	 interested	reader.
Well,	I	guess	now	I	was	interested!’
Since	 completing	 his	 Ph.D.	 with	 Professor	 John	 Coates	 at	 Cambridge,

Wiles	 had	 moved	 across	 the	 Atlantic	 to	 Princeton	 University	 where	 he
himself	 was	 now	 a	 professor.	 Thanks	 to	 Coates’s	 guidance	Wiles	 probably
knew	more	 about	 elliptic	 equations	 than	 anybody	 else	 in	 the	world,	 but	 he
was	 well	 aware	 that	 even	 with	 his	 enormous	 background	 knowledge	 and
mathematical	skills	the	task	ahead	was	immense.
Most	 other	 mathematicians,	 including	 John	 Coates,	 believed	 that

embarking	on	the	proof	was	a	futile	exercise:	‘I	myself	was	very	sceptical	that
the	beautiful	link	between	Fermat’s	Last	Theorem	and	the	Taniyama–Shimura
conjecture	would	actually	lead	to	anything,	because	I	must	confess	I	did	not
think	 that	 the	 Taniyama–Shimura	 conjecture	 was	 accessible	 to	 proof.
Beautiful	though	this	problem	was,	it	seemed	impossible	to	actually	prove.	I



must	confess	I	thought	I	probably	wouldn’t	see	it	proved	in	my	lifetime.’
Wiles	was	aware	that	the	odds	were	against	him,	but	even	if	he	ultimately

failed	 in	 proving	 Fermat’s	 Last	 Theorem	 he	 felt	 his	 efforts	 would	 not	 be
wasted:	 ‘Of	 course	 the	 Taniyama–Shimura	 conjecture	 had	 been	 open	 for
many	years.	No	one	had	had	any	idea	how	to	approach	it	but	at	 least	 it	was
mainstream	mathematics.	 I	 could	 try	 and	 prove	 results,	which,	 even	 if	 they
didn’t	get	the	whole	thing,	would	be	worthwhile	mathematics.	I	didn’t	feel	I’d
be	wasting	my	time.	So	the	romance	of	Fermat	which	had	held	me	all	my	life
was	now	combined	with	a	problem	that	was	professionally	acceptable.’

The	Attic	Recluse

At	the	turn	of	the	century	the	great	logician	David	Hilbert	was	asked	why	he
never	 attempted	 a	 proof	 of	 Fermat’s	 Last	 Theorem.	 He	 replied,	 ‘Before
beginning	I	should	have	to	put	in	three	years	of	intensive	study,	and	I	haven’t
that	much	time	to	squander	on	a	probable	failure.’	Wiles	realised	that	to	have
any	 hope	 of	 finding	 a	 proof	 he	 would	 first	 have	 to	 completely	 immerse
himself	in	the	problem,	but	unlike	Hilbert	he	was	prepared	to	take	the	risk.	He
read	 all	 the	most	 recent	 journals	 and	 then	 played	with	 the	 latest	 techniques
over	 and	over	 again	until	 they	became	 second	nature	 to	 him.	Gathering	 the
necessary	weapons	for	the	battle	ahead	would	require	Wiles	to	spend	the	next
eighteen	months	 familiarising	 himself	with	 every	 bit	 of	mathematics	which
had	 ever	 been	 applied	 to,	 or	 had	 been	 derived	 from,	 elliptic	 equations	 or
modular	forms.	This	was	a	comparatively	minor	investment,	bearing	in	mind
that	 he	 fully	 expected	 that	 any	 serious	 attempt	 on	 the	 proof	 could	 easily
require	ten	years	of	single-minded	effort.
Wiles	 abandoned	 any	 work	 which	 was	 not	 directly	 relevant	 to	 proving

Fermat’s	 Last	 Theorem	 and	 stopped	 attending	 the	 never-ending	 round	 of
conferences	 and	 colloquia.	 Because	 he	 still	 had	 responsibilities	 in	 the
Princeton	 Mathematics	 Department,	 Wiles	 continued	 to	 attend	 seminars,
lecture	 to	 undergraduates	 and	 give	 tutorials.	 Whenever	 possible	 he	 would
avoid	the	distractions	of	being	a	faculty	member	by	working	at	home	where
he	 could	 retreat	 into	 his	 attic	 study.	 Here	 he	 would	 attempt	 to	 expand	 and
extend	the	power	of	the	established	techniques,	hoping	to	develop	a	strategy
for	his	attack	on	the	Taniyama–Shimura	conjecture.
‘I	 used	 to	 come	 up	 to	my	 study,	 and	 start	 trying	 to	 find	 patterns.	 I	 tried

doing	calculations	which	explain	some	little	piece	of	mathematics.	I	 tried	to
fit	 it	 in	with	some	previous	broad	conceptual	understanding	of	some	part	of
mathematics	 that	would	clarify	 the	particular	problem	I	was	 thinking	about.



Sometimes	that	would	involve	going	and	looking	it	up	in	a	book	to	see	how
it’s	done	there.	Sometimes	it	was	a	question	of	modifying	things	a	bit,	doing	a
little	extra	 calculation.	And	 sometimes	 I	 realised	 that	 nothing	 that	 had	 ever
been	 done	 before	 was	 any	 use	 at	 all.	 Then	 I	 just	 had	 to	 find	 something
completely	new	–	it’s	a	mystery	where	that	comes	from.
‘Basically	it’s	just	a	matter	of	thinking.	Often	you	write	something	down	to

clarify	your	thoughts,	but	not	necessarily.	In	particular	when	you’ve	reached	a
real	impasse,	when	there’s	a	real	problem	that	you	want	to	overcome,	then	the
routine	kind	of	mathematical	thinking	is	of	no	use	to	you.	Leading	up	to	that
kind	of	 new	 idea	 there	 has	 to	 be	 a	 long	period	of	 tremendous	 focus	 on	 the
problem	without	any	distraction.	You	have	 to	 really	 think	about	nothing	but
that	problem	–	just	concentrate	on	it.	Then	you	stop.	Afterwards	there	seems
to	be	a	kind	of	period	of	relaxation	during	which	the	subconscious	appears	to
take	over	and	it’s	during	that	time	that	some	new	insight	comes.’
From	 the	moment	he	embarked	on	 the	proof,	Wiles	made	 the	 remarkable

decision	to	work	in	complete	isolation	and	secrecy.	Modern	mathematics	has
developed	a	culture	of	cooperation	and	collaboration,	and	so	Wiles’s	decision
appeared	 to	 hark	 back	 to	 a	 previous	 era.	 It	 was	 as	 if	 he	 was	 imitating	 the
approach	of	Fermat	himself,	the	most	famous	of	mathematical	hermits.	Wiles
explained	that	part	of	 the	reason	for	his	decision	to	work	in	secrecy	was	his
desire	 to	work	without	being	distracted:	 ‘I	 realised	 that	 anything	 to	do	with
Fermat’s	 Last	 Theorem	 generates	 too	much	 interest.	 You	 can’t	 really	 focus
yourself	for	years	unless	you	have	undivided	concentration,	which	too	many
spectators	would	have	destroyed.’
Another	 motivation	 for	 Wiles’s	 secrecy	 must	 have	 been	 his	 craving	 for

glory.	He	feared	 the	situation	arising	whereby	he	had	completed	 the	bulk	of
the	 proof	 but	was	 still	missing	 the	 final	 element	 of	 the	 calculation.	At	 this
point,	if	news	of	his	breakthroughs	were	to	leak	out,	there	would	be	nothing
stopping	 a	 rival	 mathematician	 building	 on	 Wiles’s	 work,	 completing	 the
proof	and	stealing	the	prize.
In	 the	 years	 to	 come	 Wiles	 was	 to	 make	 a	 series	 of	 extraordinary

discoveries,	 none	 of	which	would	 be	 discussed	 or	 published	 until	 his	 proof
was	 complete.	 Even	 close	 colleagues	 were	 oblivious	 to	 his	 research.	 John
Coates	can	recall	exchanges	with	Wiles	during	which	he	was	given	no	clues
as	 to	 what	 was	 going	 on:	 ‘I	 remember	 saying	 to	 him	 on	 a	 number	 of
occasions,	“It’s	all	very	well	 this	 link	to	Fermat’s	Last	Theorem	but	it’s	still
hopeless	to	try	and	prove	Taniyama–Shimura.”	I	think	he	just	smiled.’
Ken	 Ribet,	 who	 completed	 the	 link	 between	 Fermat	 and	 Taniyama–

Shimura,	was	also	completely	unaware	of	Wiles’s	clandestine	activities.	‘This
is	probably	the	only	case	I	know	where	someone	worked	for	such	a	long	time



without	divulging	what	he	was	doing,	without	 talking	about	 the	progress	he
was	 making.	 It’s	 just	 unprecedented	 in	 my	 experience.	 In	 our	 community
people	 have	 always	 shared	 their	 ideas.	 Mathematicians	 come	 together	 at
conferences,	they	visit	each	other	to	give	seminars,	they	send	e-mail	to	each
other,	they	talk	on	the	telephone,	they	ask	for	insights,	they	ask	for	feedback	–
mathematicians	are	always	in	communication.	When	you	talk	to	other	people
you	get	a	pat	on	the	back;	people	tell	you	that	what	you’ve	done	is	important,
they	give	you	 ideas.	 It’s	 sort	of	nourishing	and	 if	you	cut	yourself	off	 from
this,	then	you	are	doing	something	that’s	probably	psychologically	very	odd.’
In	order	not	to	arouse	suspicion	Wiles	devised	a	cunning	ploy	which	would

throw	 his	 colleagues	 off	 the	 scent.	 During	 the	 early	 1980s	 he	 had	 been
working	on	a	major	piece	of	research	on	a	particular	type	of	elliptic	equation,
which	he	was	about	to	publish	in	its	entirety,	until	the	discoveries	of	Ribet	and
Frey	made	him	change	his	mind.	Wiles	decided	to	publish	his	research	bit	by
bit,	 releasing	 another	 minor	 paper	 every	 six	 months	 or	 so.	 This	 apparent
productivity	would	convince	his	colleagues	that	he	was	still	continuing	with
his	usual	research.	For	as	long	as	he	could	maintain	this	charade,	Wiles	could
continue	 working	 on	 his	 true	 obsession	 without	 revealing	 any	 of	 his
breakthroughs.
The	only	person	who	was	aware	of	Wiles’s	secret	was	his	wife,	Nada.	They

married	soon	after	Wiles	began	working	on	the	proof,	and	as	the	calculation
progressed	he	confided	 in	her	 and	her	 alone.	 In	 the	years	 that	 followed,	his
family	would	be	his	only	distraction.	 ‘My	wife’s	only	known	me	while	I’ve
been	working	on	Fermat.	I	told	her	on	our	honeymoon,	just	a	few	days	after
we	got	married.	My	wife	had	heard	of	Fermat’s	Last	Theorem,	but	at	that	time
she	had	no	idea	of	the	romantic	significance	it	had	for	mathematicians,	that	it
had	been	such	a	thorn	in	our	flesh	for	so	many	years.’

Duelling	with	Infinity

In	order	to	prove	Fermat’s	Last	Theorem	Wiles	had	to	prove	the	Taniyama–
Shimura	 conjecture:	 every	 single	 elliptic	 equation	 can	 be	 correlated	 with	 a
modular	form.	Even	before	the	link	to	Fermat’s	Last	Theorem	mathematicians
had	tried	desperately	to	prove	the	conjecture,	but	every	attempt	had	ended	in
failure.	Wiles	was	acquainted	with	 the	failures	of	 the	past:	 ‘Ultimately	what
one	would	naïvely	have	tried	to	do,	and	what	people	certainly	did	try	to	do,
was	to	count	elliptic	equations	and	count	modular	forms,	and	show	that	there
are	the	same	number	of	each.	But	nobody	has	ever	found	any	simple	way	of
doing	that.	The	first	problem	is	that	there	are	an	infinite	number	of	each	and



you	can’t	count	an	infinite	number.	One	simply	doesn’t	have	a	way	of	doing
it.’
In	 order	 to	 find	 a	 solution,	Wiles	 adopted	 his	 usual	 approach	 to	 solving

difficult	 problems.	 ‘I	 sometimes	 write	 scribbles	 or	 doodles.	 They’re	 not
important	doodles,	just	subconscious	doodles.	I	never	use	a	computer.’	In	this
case,	as	with	many	problems	in	number	theory,	computers	would	be	of	no	use
whatsoever.	The	Taniyama–Shimura	conjecture	applied	to	an	infinite	number
of	equations	and,	although	a	computer	could	check	an	individual	case	in	a	few
seconds,	 it	 could	 never	 check	 all	 cases.	 Instead	 what	 was	 required	 was	 a
logical	 step-by-step	 argument	 which	 would	 effectively	 give	 a	 reason	 and
explain	 why	 every	 elliptic	 equation	 had	 to	 be	 modular.	 To	 find	 the	 proof
Wiles	relied	solely	on	a	piece	of	paper,	a	pencil	and	his	mind.	‘I	carried	this
thought	around	in	my	head	basically	the	whole	time.	I	would	wake	up	with	it
first	thing	in	the	morning,	I	would	be	thinking	about	it	all	day	and	I	would	be
thinking	about	it	when	I	went	to	sleep.	Without	distraction	I	would	have	the
same	thing	going	round	and	round	in	my	mind.’
After	 a	 year	 of	 contemplation	Wiles	 decided	 to	 adopt	 a	 general	 strategy

known	 as	 induction	 as	 the	 basis	 for	 his	 proof.	 Induction	 is	 an	 immensely
powerful	form	of	proof,	because	it	can	allow	a	mathematician	to	prove	that	a
statement	is	true	for	an	infinite	number	of	cases	by	only	proving	it	for	just	one
case.	 For	 example,	 imagine	 that	 a	 mathematician	 wants	 to	 prove	 that	 a
statement	is	true	for	every	counting	number	up	to	infinity.	The	first	step	is	to
prove	that	the	statement	is	true	for	the	number	1,	which	presumably	is	a	fairly
straightforward	task.	The	next	step	is	 to	show	that	 if	 the	statment	is	 true	for
the	number	1	 then	 it	must	be	 true	 for	 the	number	2,	and	 if	 it	 is	 true	 for	 the
number	2	then	it	must	be	true	for	the	number	3,	and	if	it	is	true	for	the	number
3	 then	 it	 must	 be	 true	 for	 the	 number	 4,	 and	 so	 on.	 More	 generally,	 the
mathematician	has	to	show	that	if	the	statement	is	true	for	any	number	n,	then
it	must	be	true	for	the	next	number	n	+	1.
Proof	by	induction	is	essentially	a	two	step	process:

(1)	Prove	that	the	statement	is	true	for	the	first	case.
(2)	Prove	that	if	the	statement	is	true	for	any	one	case,	then	it	must	be	true	for
the	next	case.

Another	way	to	think	of	proof	by	induction	is	to	imagine	the	infinite	number
of	 cases	 as	 an	 infinite	 line	 of	 dominoes.	 In	 order	 to	 prove	 every	 case	 it	 is
necessary	 to	 find	 a	 way	 of	 knocking	 down	 every	 one	 of	 the	 dominoes.
Knocking	them	down	one	by	one	would	take	an	infinite	amount	of	time	and
effort,	but	proof	by	induction	allows	mathematicians	to	knock	them	all	down



by	just	knocking	down	the	first	one.	If	 the	dominoes	are	carefully	arranged,
then	 knocking	 down	 the	 first	 domino	will	 knock	 down	 the	 second	 domino,
which	will	in	turn	knock	down	the	third	domino,	and	so	on	to	infinity.	Proof
by	induction	invokes	the	domino	effect.	This	form	of	mathematical	domino-
toppling	allows	an	infinite	number	of	cases	to	be	proved	by	just	proving	the
first	one.	Appendix	10	shows	how	proof	by	induction	can	be	used	to	prove	a
relatively	simple	mathematical	statement	about	all	numbers.
The	 challenge	 for	 Wiles	 was	 to	 construct	 an	 inductive	 argument	 which

showed	that	each	of	the	infinity	of	elliptic	equations	could	be	matched	to	each
of	 the	 infinity	of	modular	 forms.	Somehow	he	had	 to	break	 the	proof	down
into	an	infinite	number	of	individual	cases	and	then	prove	the	first	case.	Next,
he	had	to	demonstrate	that,	having	proved	the	first	case,	all	the	others	would
topple.	Eventually	he	discovered	the	first	step	to	his	inductive	proof	hidden	in
the	work	of	a	tragic	genius	from	nineteenth-century	France.
Evariste	Galois	was	born	 in	Bourg-la-Reine,	 a	 small	village	 just	 south	of

Paris,	on	25	October	1811,	just	twenty-two	years	after	the	French	Revolution.
Napoleon	Bonaparte	was	at	 the	height	of	his	powers,	but	 the	following	year
saw	 the	disastrous	Russian	 campaign,	 and	 in	 1814	he	was	driven	 into	 exile
and	 replaced	 by	 King	 Louis	 XVIII.	 In	 1815	 Napoleon	 escaped	 from	 Elba,
entered	Paris	and	reclaimed	power	but	within	a	hundred	days	he	was	defeated
at	 Waterloo	 and	 forced	 to	 abdicate	 once	 again	 in	 favour	 of	 Louis	 XVIII.
Galois,	like	Sophie	Germain,	grew	up	during	a	period	of	immense	upheaval,
but	 whereas	 Germain	 shut	 herself	 away	 from	 the	 turmoils	 of	 the	 French
Revolution	 and	 concentrated	 on	 mathematics,	 Galois	 repeatedly	 found
himself	 at	 the	centre	of	political	 controversy,	which	not	only	distracted	him
from	a	brilliant	academic	career,	but	also	led	to	his	untimely	death.
In	 addition	 to	 the	 general	 unrest	 which	 impinged	 on	 everybody’s	 life,

Galois’s	interest	in	politics	was	inspired	by	his	father,	Nicolas-Gabriel	Galois.
When	Evariste	was	just	four	years	old	his	father	was	elected	mayor	of	Bourg-
la-Reine.	 This	was	 during	Napoleon’s	 triumphant	 return	 to	 power,	 a	 period
when	his	father’s	strong	liberal	values	were	in	keeping	with	the	mood	of	the
nation.	Nicolas-Gabriel	Galois	was	 a	 cultured	 and	gracious	man	and	during
his	early	years	as	mayor	he	gained	respect	throughout	the	community,	so	even
when	 Louis	 XVIII	 returned	 to	 the	 throne	 he	 retained	 his	 elected	 position.
Outside	of	politics,	his	main	interest	seems	to	have	been	the	composition	of
witty	 rhymes,	 which	 he	 would	 read	 at	 town	meetings	 to	 the	 delight	 of	 his
constituents.	Many	years	later	this	charming	talent	for	epigrams	would	lead	to
his	downfall.
At	the	age	of	twelve	Evariste	Galois	attended	his	first	school,	the	Lycée	of

Louis-le-Grand,	 a	 prestigious	 but	 authoritarian	 institution.	To	begin	with	 he



did	not	 encounter	 any	courses	 in	mathematics	 and	his	 academic	 record	was
respectable	but	not	outstanding.	However,	one	event	occurred	during	his	first
term	which	would	influence	the	course	of	his	life.	The	Lycée	had	previously
been	 a	 Jesuit	 school	 and	 rumours	 began	 to	 circulate	 suggesting	 that	 it	 was
about	 to	be	 returned	 to	 the	authority	of	 the	priests.	During	 this	period	 there
was	 a	 continual	 struggle	 between	 republicans	 and	monarchists	 to	 sway	 the
balance	of	power	between	Louis	XVIII	and	the	people’s	representatives,	and
the	 increasing	 influence	 of	 the	 priests	 was	 seen	 as	 an	 indication	 of	 a	 shift
away	from	the	people	and	towards	the	King.	The	students	of	the	Lycée,	who
in	the	main	had	republican	sympathies,	planned	a	rebellion	but	the	director	of
the	school,	Monsieur	Berthod,	uncovered	 the	plot	and	 immediately	expelled
the	 dozen	 or	 so	 ringleaders.	 The	 following	 day	when	 Berthod	 demanded	 a
demonstration	of	allegiance	from	the	remaining	senior	scholars,	they	refused
to	 drink	 a	 toast	 to	 Louis	XVIII,	 whereupon	 another	 hundred	 students	were
expelled.	Galois	was	too	young	to	be	involved	in	the	failed	rebellion	and	so
remained	 at	 the	 Lycée.	 Nevertheless,	 watching	 his	 fellow	 students	 being
humiliated	in	this	way	only	served	to	inflame	his	republican	tendencies.
It	 was	 not	 until	 the	 age	 of	 sixteen	 that	 Galois	 enrolled	 in	 his	 first

mathematics	 class,	 a	 course	 which	 would,	 in	 the	 eyes	 of	 his	 teachers,
transform	him	from	a	conscientious	pupil	 into	an	unruly	student.	His	school
reports	show	that	he	neglected	all	his	other	subjects	and	concentrated	solely
on	his	new	found	passion:

This	 student	 works	 only	 in	 the	 highest	 realms	 of	 mathematics.	 The	 mathematical	 madness
dominates	this	boy.	I	think	it	would	be	best	for	him	if	his	parents	would	allow	him	to	study	nothing
but	 this.	 Otherwise	 he	 is	 wasting	 his	 time	 here	 and	 does	 nothing	 but	 torment	 his	 teachers	 and
overwhelm	himself	with	punishments.

Galois’s	desire	for	mathematics	soon	outstripped	the	capacity	of	his	 teacher,
and	so	he	learnt	directly	from	the	very	latest	books	written	by	the	masters	of
the	age.	He	readily	absorbed	the	most	complex	of	concepts,	and	by	the	time
he	was	 seventeen	 he	 published	 his	 first	 paper	 in	 the	Annales	 de	Gergonne.
The	 path	 ahead	 seemed	 clear	 for	 the	 prodigy,	 except	 that	 his	 own	 sheer
brilliance	was	 to	 provide	 the	 greatest	 obstacle	 to	 his	 progress.	Although	 he
obviously	 knew	 more	 than	 enough	 mathematics	 to	 pass	 the	 Lycée’s
examinations,	Galois’s	 solutions	were	 often	 so	 innovative	 and	 sophisticated
that	his	 examiners	 failed	 to	appreciate	 them.	To	make	matters	worse	Galois
would	perform	so	many	calculations	in	his	head	that	he	would	not	bother	to
outline	clearly	his	argument	on	paper,	leaving	the	inadequate	examiners	even
more	perplexed	and	frustrated.



The	young	genius	did	not	help	the	situation	by	having	a	quick	temper	and	a
rashness	which	did	not	endear	him	to	his	tutors	or	anybody	else	who	crossed
his	 path.	 When	 Galois	 applied	 to	 the	 Ecole	 Polytechnique,	 the	 most
prestigious	college	in	the	land,	his	abruptness	and	lack	of	explanation	in	the
oral	examination	meant	that	he	was	refused	admission.	Galois	was	desperate
to	attend	 the	Polytechnique,	not	 just	because	of	 its	 academic	excellence	but
also	because	of	its	reputation	for	being	a	centre	for	republican	activism.	One
year	later	he	reapplied	and	once	again	his	logical	leaps	in	the	oral	examination
only	 served	 to	 confuse	 his	 examiner,	Monsieur	 Dinet.	 Sensing	 that	 he	 was
about	to	be	failed	for	a	second	time	and	frustrated	that	his	brilliance	was	not
being	 recognised,	 Galois	 lost	 his	 temper	 and	 threw	 a	 blackboard	 rubber	 at
Dinet,	scoring	a	direct	hit.	Galois	was	never	to	return	to	the	hallowed	halls	of
the	Polytechnique.
Undaunted	 by	 the	 rejections,	 Galois	 remained	 confident	 of	 his

mathematical	 talent	 and	 continued	 his	 own	 private	 researches.	 His	 main
interest	concerned	finding	solutions	to	equations,	such	as	quadratic	equations.
Quadratic	equations	have	the	form	

The	challenge	is	to	find	the	values	of	x	for	which	the	quadratic	equation	holds
true.	 Rather	 than	 relying	 on	 trial	 and	 error	mathematicians	would	 prefer	 to
have	a	recipe	for	finding	solutions,	and	fortunately	such	a	recipe	exists:

Simply	by	substituting	the	values	for	a,	b	and	c	into	the	above	recipe	one	can
calculate	 the	 correct	 values	 for	 x.	 For	 instance,	 we	 can	 apply	 the	 recipe	 to
solve	the	following	equation:

By	putting	the	values	of	a,	b	and	c	into	the	recipe,	the	solution	turns	out	to	be
x	=	1	or	x	=	2.
The	quadratic	is	a	type	of	equation	within	a	much	larger	class	of	equations

known	as	polynomials.	A	more	complicated	 type	of	polynomial	 is	 the	cubic
equation:



The	 extra	 complication	 comes	 from	 the	 additional	 term	 x3.	 By	 adding	 one
more	 term	 x4,	 we	 get	 the	 next	 level	 of	 polynomial	 equation,	 known	 as	 the
quartic:

By	 the	 nineteenth	 century,	mathematicians	 also	 had	 recipes	which	 could	 be
used	to	find	solutions	to	the	cubic	and	the	quartic	equations,	but	there	was	no
known	method	for	finding	solutions	to	the	quintic	equation:

Galois	became	obsessed	with	 finding	a	 recipe	 for	 solving	quintic	equations,
one	 of	 the	 great	 challenges	 of	 the	 era,	 and	 by	 the	 age	 of	 seventeen	 he	 had
made	 sufficient	 progress	 to	 submit	 two	 research	 papers	 to	 the	Academy	 of
Sciences.	 The	 referee	 appointed	 to	 judge	 the	 papers	 was	 Augustin-Louis
Cauchy,	 who	 many	 years	 later	 would	 argue	 with	 Lamé	 over	 an	 ultimately
flawed	proof	of	Fermat’s	Last	Theorem.	Cauchy	was	highly	impressed	by	the
young	man’s	work	and	judged	it	worthy	of	being	entered	for	the	Academy’s
Grand	Prize	 in	Mathematics.	 In	order	 to	qualify	for	 the	competition	 the	 two
papers	 would	 have	 to	 be	 re-submitted	 in	 the	 form	 of	 a	 single	 memoir,	 so
Cauchy	returned	them	to	Galois	and	awaited	his	entry.
Having	 survived	 the	 criticisms	of	 his	 teachers	 and	 rejection	by	 the	Ecole

Polytechnique	Galois’s	genius	was	on	the	verge	of	being	recognised,	but	over
the	 course	 of	 the	 next	 three	 years	 a	 series	 of	 personal	 and	 professional
tragedies	 would	 destroy	 his	 ambitions.	 In	 July	 of	 1829	 a	 new	 Jesuit	 priest
arrived	in	the	village	of	Bourgla-Reine,	where	Galois’s	father	was	still	mayor.
The	priest	took	exception	to	the	mayor’s	republican	sympathies	and	began	a
campaign	to	oust	him	from	office	by	spreading	rumours	aimed	at	discrediting
him.	 In	 particular	 the	 scheming	 priest	 exploited	 Nicolas-Gabriel	 Galois’s
reputation	 for	 composing	clever	 rhymes.	He	wrote	 a	 series	of	vulgar	verses
ridiculing	 members	 of	 the	 community	 and	 signed	 them	 with	 the	 mayor’s
name.	The	elder	Galois	could	not	survive	 the	shame	and	the	embarrassment
which	 resulted	 and	 decided	 that	 the	 only	 honourable	 option	was	 to	 commit
suicide.
Evariste	Galois	returned	to	attend	his	father’s	funeral	and	saw	for	himself

the	divisions	that	the	priest	had	created	in	the	village.	As	the	coffin	was	being
lowered	into	the	grave,	a	scuffle	broke	out	between	the	Jesuit	priest,	who	was
conducting	 the	service,	and	supporters	of	 the	mayor,	who	realised	 that	 there
had	been	a	plot	to	undermine	him.	The	priest	suffered	a	gash	to	the	head,	the



scuffle	turned	into	a	riot,	and	the	coffin	was	left	to	drop	unceremoniously	into
its	grave.	Watching	the	French	establishment	humiliate	and	destroy	his	father
served	only	to	consolidate	Galois’s	fervent	support	for	the	republican	cause.
Upon	returning	to	Paris,	Galois	combined	his	research	papers	well	ahead	of

the	 competition	 deadline	 and	 submitted	 the	memoir	 to	 the	 secrerary	 of	 the
Academy,	 Joseph	 Fourier,	 who	 was	 supposed	 to	 pass	 it	 on	 to	 the	 judging
committee.	Galois’s	paper	did	not	offer	a	solution	to	the	quintic	problem	but	it
did	 offer	 a	 brilliant	 insight	 and	 many	 mathematicians,	 including	 Cauchy,
considered	that	it	was	a	likely	winner.	To	the	shock	of	Galois	and	his	friends,
not	 only	 did	 he	 fail	 to	 win	 the	 prize,	 but	 he	 had	 not	 even	 been	 officially
entered.	 Fourier	 had	 died	 a	 few	weeks	 prior	 to	 the	 judging	 and,	 although	 a
stack	of	competition	entries	was	passed	on	to	the	committee,	Galois’s	memoir
was	 not	 among	 them.	 The	 memoir	 was	 never	 found	 and	 the	 injustice	 was
recorded	by	a	French	journalist.

Last	year	before	March	1st,	Monsieur	Galois	gave	to	the	secretary	of	the	Institute	a	memoir	on	the
solution	of	numerical	equations.	This	memoir	should	have	been	entered	in	the	competition	for	the
Grand	 Prize	 in	 Mathematics.	 It	 deserved	 the	 prize,	 for	 it	 could	 resolve	 some	 difficulties	 that
Lagrange	had	failed	to	do.	Monsieur	Cauchy	had	conferred	the	highest	praise	on	the	author	about
this	 subject.	 And	 what	 happened?	 The	 memoir	 is	 lost	 and	 the	 prize	 is	 given	 without	 the
participation	of	the	young	savant.

Le	Globe,	1831

Galois	felt	 that	his	memoir	had	been	deliberately	lost	by	a	politically	biased
Academy,	a	belief	that	was	reinforced	a	year	later	when	the	Academy	rejected
his	next	manuscript,	 claiming	 that	 ‘his	argument	 is	neither	 sufficiently	clear
nor	 sufficiently	 developed	 to	 allow	 us	 to	 judge	 its	 rigour’.	He	 decided	 that
there	was	a	conspiracy	to	exclude	him	from	the	mathematical	community,	and
as	a	 result	he	neglected	his	 research	 in	 favour	of	 fighting	for	 the	republican
cause.	 By	 this	 time	 he	 was	 a	 student	 at	 the	 Ecole	 Normale	 Supérieure,	 a
slightly	 less	 prestigious	 college	 than	 the	Ecole	 Polytechnique.	At	 the	Ecole
Normale	Galois’s	notoriety	as	a	trouble-maker	was	overtaking	his	reputation
as	a	mathematician.	This	culminated	during	the	July	revolution	of	1830	when
Charles	 X	 fled	 France	 and	 the	 political	 factions	 fought	 for	 control	 in	 the
streets	of	Paris.	The	Ecole’s	director	Monsieur	Guigniault,	a	monarchist,	was
aware	 that	 the	 majority	 of	 his	 students	 were	 radical	 republicans	 and	 so
confined	them	to	their	dormitories	and	locked	the	gates	of	the	college.	Galois
was	being	prevented	from	fighting	alongside	his	brothers,	and	his	frustration
and	anger	were	compounded	when	the	republicans	were	eventually	defeated.
When	 the	 opportunity	 arose	 he	 published	 a	 scathing	 attack	 on	 the	 college



director,	accusing	him	of	cowardice.	Not	surprisingly,	Guigniault	expelled	the
insubordinate	student	and	Galois’s	formal	mathematical	career	was	at	an	end.
On	 4	December	 the	 thwarted	 genius	 attempted	 to	 become	 a	 professional

rebel	by	 joining	 the	Artillery	of	 the	National	Guard,	 a	 republican	branch	of
the	militia	otherwise	known	as	the	‘Friends	of	the	People’.	Before	the	end	of
the	month	 the	new	king	Louis-Phillipe,	anxious	 to	avoid	a	 further	 rebellion,
abolished	 the	Artillery	 of	 the	National	Guard,	 and	Galois	was	 left	 destitute
and	 homeless.	 The	 most	 brilliant	 young	 talent	 in	 all	 of	 Paris	 was	 being
persecuted	 at	 every	 turn	 and	 some	 of	 his	 former	 mathematical	 colleagues
were	becoming	 increasingly	worried	about	his	plight.	Sophie	Germain,	who
was	by	this	time	the	shy	elder	stateswoman	of	French	mathematics,	expressed
her	concerns	to	friend	of	the	family	Count	Libri-Carrucci:

Decidedly	 there	 is	 a	 misfortune	 concerning	 all	 that	 touches	 upon	 mathematics.	 The	 death	 of
Monsieur	Fourier	has	been	the	final	blow	for	this	student	Galois	who,	in	spite	of	his	impertinence,
showed	signs	of	a	clever	disposition.	He	has	been	expelled	from	the	Ecole	Normale,	he	is	without
money,	 his	mother	 has	 very	 little	 also	 and	he	 continues	 his	 habit	 of	 insult.	They	 say	he	will	 go
completely	mad.	I	fear	this	is	true.

As	 long	 as	Galois’s	 passion	 for	 politics	 continued	 it	was	 inevitable	 that	 his
fortunes	 would	 deteriorate	 further,	 a	 fact	 documented	 by	 the	 great	 French
writer	 Alexandre	 Dumas.	 Dumas	 was	 at	 the	 restaurant	 Vendanges	 de
Bourgogne	 when	 he	 happened	 upon	 a	 celebration	 banquet	 in	 honour	 of
nineteen	republicans	aquitted	of	conspiracy	charges:

Suddenly,	 in	 the	midst	of	a	private	conversation	which	I	was	carrying	on	with	 the	person	on	my
left,	the	name	Louis-Phillipe,	followed	by	five	or	six	whistles,	caught	my	ear.	I	turned	around.	One
of	the	most	animated	scenes	was	taking	place	fifteen	or	twenty	seats	from	me.	It	would	be	difficult
to	 find	 in	 all	Paris	 two	hundred	persons	more	hostile	 to	 the	government	 than	 those	 to	 be	 found
reunited	at	five	o’clock	in	the	afternoon	in	the	long	hall	on	the	ground	floor	above	the	garden.
A	young	man	who	had	raised	his	glass	and	held	an	open	dagger	in	the	same	hand	was	trying	to

make	himself	heard	–	Evariste	Galois	was	one	of	the	most	ardent	republicans.	The	noise	was	such
that	the	very	reason	for	this	noise	had	become	incomprehensible.	All	that	I	could	perceive	was	that
there	was	a	threat	and	that	the	name	of	Louis-Phillipe	had	been	mentioned:	the	intention	was	made
clear	by	the	open	knife.
This	 went	 way	 beyond	 my	 own	 republican	 opinions.	 I	 yielded	 to	 the	 pressure	 from	 my

neighbour	on	the	left	who,	as	one	of	the	King’s	comedians,	didn’t	care	to	be	compromised,	and	we
jumped	 from	 the	window	 sill	 into	 the	garden.	 I	went	 home	 somewhat	worried.	 It	was	 clear	 this
episode	would	have	its	consequences.	Indeed,	two	or	three	days	later,	Evariste	Galois	was	arrested.



After	being	detained	at	Sainte-Pélagie	prison	for	a	month	Galois	was	charged
with	threatening	the	King’s	life	and	brought	to	trial.	Although	there	was	little
doubt	 from	 his	 actions	 that	 Galois	 was	 guilty,	 the	 raucous	 nature	 of	 the
banquet	meant	 that	 nobody	 could	 actually	 confirm	 that	 they	 had	 heard	 him
make	any	direct	 threats.	A	 sympathetic	 jury	and	 the	 rebel’s	 tender	 age	–	he
was	 still	 only	 twenty	 –	 led	 to	 his	 acquittal.	 The	 following	 month	 he	 was
arrested	again.
On	Bastille	Day,	14	July	1831,	Galois	marched	through	Paris	dressed	in	the

uniform	of	the	outlawed	Artillery	Guard.	Although	this	was	merely	a	gesture
of	defiance,	he	was	sentenced	to	six	months	in	prison	and	returned	to	Sainte-
Pélagie.	During	 the	following	months	 the	 teetotal	youth	was	driven	 to	drink
by	 the	 rogues	 who	 surrounded	 him.	 The	 botanist	 and	 ardent	 republican
François	Raspail,	who	was	imprisoned	for	refusing	to	accept	the	Cross	of	the
Legion	 of	 Honour	 from	 Louis-Phillipe,	 wrote	 an	 account	 of	 Galois’s	 first
drinking	bout:

He	 grasps	 the	 little	 glass	 like	 Socrates	 courageously	 taking	 the	 hemlock;	 he	 swallows	 it	 as	 one
gulp,	not	without	blinking	and	making	a	wry	face.	A	second	glass	is	not	harder	to	empty	than	the
first,	and	then	the	third.	The	beginner	loses	his	equilibrium.	Triumph!	Homage	to	the	Bacchus	of
the	jail!	You	have	intoxicated	an	ingenuous	soul,	who	holds	wine	in	horror.

A	week	 later	 a	 sniper	 in	a	garret	opposite	 the	prison	 fired	a	 shot	 into	a	cell
wounding	 the	man	next	 to	Galois.	Galois	was	convinced	 that	 the	bullet	was
intended	for	himself	and	that	there	was	a	government	plot	to	assassinate	him.
The	 fear	 of	 political	 persecution	 terrorised	 him,	 and	 the	 isolation	 from	 his
friends	and	family	and	rejection	of	his	mathematical	ideas	plunged	him	into	a
state	of	depression.	In	a	bout	of	drunken	delirium	he	tried	to	stab	himself	to
death,	 but	 Raspail	 and	 others	managed	 to	 restrain	 and	 disarm	 him.	 Raspail
recalls	Galois’s	words	immediately	prior	to	the	suicide	attempt:

Do	you	know	what	I	 lack	my	friend?	I	confide	it	only	to	you:	 it	 is	someone	I	can	love	and	love
only	in	spirit.	I	have	lost	my	father	and	no	one	has	ever	replaced	him,	do	you	hear	me	…?

In	March	1832,	a	month	before	Galois’s	sentence	was	due	to	finish,	a	cholera
epidemic	broke	out	in	Paris	and	the	prisoners	of	Sainte-Pélagie	were	released.
What	 happened	 to	Galois	 over	 the	 next	 few	weeks	 has	 been	 the	 subject	 of
intense	speculation,	but	what	is	certain	is	that	the	events	of	this	period	were
largely	the	consequence	of	a	romance	with	a	mysterious	woman	by	the	name
of	Stéphanie-Félicie	Poterine	du	Motel,	 the	daughter	of	a	 respected	Parisian
physician.	Although	there	are	no	clues	as	to	how	the	affair	started,	the	details



of	its	tragic	end	are	well	documented.
Stéphanie	was	 already	 engaged	 to	 a	 gentleman	 by	 the	 name	of	Pescheux

d’Herbinville,	 who	 uncovered	 his	 fiancée’s	 infidelity.	 D’Herbinville	 was
furious	 and,	 being	 one	 the	 finest	 shots	 in	 France,	 he	 had	 no	 hesitation	 in
immediately	challenging	Galois	to	a	duel	at	dawn.	Galois	was	well	aware	of
his	 challenger’s	 reputation.	 During	 the	 evening	 prior	 to	 the	 confrontation,
which	 he	 believed	would	 be	 his	 last	 opportunity	 to	 commit	 his	 thoughts	 to
paper,	he	wrote	letters	to	his	friends	explaining	his	circumstances:

I	beg	my	patriots,	my	friends,	not	to	reproach	me	for	dying	otherwise	than	for	my	country.	I	died
the	victim	of	an	infamous	coquette	and	her	two	dupes.	It	is	in	a	miserable	piece	of	slander	that	I
end	my	life.	Oh!	Why	die	for	something	so	little,	so	contemptible?	I	call	on	heaven	to	witness	that
only	under	compulsion	and	 force	have	 I	yielded	 to	a	provocation	which	 I	have	 tried	 to	avert	by
every	means.	

Despite	 his	 devotion	 to	 the	 republican	 cause	 and	his	 romantic	 involvement,
Galois	 had	 always	 maintained	 his	 passion	 for	 mathematics	 and	 one	 of	 his
greatest	 fears	was	 that	his	 research,	which	had	already	been	 rejected	by	 the
Academy,	would	be	lost	forever.	In	a	desperate	attempt	to	gain	recognition	he
worked	 through	 the	 night	writing	 out	 the	 theorems	which	 he	 believed	 fully
explained	 the	 riddle	 of	 quintic	 equations.	 The	 pages	 were	 largely	 a
transcription	of	the	ideas	he	had	already	submitted	to	Cauchy	and	Fourier,	but
hidden	within	the	complex	algebra	were	occasional	references	to	‘Stéphanie’
or	 ‘une	 femme’	 and	 exclamations	 of	 despair	 –	 ‘I	 have	 not	 time,	 I	 have	 not
time!’	At	the	end	of	the	night,	when	his	calculations	were	complete,	he	wrote
a	 covering	 letter	 to	his	 friend	Auguste	Chevalier,	 requesting	 that,	 should	he
die,	the	papers	be	distributed	to	the	greatest	mathematicians	in	Europe:

My	Dear	Friend,
I	have	made	some	new	discoveries	in	analysis.	The	first	concern	the	theory	of	quintic	equations,

and	others	integral	functions.
In	 the	 theory	of	equations	 I	have	 researched	 the	conditions	 for	 the	solvability	of	equations	by

radicals;	this	has	given	me	the	occasion	to	deepen	this	theory	and	describe	all	the	transformations
possible	on	an	equation	even	 though	it	 is	not	solvable	by	radicals.	All	 this	will	be	found	here	 in
three	memoirs	…
In	my	life	I	have	often	dared	to	advance	propositions	about	which	I	was	not	sure.	But	all	I	have

written	down	here	has	been	clear	in	my	head	for	over	a	year,	and	it	would	not	be	in	my	interest	to
leave	myself	open	 to	 the	suspicion	 that	 I	announce	 theorems	of	which	 I	do	not	have	a	complete
proof.
Make	a	public	request	of	Jacobi	or	Gauss	to	give	their	opinions,	not	as	to	the	truth,	but	as	to	the



importance	of	 these	 theorems.	After	 that,	 I	hope	some	men	will	 find	 it	profitable	 to	sort	out	 this
mess.
I	embrace	you	with	effusion,

E.	Galois

The	following	morning,	Wednesday	30	May	1832,	in	an	isolated	field	Galois
and	d’Herbinville	 faced	 each	other	 at	 twenty-five	paces	 armed	with	pistols.
D’Herbinville	was	accompanied	by	seconds;	Galois	stood	alone.	He	had	told
nobody	of	his	plight:	a	messenger	he	had	sent	to	his	brother	Alfred	would	not
deliver	the	news	of	the	duel	until	it	was	over	and	the	letters	he	had	written	the
previous	night	would	not	reach	his	friends	for	several	days.
The	pistols	were	raised	and	fired.	D’Herbinville	still	stood,	Galois	was	hit

in	the	stomach.	He	lay	helpless	on	the	ground.	There	was	no	surgeon	to	hand
and	 the	 victor	 calmly	 walked	 away	 leaving	 his	 wounded	 opponent	 to	 die.
Some	hours	later	Alfred	arrived	on	the	scene	and	carried	his	brother	to	Cochin
hospital.	 It	was	 too	 late,	peritonitis	had	set	 in,	and	 the	following	day	Galois
died.
His	funeral	was	almost	as	farcical	as	his	father’s.	The	police	believed	that	it

would	 be	 the	 focus	 of	 a	 political	 rally	 and	 arrested	 thirty	 comrades	 the
previous	night.	Nonetheless	two	thousand	republicans	gathered	for	the	service
and	 inevitably	 scuffles	 broke	 out	 between	 Galois’s	 colleagues	 and	 the
government	officials	who	had	arrived	to	monitor	events.
The	mourners	were	 angry	 because	 of	 a	 growing	 belief	 that	 d’Herbinville

was	not	a	cuckolded	fiancé	but	rather	a	government	agent,	and	that	Stéphanie
was	not	just	a	lover	but	a	scheming	seductress.	Events	such	as	the	shot	which
was	fired	at	Galois	while	he	was	in	Sainte-Pélagie	prison	already	hinted	at	a
conspiracy	 to	assassinate	 the	young	 trouble-maker,	 and	 therefore	his	 friends
concluded	 that	 he	 had	 been	 duped	 into	 a	 romance	 which	 was	 part	 of	 a
political	plot	contrived	to	kill	him.	Historians	have	argued	about	whether	the
duel	was	 the	result	of	a	 tragic	 love	affair	or	politically	motivated,	but	either
way	 one	 of	 the	 world’s	 greatest	 mathematicians	 was	 killed	 at	 the	 age	 of
twenty,	having	studied	mathematics	for	only	five	years.
Before	 distributing	 Galois’s	 papers	 his	 brother	 and	 Auguste	 Chevalier

rewrote	them	in	order	to	clarify	and	expand	the	explanations.	Galois’s	habit	of
explaining	his	ideas	hastily	and	inadequately	was	no	doubt	exacerbated	by	the
fact	that	he	had	only	a	single	night	to	outline	years	of	research.	Although	they
dutifully	sent	copies	of	the	manuscript	to	Carl	Gauss,	Carl	Jacobi	and	others,
there	 was	 no	 acknowledgment	 of	 Galois’s	 work	 for	 over	 a	 decade,	 until	 a
copy	 reached	 Joseph	 Liouville	 in	 1846.	 Liouville	 recognised	 the	 spark	 of
genius	 in	 the	 calculation	 and	 spent	 months	 trying	 to	 interpret	 its	 meaning.



Eventually	he	edited	the	papers	and	published	them	in	his	prestigious	Journal
de	 Mathématiques	 pures	 et	 appliquées.	 The	 response	 from	 other
mathematicians	 was	 immediate	 and	 impressive	 because	 Galois	 had	 indeed
formulated	 a	 complete	 understanding	 of	 how	 one	 could	 go	 about	 finding
solutions	to	quintic	equations.	First	Galois	had	classified	all	quintics	into	two
types:	 those	 that	were	 soluble	 and	 those	 that	were	 not.	Then,	 for	 those	 that
were	 soluble,	he	devised	a	 recipe	 for	 finding	 the	 solutions	 to	 the	 equations.
Moreover,	Galois	examined	equations	of	higher	order	than	the	quintic,	those
containing	x6,	x7,	and	so	on,	and	could	identify	which	of	these	were	soluble.	It
was	 one	 of	 the	 masterpieces	 of	 nineteenth-century	 mathematics	 created	 by
one	of	its	most	tragic	heroes.
In	 his	 introduction	 to	 the	 paper	 Liouville	 reflected	 on	 why	 the	 young

mathematician	had	been	rejected	by	his	seniors	and	how	his	own	efforts	had
resurrected	Galois:

An	exaggerated	desire	for	conciseness	was	the	cause	of	this	defect	which	one	should	strive	above
all	 else	 to	 avoid	 when	 treating	 the	 abstract	 and	mysterious	matters	 of	 pure	 Algebra.	 Clarity	 is,
indeed,	all	the	more	necessary	when	one	essays	to	lead	the	reader	farther	from	the	beaten	path	and
into	wilder	 territory.	As	Descartes	 said,	 ‘When	 transcendental	 questions	 are	under	discussion	be
transcendentally	 clear.’	 Too	 often	 Galois	 neglected	 this	 precept;	 and	 we	 can	 understand	 how
illustrious	mathematicians	may	have	judged	it	proper	to	try,	by	the	harshness	of	their	sage	advice,
to	 turn	 a	 beginner,	 full	 of	 genius	 but	 inexperienced,	 back	 on	 the	 right	 road.	 The	 author	 they
censured	was	before	them	ardent,	active;	he	could	profit	by	their	advice.
But	now	everything	is	changed.	Galois	is	no	more!	Let	us	not	indulge	in	useless	criticisms;	let	us

leave	the	defects	there	and	look	at	the	merits	…
My	zeal	was	well	rewarded,	and	I	experienced	an	intense	pleasure	at	the	moment	when,	having

filled	in	some	slight	gaps,	I	saw	the	complete	correctness	of	the	method	by	which	Galois	proves,	in
particular,	this	beautiful	theorem.

Toppling	the	First	Domino

At	the	heart	of	Galois’s	calculations	was	a	concept	known	as	group	theory,	an
idea	 which	 he	 had	 developed	 into	 a	 powerful	 tool	 capable	 of	 cracking
previously	 insoluble	problems.	Mathematically,	 a	group	 is	 a	 set	of	 elements
which	 can	 be	 combined	 together	 using	 some	 operation,	 such	 as	 addition	 or
multiplication,	 and	 which	 satisfy	 certain	 conditions.	 An	 important	 defining
property	of	a	group	is	that,	when	any	two	of	its	elements	are	combined	using
the	operation,	the	result	is	another	element	in	the	group.	The	group	is	said	to



be	closed	under	that	operation.
For	example,	positive	and	negative	whole	numbers	form	a	group	under	the

operation	of	‘addition’.	Combining	one	whole	number	with	another	under	the
operation	of	addition	leads	to	a	third	whole	number,	e.g.

Mathematicians	 state	 that	 ‘positive	 and	 negative	whole	 numbers	 are	 closed
under	addition	and	form	a	group’.	On	the	other	hand	the	whole	numbers	do
not	 form	 a	 group	 under	 the	 operation	 of	 ‘division’,	 because	 dividing	 one
whole	number	by	another	does	not	necessarily	lead	to	another	whole	number,
e.g.

The	 fraction	 1⁄3	 is	 not	 a	 whole	 number	 and	 is	 outside	 the	 original	 group.
However,	by	considering	a	larger	group	which	does	include	fractions,	the	so-
called	rational	numbers,	closure	can	be	re-established:	‘the	rational	numbers
are	 closed	 under	 division’.	 Having	 said	 this,	 one	 stills	 needs	 to	 be	 careful
because	division	by	the	element	zero	results	in	infinity,	which	leads	to	various
mathematical	nightmares.	For	this	reason	it	is	more	accurate	to	state	that	‘the
rational	numbers	 (excluding	zero)	are	closed	under	division’.	 In	many	ways
closure	is	similar	to	the	concept	of	completeness	described	in	earlier	chapters.
The	whole	numbers	and	the	fractions	form	infinitely	large	groups,	and	one

might	assume	that,	the	larger	the	group,	the	more	interesting	the	mathematics
it	will	generate.	However,	Galois	had	a	‘less	is	more’	philosophy,	and	showed
that	 small	 carefully	 constructed	 groups	 could	 exhibit	 their	 own	 special
richness.	Instead	of	using	 the	 infinite	groups,	Galois	began	with	a	particular
equation	 and	 constructed	 his	 group	 from	 the	 handful	 of	 solutions	 to	 that
equation.	It	was	groups	formed	from	the	solutions	to	quintic	equations	which
allowed	Galois	 to	 derive	 his	 results	 about	 these	 equations.	A	 century	 and	 a
half	later	Wiles	would	use	Galois’s	work	as	the	foundation	for	his	proof	of	the
Taniyama–Shimura	conjecture.
To	prove	 the	Taniyama–Shimura	 conjecture,	mathematicians	had	 to	 show

that	every	one	of	the	infinite	number	of	elliptic	equations	could	be	paired	with
a	modular	form.	Originally	they	had	attempted	to	show	that	the	whole	DNA
for	one	elliptic	equation	(the	E-series)	could	be	matched	with	the	whole	DNA
for	one	modular	form	(the	M-series),	and	then	they	would	move	on	to	the	next
elliptic	equation.	Although	this	 is	a	perfectly	sensible	approach,	nobody	had
found	a	way	to	repeat	this	process	over	and	over	again	for	the	infinite	number



of	elliptic	equations	and	modular	forms.
Wiles	tackled	the	problem	in	a	radically	different	way.	Instead	of	trying	to

match	all	 elements	of	one	E-series	and	M-series	 and	 then	moving	on	 to	 the
next	E-series	and	M-series,	he	tried	to	match	one	element	of	all	E-series	and
M-series	and	then	move	on	to	the	next	element.	In	other	words	each	E-series
has	an	infinite	list	of	elements,	individual	genes	which	make	up	the	DNA,	and
Wiles	wanted	to	show	that	the	first	gene	in	every	E-series	could	be	matched
with	the	first	gene	in	every	M-series.	He	would	 then	go	on	to	show	that	 the
second	gene	in	every	E-series	could	be	matched	with	the	second	gene	in	every
M-series,	and	so	on.
In	 the	 traditional	 approach	 one	 had	 an	 infinite	 problem,	 which	 was	 that

even	if	you	could	prove	that	all	of	one	E-series	matched	all	of	one	M-series,
there	were	 still	 infinitely	many	 other	E-series	 and	M-series	 to	 be	matched.
Wiles’s	 approach	 still	 involved	 tackling	 infinity	 because	 even	 if	 he	 could
prove	 that	 the	 first	 gene	of	 every	E-series	was	 identical	 to	 the	 first	 gene	 of
every	M-series	 there	 were	 still	 infinitely	 many	 other	 genes	 to	 be	 matched.
However,	 Wiles’s	 approach	 had	 one	 major	 advantage	 over	 the	 traditional
approach.
In	 the	 old	 method,	 once	 you	 had	 proved	 that	 the	 whole	 of	 one	E-series

matched	the	whole	of	one	M-series,	you	then	had	to	ask,	Which	E-series	and
M-series	 do	 I	 try	 and	match	 up	 next?	The	 infinity	 of	E-series	 and	M-series
have	 no	 natural	 order	 and	 so	 whichever	 one	 is	 tackled	 next	 is	 a	 largely
arbitrary	 choice.	 Crucially,	 in	Wiles’s	method,	 the	 genes	 in	 the	E-series	 do
have	a	natural	order,	and	so	having	proved	that	all	the	first	genes	match	(E1	=
M1),	the	next	step	is	obviously	to	prove	that	all	the	second	genes	match	(E2	=
M2),	and	so	on.
This	 natural	 order	 is	 exactly	 what	Wiles	 needed	 in	 order	 to	 develop	 an

inductive	proof.	 Initially	Wiles	would	have	 to	show	that	 the	first	element	of
every	E-series	could	be	paired	with	the	first	element	of	every	M-series.	Then
he	would	have	to	show	that	if	the	first	elements	could	be	paired	then	so	could
the	second	elements,	and	if	the	second	elements	could	be	paired	then	so	could
the	third	elements,	and	so	on.	He	had	to	topple	the	first	domino,	and	then	he
had	to	prove	that	any	falling	domino	would	also	topple	the	next	one.
The	 first	 step	 was	 achieved	 when	 Wiles	 realised	 the	 power	 of	 Galois’s

groups.	A	handful	of	solutions	from	every	elliptic	equation	could	be	used	to
form	a	group.	After	months	of	analysis	Wiles	proved	that	the	group	led	to	one
undeniable	 conclusion	–	 the	 first	 element	 in	 every	E-series	 could	 indeed	be
paired	with	the	first	one	in	an	M-series.	Thanks	to	Galois,	Wiles	had	been	able
to	topple	the	first	domino.	The	next	step	of	his	inductive	proof	required	him	to
find	 a	way	 of	 showing	 that	 if	 any	 one	 element	 of	 the	E-series	matched	 the



corresponding	element	in	the	M-series,	then	so	must	the	next	element	match.
Getting	this	far	had	already	taken	two	years,	and	there	was	no	hint	of	how

long	it	would	take	to	find	a	way	of	extending	the	proof.	Wiles	was	well	aware
of	the	task	ahead:	‘You	might	ask	how	could	I	devote	an	unlimited	amount	of
time	to	a	problem	that	might	simply	not	be	soluble.	The	answer	is	that	I	just
loved	working	on	this	problem	and	I	was	obsessed.	I	enjoyed	pitting	my	wits
against	 it.	 Furthermore,	 I	 always	 knew	 that	 the	mathematics	 I	was	 thinking
about,	even	if	it	wasn’t	strong	enough	to	prove	Taniyama–Shimura,	and	hence
Fermat,	 would	 prove	 something.	 I	 wasn’t	 going	 up	 a	 back	 alley,	 it	 was
certainly	good	mathematics	and	that	was	true	all	along.	There	was	certainly	a
possibility	that	I	would	never	get	to	Fermat,	but	there	was	no	question	that	I
was	simply	wasting	my	time.’

‘Fermat’s	Theorem	Solved?’

Although	 it	was	 only	 the	 first	 step	 towards	 proving	 the	Taniyama–Shimura
conjecture,	Wiles’s	Galois	strategy	was	a	brilliant	mathematical	breakthrough,
worthy	 of	 publication	 in	 its	 own	 right.	 As	 a	 result	 of	 his	 self-imposed
seclusion	 he	 could	 not	 announce	 the	 result	 to	 the	 rest	 of	 the	 world,	 but
similarly	 he	 had	 no	 idea	 who	 else	 might	 be	 making	 equally	 significant
breakthroughs.
Wiles	recalls	his	philosophical	attitude	towards	any	potential	rivals:	‘Well,

obviously	 no	 one	wants	 to	 spend	 years	 trying	 to	 solve	 something	 and	 then
find	that	someone	else	just	solves	it	a	few	weeks	before	you	do.	But	curiously,
because	 I	was	 trying	a	problem	 that’s	 considered	 impossible,	 I	 didn’t	 really
have	much	fear	of	competition.	I	simply	didn’t	think	I	or	anyone	else	had	any
real	idea	how	to	do	it.’
On	 8	 March	 1988	 Wiles	 was	 shocked	 to	 read	 front-page	 headlines

announcing	 that	 Fermat’s	 Last	 Theorem	 had	 been	 solved.	 The	Washington
Post	 and	 the	 New	 York	 Times	 claimed	 that	 thirty-eight-year-old	 Yoichi
Miyaoka	of	 the	Tokyo	Metropolitan	University	had	discovered	a	solution	 to
the	world’s	hardest	problem.	At	this	stage	Miyaoka	had	not	yet	published	his
proof,	but	only	described	its	outline	at	a	seminar	at	the	Max	Planck	Institute
for	Mathematics	 in	Bonn.	Don	Zagier	who	was	 in	 the	audience	summarised
the	 community’s	 optimism,	 ‘Miyaoka’s	 proof	 is	 very	 exciting	 and	 some
people	feel	that	there	is	a	very	good	chance	that	it	is	going	to	work.	It’s	still
not	definite,	but	it	looks	fine	so	far.’
In	Bonn,	Miyaoka	had	described	how	he	had	approached	the	problem	from

a	 completely	 new	 angle,	 namely	 differential	 geometry.	 For	 decades



differential	 geometers	 had	 developed	 a	 rich	 understanding	 of	 mathematical
shapes	and	in	particular	the	properties	of	their	surfaces.	Then	in	the	1970s	a
team	 of	Russians	 led	 by	 Professor	 S.	Arakelov	 attempted	 to	 draw	 parallels
between	 problems	 in	 differential	 geometry	 and	 problems	 in	 number	 theory.
This	 was	 one	 strand	 of	 the	 Langlands	 programme,	 and	 the	 hope	 was	 that
unanswered	 problems	 in	 number	 theory	 could	 be	 solved	 by	 examining	 the
corresponding	 question	 in	 differential	 geometry	 which	 had	 already	 been
answered.	This	was	known	as	the	philosophy	of	parallelism.
Differential	 geometrists	 who	 tried	 to	 tackle	 problems	 in	 number	 theory

became	 known	 as	 ‘arithmetic	 algebraic	 geometrists’,	 and	 in	 1983	 they
claimed	their	first	significant	victory,	when	Gerd	Faltings	at	 the	Institute	for
Advanced	 Study	 at	 Princeton	 made	 a	 major	 contribution	 towards
understanding	 Fermat’s	 Last	 Theorem.	Remember	 that	 Fermat	 claimed	 that
there	were	no	whole	number	solutions	to	the	equation:

Faltings	 believed	 he	 could	 make	 some	 progress	 towards	 proving	 the	 Last
Theorem	by	studying	the	geometric	shapes	associated	with	different	values	of
n.	The	shapes	corresponding	to	each	of	the	equations	are	all	different,	but	they
do	have	one	thing	in	common	–	they	are	all	punctured	with	holes.	The	shapes
are	four-dimensional,	rather	like	modular	forms.	All	the	shapes	are	like	multi-
dimensional	doughnuts,	with	several	holes	rather	than	just	one.	The	larger	the
value	 of	 n	 in	 the	 equation,	 the	 more	 holes	 there	 are	 in	 the	 corresponding
shape.
Faltings	 was	 able	 to	 prove	 that,	 because	 these	 shapes	 always	 have	more

than	one	hole,	the	associated	Fermat	equation	could	only	have	a	finite	number
of	whole	 number	 solutions.	A	 finite	 number	 of	 solutions	 could	 be	 anything
from	 zero,	 which	 was	 Fermat’s	 own	 claim,	 to	 a	 million	 or	 a	 billion.	 So
Faltings	had	not	proved	Fermat’s	Last	Theorem,	but	he	had	at	least	been	able
to	discount	the	possibility	of	an	infinity	of	solutions.
Five	years	later	Miyaoka	claimed	he	could	go	one	step	further.	While	still

in	 his	 early	 twenties	 he	 had	 created	 a	 conjecture	 concerning	 the	 so-called
Miyaoka	 inequality.	 It	 became	 clear	 that	 proof	 of	 his	 own	 geometrical
conjecture	 would	 demonstrate	 that	 the	 number	 of	 solutions	 for	 Fermat’s
equation	was	not	only	finite,	but	zero.	Miyaoka’s	approach	was	analogous	to
Wiles’s	in	that	they	were	both	trying	to	prove	the	Last	Theorem	by	connecting
it	 to	 a	 fundamental	 conjecture	 in	 a	 different	 field	 of	 mathematics.	 In
Miyaoka’s	 case	 it	 was	 differential	 geometry;	 for	 Wiles	 the	 proof	 was	 via
elliptic	 equations	 and	 modular	 forms.	 Unfortunately	 for	Wiles	 he	 was	 still



struggling	 to	 prove	 the	 Taniyama–Shimura	 conjecture	 when	 Miyaoka
announced	a	full	proof	relating	to	his	own	conjecture,	and	therefore	a	proof	of
Fermat’s	Last	Theorem.
Two	 weeks	 after	 his	 announcement	 in	 Bonn,	 Miyaoka	 released	 the	 five

pages	 of	 algebra	 which	 detailed	 his	 proof	 and	 then	 the	 scrutiny	 began.
Number	theorists	and	differential	geometrists	around	the	world	examined	the
proof	line	by	line,	looking	for	the	slightest	gap	in	the	logic	or	the	merest	hint
of	a	false	assumption.	Within	a	few	days	several	mathematicians	highlighted
what	 seemed	 to	 be	 a	 worrying	 contradiction	 within	 the	 proof.	 Part	 of
Miyaoka’s	work	led	to	a	particular	conclusion	in	number	theory,	which	when
translated	 back	 to	 differential	 geometry	 conflicted	 with	 a	 result	 which	 had
already	been	proved	years	earlier.	Although	this	did	not	necessarily	invalidate
Miyaoka’s	 entire	 proof,	 it	 did	 clash	 with	 the	 philosophy	 of	 parallelism
between	number	theory	and	differential	geometry.
Another	two	weeks	passed	when	Gerd	Faltings,	who	had	paved	the	way	for

Miyaoka,	announced	that	he	had	pinpointed	the	exact	reason	for	the	apparent
breakdown	 in	parallelism	–	a	gap	 in	 the	 logic.	The	 Japanese	mathematician
was	predominantly	 a	geometrist	 and	he	had	not	been	absolutely	 rigorous	 in
translating	his	ideas	into	the	less	familiar	territory	of	number	theory.	An	army
of	 number	 theorists	 attempted	 to	 help	Miyaoka	 patch	 up	 the	 error	 but	 their
efforts	 ended	 in	 failure.	 Two	 months	 after	 the	 initial	 announcement	 the
consensus	was	that	the	original	proof	was	destined	to	fail.
As	with	several	other	 failed	proofs	 in	 the	past,	Miyaoka	had	created	new

and	 interesting	 mathematics.	 Individual	 chunks	 of	 the	 proof	 stood	 on	 their
own	as	ingenious	applications	of	differential	geometry	to	number	theory,	and
in	 later	 years	 other	mathematicians	would	 build	 on	 them	 in	 order	 to	 prove
other	theorems,	but	never	Fermat’s	Last	Theorem.
The	fuss	over	Fermat	soon	died	down	and	the	newspapers	ran	short	updates

explaining	that	the	300-year-old	puzzle	remained	unsolved.	No	doubt	inspired
by	 all	 the	media	 attention	 a	 new	piece	 of	 graffiti	 found	 its	way	 on	 to	New
York’s	Eighth	Street	subway	station:

I	have	discovered	a	truly	remarkable	proof	of	this,
but	I	can’t	write	it	now	because	my	train	is	coming.

The	Dark	Mansion



Unknown	to	the	world	Wiles	breathed	a	sigh	of	relief.	Fermat’s	Last	Theorem
remained	unconquered	and	he	could	continue	with	his	battle	 to	prove	 it	 via
the	Taniyama–Shimura	conjecture.	 ‘Much	of	 the	 time	 I	would	 sit	writing	at
my	 desk,	 but	 sometimes	 I	 could	 reduce	 the	 problem	 to	 something	 very
specific	–	there’s	a	clue,	something	that	strikes	me	as	strange,	something	just
below	 the	 paper	 which	 I	 can’t	 quite	 put	 my	 finger	 on.	 If	 there	 was	 one
particular	thing	buzzing	in	my	mind	then	I	didn’t	need	anything	to	write	with
or	any	desk	 to	work	at,	 so	 instead	I	would	go	for	a	walk	down	by	 the	 lake.
When	I’m	walking	 I	 find	 I	can	concentrate	my	mind	on	one	very	particular
aspect	of	a	problem,	focusing	on	it	completely.	I’d	always	have	a	pencil	and
paper	ready,	so	if	I	had	an	idea	I	could	sit	down	at	a	bench	and	start	scribbling
away.’
After	 three	 years	 of	 non-stop	 effort	 Wiles	 had	 made	 a	 series	 of

breakthroughs.	 He	 had	 applied	 Galois	 groups	 to	 elliptic	 equations,	 he	 had
broken	 the	 elliptic	 equations	 into	 an	 infinite	 number	 of	 pieces,	 and	 then	 he
had	proved	that	the	first	piece	of	every	elliptic	equation	had	to	be	modular.	He
had	 toppled	 the	 first	 domino	 and	 now	 he	 was	 exploring	 techniques	 which
might	lead	to	the	collapse	of	all	the	others.	In	hindsight	this	seemed	like	the
natural	 route	 to	 a	 proof,	 but	 getting	 this	 far	 had	 required	 enormous
determination	 to	 overcome	 the	 periods	 of	 self-doubt.	 Wiles	 describes	 his
experience	 of	 doing	 mathematics	 in	 terms	 of	 a	 journey	 through	 a	 dark
unexplored	mansion.	‘One	enters	the	first	room	of	the	mansion	and	it’s	dark.
Completely	 dark.	 One	 stumbles	 around	 bumping	 into	 the	 furniture	 but
gradually	you	learn	where	each	piece	of	furniture	is.	Finally,	after	six	months
or	 so,	 you	 find	 the	 light	 switch,	 you	 turn	 it	 on,	 and	 suddenly	 it’s	 all
illuminated.	You	 can	 see	 exactly	where	 you	were.	 Then	 you	move	 into	 the
next	 room	 and	 spend	 another	 six	 months	 in	 the	 dark.	 So	 each	 of	 these
breakthroughs,	while	sometimes	they’re	momentary,	sometimes	over	a	period
of	a	day	or	 two,	 they	are	 the	culmination	of,	and	couldn’t	exist	without,	 the
many	months	of	stumbling	around	in	the	dark	that	precede	them.’
In	1990	Wiles	found	himself	in	what	seemed	to	be	the	darkest	room	of	all.

He	had	been	exploring	it	for	almost	two	years.	He	still	had	no	way	of	showing
that	 if	 one	 piece	 of	 the	 elliptic	 equation	was	modular	 then	 so	was	 the	 next
piece.	Having	 tried	 every	 tool	 and	 technique	 in	 the	 published	 literature,	 he
had	found	 that	 they	were	all	 inadequate.	 ‘I	 really	believed	 that	 I	was	on	 the
right	 track,	but	 that	did	not	mean	 that	 I	would	necessarily	 reach	my	goal.	 It
could	be	that	the	methods	needed	to	solve	this	particular	problem	may	simply
be	 beyond	 present-day	 mathematics.	 Perhaps	 the	 methods	 I	 needed	 to
complete	 the	proof	would	not	be	 invented	 for	a	hundred	years.	So	even	 if	 I
was	on	the	right	track,	I	could	be	living	in	the	wrong	century.’



Undaunted,	 Wiles	 persevered	 for	 another	 year.	 He	 began	 working	 on	 a
technique	called	Iwasawa	theory.	Iwasawa	theory	was	a	method	of	analysing
elliptic	equations	which	he	had	learnt	as	a	student	in	Cambridge	under	John
Coates.	 Although	 the	method	 as	 it	 stood	was	 inadequate,	 he	 hoped	 that	 he
could	modify	it	and	make	it	powerful	enough	to	generate	a	domino	effect.
Since	 making	 the	 initial	 breakthrough	 with	 Galois	 groups,	 Wiles	 had

become	increasingly	frustrated.	Whenever	the	pressure	became	too	great,	he
would	turn	to	his	family.	Since	beginning	work	on	Fermat’s	Last	Theorem	in
1986,	 he	had	become	a	 father	 twice	over.	 ‘The	only	way	 I	 could	 relax	was
when	 I	 was	 with	 my	 children.	 Young	 children	 simply	 aren’t	 interested	 in
Fermat,	 they	 just	 want	 to	 hear	 a	 story	 and	 they’re	 not	 going	 to	 let	 you	 do
anything	else.’

The	Method	of	Kolyvagin	and	Flach

By	 the	 summer	 of	 1991	Wiles	 felt	 he	 had	 lost	 the	 battle	 to	 adapt	 Iwasawa
theory.	He	had	to	prove	that	every	domino,	if	it	itself	had	been	toppled,	would
topple	the	next	domino	–	that	if	one	element	in	the	elliptic	equation	E-series
matched	one	element	 in	 the	modular	 form	M-series,	 then	so	would	 the	next
one.	 He	 also	 had	 to	 be	 sure	 that	 this	 would	 be	 the	 case	 for	 every	 elliptic
equation	 and	 every	 modular	 form.	 Iwasawa	 theory	 could	 not	 give	 him	 the
guarantee	 he	 required.	 He	 completed	 another	 exhaustive	 search	 of	 the
literature	 and	was	 still	 unable	 to	 find	 an	 alternative	 technique	which	would
give	 him	 the	 breakthrough	 he	 needed.	 Having	 been	 a	 virtual	 recluse	 in
Princeton	 for	 the	 last	 five	 years,	 he	 decided	 it	 was	 time	 to	 get	 back	 into
circulation	 in	 order	 to	 find	 out	 the	 latest	 mathematical	 gossip.	 Perhaps
somebody	somewhere	was	working	on	an	 innovative	new	 technique,	and	as
yet,	for	whatever	reason,	had	not	published	it.	He	headed	north	to	Boston	to
attend	 a	major	 conference	 on	 elliptic	 equations,	where	 he	would	 be	 sure	 of
meeting	the	major	players	in	the	subject.
Wiles	 was	 welcomed	 by	 colleagues	 from	 around	 the	 world,	 who	 were

delighted	 to	 see	 him	 after	 such	 a	 long	 absence	 from	 the	 conference	 circuit.
They	 were	 still	 unaware	 of	 what	 he	 had	 been	 working	 on	 and	Wiles	 was
careful	not	 to	give	away	any	clues.	They	did	not	suspect	his	ulterior	motive
when	he	asked	them	the	latest	news	concerning	elliptic	equations.	Initially	the
responses	were	 of	 no	 relevance	 to	Wiles’s	 plight	 but	 an	 encounter	with	 his
former	 supervisor	 John	Coates	was	more	 fruitful:	 ‘Coates	mentioned	 to	me
that	 a	 student	of	his	named	Matheus	Flach	was	writing	a	beautiful	paper	 in
which	 he	 was	 analysing	 elliptic	 equations.	 He	 was	 building	 on	 a	 recent



method	devised	by	Kolyvagin	and	it	looked	as	though	his	method	was	tailor-
made	for	my	problem.	It	seemed	to	be	exactly	what	I	needed,	although	I	knew
I	would	still	have	to	further	develop	this	so-called	Kolyvagin–Flach	method.	I
put	aside	completely	 the	old	approach	 I’d	been	 trying	and	 I	devoted	myself
night	and	day	to	extending	Kolyvagin–Flach.’
In	 theory	 this	 new	method	 could	 extend	Wiles’s	 argument	 from	 the	 first

piece	 of	 the	 elliptic	 equation	 to	 all	 pieces	 of	 the	 elliptic	 equation,	 and
potentially	it	could	work	for	every	elliptic	equation.	Professor	Kolyvagin	had
devised	 an	 immensely	 powerful	 mathematical	 method,	 and	 Matheus	 Flach
had	refined	it	to	make	it	even	more	potent.	Neither	of	them	realised	that	Wiles
intended	to	incorporate	their	work	into	the	world’s	most	important	proof.
Wiles	 returned	 to	 Princeton,	 spent	 several	 months	 familiarising	 himself

with	 his	 newly	 discovered	 technique,	 and	 then	 began	 the	mammoth	 task	 of
adapting	 it	 and	 implementing	 it.	 Soon	 for	 a	 particular	 elliptic	 equation	 he
could	 make	 the	 inductive	 proof	 work	 –	 he	 could	 topple	 all	 the	 dominoes.
Unfortunately	 the	 Kolyvagin–Flach	 method	 that	 worked	 for	 one	 particular
elliptic	 equation	 did	 not	 necessarily	 work	 for	 another	 elliptic	 equation.	 He
eventually	 realised	 that	 all	 the	 elliptic	 equations	 could	 be	 classified	 into
various	 families.	 Once	 modified	 to	 work	 on	 one	 elliptic	 equation,	 the
Kolyvagin–Flach	method	would	work	 for	 all	 the	 other	 elliptic	 equations	 in
that	family.	The	challenge	was	to	adapt	the	Kolyvagin–Flach	method	to	work
for	each	family.	Although	some	families	were	harder	to	conquer	than	others,
Wiles	was	confident	that	he	could	work	his	way	through	them	one	by	one.
After	 six	years	of	 intense	effort	Wiles	believed	 that	 the	end	was	 in	 sight.

Week	 after	 week	 he	 was	 making	 progress,	 proving	 that	 newer	 and	 bigger
families	of	elliptic	curves	must	be	modular.	It	seemed	to	be	just	a	question	of
time	before	he	would	mop	up	the	outstanding	elliptic	equations.	During	this
final	stage	of	the	proof,	Wiles	began	to	appreciate	that	his	whole	proof	relied
on	exploiting	a	technique	which	he	had	only	discovered	a	few	months	earlier.
He	began	to	question	whether	he	was	using	the	Kolyvagin–Flach	method	in	a
fully	rigorous	manner.
‘During	that	year	I	worked	extremely	hard	trying	to	make	the	Kolyvagin–

Flach	method	work,	 but	 it	 involved	 a	 lot	 of	 sophisticated	machinery	 that	 I
wasn’t	really	familiar	with.	There	was	a	lot	of	hard	algebra	which	required	me
to	 learn	 a	 lot	 of	 new	 mathematics.	 Then	 around	 early	 January	 of	 1993	 I
decided	that	I	needed	to	confide	in	someone	who	was	an	expert	in	the	kind	of
geometric	 techniques	 I	 was	 invoking	 for	 this.	 I	 wanted	 to	 choose	 very
carefully	who	I	told	because	they	would	have	to	keep	it	confidential.	I	chose
to	tell	Nick	Katz.’
Professor	 Nick	 Katz	 also	 worked	 in	 Princeton	 University’s	 Mathematics



Department	 and	had	known	Wiles	 for	 several	 years.	Despite	 their	 closeness
Katz	was	oblivious	to	what	was	going	on	literally	just	along	the	corridor.	He
recalls	 every	 detail	 of	 the	 moment	 Wiles	 revealed	 his	 secret:	 ‘One	 day
Andrew	came	up	to	me	at	tea	and	asked	me	if	I	could	come	up	to	his	office	–
there	was	something	he	wanted	to	talk	to	me	about.	I	had	no	idea	of	what	this
could	be.	I	went	up	to	his	office	and	he	closed	the	door.	He	said	he	thought
that	he	would	be	able	to	prove	the	Taniyama–Shimura	conjecture.	I	was	just
amazed,	flabbergasted	–	this	was	fantastic.
‘He	 explained	 that	 there	 was	 a	 big	 part	 of	 the	 proof	 that	 relied	 on	 his

extension	of	the	work	of	Flach	and	Kolyvagin	but	it	was	pretty	technical.	He
really	felt	shaky	on	this	highly	technical	part	of	the	proof	and	he	wanted	to	go
through	 it	with	 somebody	 because	 he	wanted	 to	 be	 sure	 it	was	 correct.	He
thought	 I	 was	 the	 right	 person	 to	 help	 him	 check	 it,	 but	 I	 think	 there	 was
another	reason	why	he	asked	me	in	particular.	He	was	sure	that	I	would	keep
my	mouth	shut	and	not	tell	other	people	about	the	proof.’
After	six	years	in	isolation	Wiles	had	let	go	of	his	secret.	Now	it	was	Katz’s

job	 to	get	 to	grips	with	a	mountain	of	 spectacular	calculations	based	on	 the
Kolyvagin–Flach	 method.	 Virtually	 everything	 Wiles	 had	 done	 was
revolutionary	 and	 Katz	 gave	 a	 great	 deal	 of	 thought	 as	 to	 the	 best	 way	 to
examine	it	thoroughly:	‘What	Andrew	had	to	explain	was	so	big	and	long	that
it	wouldn’t	 have	worked	 to	 try	 and	 just	 explain	 it	 in	 his	 office	 in	 informal
conversations.	 For	 something	 this	 big	 we	 really	 needed	 to	 have	 the	 formal
structure	 of	 weekly	 scheduled	 lectures,	 otherwise	 the	 thing	 would	 just
degenerate.	So,	that’s	why	we	decided	to	set	up	a	lecture	course.’
They	 decided	 that	 the	 best	 strategy	 would	 be	 to	 announce	 a	 series	 of

lectures	 open	 to	 the	 department’s	 graduate	 students.	 Wiles	 would	 give	 the
course	and	Katz	would	be	in	the	audience.	The	course	would	effectively	cover
the	 part	 of	 the	 proof	 that	 needed	 checking	 but	 the	 graduate	 students	would
have	no	idea	of	this.	The	beauty	of	disguising	the	checking	of	the	proof	in	this
way	was	that	it	would	force	Wiles	to	explain	everything	step	by	step,	and	yet
it	would	not	arouse	any	suspicion	within	the	department.	As	far	as	everyone
else	was	concerned	this	was	just	another	graduate	course.
‘So	Andrew	announced	this	lecture	course	called	“Calculations	on	Elliptic

Curves”,’	recalls	Katz	with	a	sly	smile,	‘which	is	a	completely	innocuous	title
–	 it	 could	 mean	 anything.	 He	 didn’t	 mention	 Fermat,	 he	 didn’t	 mention
Taniyama–Shimura,	 he	 just	 started	 by	 diving	 right	 into	 doing	 technical
calculations.	There	was	no	way	in	the	world	that	anyone	could	have	guessed
what	it	was	really	about.	It	was	done	in	such	a	way	that	unless	you	knew	what
this	was	 for,	 then	 the	 calculations	would	 just	 seem	 incredibly	 technical	 and
tedious.	 And	 when	 you	 don’t	 know	 what	 the	 mathematics	 is	 for,	 it’s



impossible	to	follow	it.	It’s	pretty	hard	to	follow	it	even	when	you	do	know
what	it’s	for.	Anyway,	one	by	one	the	graduate	students	just	drifted	away	and
after	a	few	weeks	I	was	the	only	person	left	in	the	audience.’
Katz	sat	in	the	lecture	theatre	and	listened	carefully	to	every	step	of	Wiles’s

calculation.	 By	 the	 end	 of	 it	 his	 assessment	 was	 that	 the	 Kolyvagin–Flach
method	 seemed	 to	 be	 working	 perfectly.	 Nobody	 else	 in	 the	 department
realised	what	 had	 been	 going	 on.	Nobody	 suspected	 that	Wiles	was	 on	 the
verge	 of	 claiming	 the	most	 important	 prize	 in	mathematics.	 Their	 plan	 had
been	a	success.
Once	the	lecture	series	was	over	Wiles	devoted	all	his	efforts	to	completing

the	proof.	He	had	successfully	applied	the	Kolyvagin–Flach	method	to	family
after	family	of	elliptic	equations,	and	by	this	stage	only	one	family	refused	to
submit	 to	 the	 technique.	Wiles	 describes	 how	he	 attempted	 to	 complete	 the
last	element	of	the	proof:	‘One	morning	in	late	May,	Nada	was	out	with	the
children	and	I	was	sitting	at	my	desk	thinking	about	the	remaining	family	of
elliptic	 equations.	 I	 was	 casually	 looking	 at	 a	 paper	 of	 Barry	Mazur’s	 and
there	 was	 one	 sentence	 there	 that	 just	 caught	 my	 attention.	 It	 mentioned	 a
nineteenth-century	construction,	and	I	suddenly	realised	that	I	should	be	able
to	use	that	to	make	the	Kolyvagin–Flach	method	work	on	the	final	family	of
elliptic	 equations.	 I	went	on	 into	 the	 afternoon	and	 I	 forgot	 to	go	down	 for
lunch,	 and	 by	 about	 three	 or	 four	 o’clock	 I	 was	 really	 convinced	 that	 this
would	solve	 the	 last	 remaining	problem.	 It	got	 to	about	 tea-time	and	I	went
downstairs	and	Nada	was	very	surprised	that	I’d	arrived	so	late.	Then	I	 told
her	–	I’d	solved	Fermat’s	Last	Theorem.’

The	Lecture	of	the	Century

After	seven	years	of	single-minded	effort	Wiles	had	completed	a	proof	of	the
Taniyama–Shimura	 conjecture.	 As	 a	 consequence,	 and	 after	 thirty	 years	 of
dreaming	 about	 it,	 he	 had	 also	 proved	 Fermat’s	 Last	 Theorem.	 It	 was	 now
time	to	tell	the	rest	of	the	world.
‘So	by	May	1993,	I	was	convinced	 that	 I	had	 the	whole	of	Fermat’s	Last

Theorem	in	my	hands,’	recalls	Wiles.	‘I	still	wanted	to	check	the	proof	some
more	but	there	was	a	conference	which	was	coming	up	at	the	end	of	June	in
Cambridge,	 and	 I	 thought	 that	would	be	a	wonderful	place	 to	announce	 the
proof	–	it’s	my	old	home	town,	and	I’d	been	a	graduate	student	there.’
The	conference	was	being	held	at	the	Isaac	Newton	Institute.	This	time	the

institute	had	planned	a	workshop	on	number	theory	with	the	obscure	title	‘L-
functions	and	Arithmetic’.	One	of	the	organisers	was	Wiles’s	Ph.D.	supervisor



John	 Coates:	 ‘We	 brought	 people	 from	 all	 around	 the	 world	 who	 were
working	on	this	general	circle	of	problems	and,	of	course,	Andrew	was	one	of
the	people	 that	we	 invited.	We’d	planned	one	week	of	concentrated	 lectures
and	originally,	because	there	was	a	lot	of	demand	for	lecture	slots,	I	only	gave
Andrew	two	lecture	slots.	But	then	I	gathered	he	needed	a	third	slot,	and	so	in
fact	I	arranged	to	give	up	my	own	slot	for	his	third	lecture.	I	knew	that	he	had
some	big	result	to	announce	but	I	had	no	idea	what.’
When	Wiles	arrived	in	Cambridge	he	had	two	and	a	half	weeks	before	his

lectures	began	and	wanted	to	make	the	most	of	the	opportunity:	‘I	decided	I
would	check	the	proof	with	one	or	two	experts,	in	particular	the	Kolyvagin–
Flach	part.	The	first	person	I	gave	it	to	was	Barry	Mazur.	I	think	I	said	to	him,
“I	have	a	manuscript	here	with	a	proof	to	a	certain	theorem.”	He	looked	very
baffled	for	a	while,	and	then	I	said,	“Well,	have	a	 look	at	 it.”	I	 think	it	 then
took	him	some	time	to	register.	He	appeared	stunned.	Anyway	I	told	him	that
I	was	hoping	to	speak	about	it	at	the	conference,	and	that	I’d	really	like	him	to
try	and	check	it.’
One	by	one	the	most	eminent	figures	 in	number	 theory	began	to	arrive	at

the	 Newton	 Institute,	 including	 Ken	 Ribet	 whose	 calculation	 in	 1986	 had
inspired	 Wiles’s	 seven-year	 ordeal.	 ‘I	 arrived	 at	 this	 conference	 on	 L-
functions	 and	 elliptic	 curves	 and	 it	 didn’t	 seem	 to	 be	 anything	 out	 of	 the
ordinary	 until	 people	 started	 telling	 me	 that	 they	 had	 been	 hearing	 weird
rumours	about	Andrew	Wiles’s	proposed	series	of	 lectures.	The	rumour	was
that	 he	 had	 proved	 Fermat’s	 Last	 Theorem,	 and	 I	 just	 thought	 this	 was
completely	nuts.	I	thought	it	couldn’t	possibly	be	true.	There	are	lots	of	cases
when	rumours	start	circulating	in	mathematics,	especially	through	electronic
mail,	 and	experience	 shows	 that	you	shouldn’t	put	 too	much	stock	 in	 them.
But	 the	 rumours	 were	 very	 persistent	 and	 Andrew	 was	 refusing	 to	 answer
questions	about	it	and	he	was	behaving	very	very	queerly.	John	Coates	said	to
him,	“Andrew,	what	have	you	proved?	Shall	we	call	the	press?”	Andrew	just
kind	of	shook	his	head	and	sort	of	kept	his	lips	sealed.	He	was	really	going	for
high	drama.
‘Then	one	afternoon	Andrew	came	up	 to	me	and	started	asking	me	about

what	 I’d	done	 in	1986	and	some	of	 the	history	of	Frey’s	 ideas.	 I	 thought	 to
myself,	 this	 is	 incredible,	 he	 must	 have	 proved	 the	 Taniyama–Shimura
conjecture	and	Fermat’s	Last	Theorem,	otherwise	he	wouldn’t	be	asking	me
this.	 I	 didn’t	 ask	 him	 directly	 if	 this	 was	 true,	 because	 I	 saw	 that	 he	 was
behaving	very	 coyly	 and	 I	 knew	 I	wouldn’t	 get	 a	 straight	 answer.	 So	 I	 just
kind	of	said,	“Well	Andrew,	 if	you	have	occasion	 to	speak	about	 this	work,
here’s	what	happened.”	I	sort	of	looked	at	him	as	though	I	knew	something,
but	I	didn’t	really	know	what	was	going	on.	I	was	still	just	guessing.’



Wiles’s	 reaction	 to	 the	 rumours	 and	 the	 mounting	 pressure	 was	 simple:
‘People	would	ask	me,	leading	up	to	my	lectures,	what	exactly	I	was	going	to
say.	So	I	said,	well,	come	to	my	lectures	and	see.’
Back	in	1920	David	Hilbert,	then	aged	fifty-eight,	gave	a	public	lecture	in

Göttingen	 on	 the	 subject	 of	 Fermat’s	 Last	 Theorem.	 When	 asked	 if	 the
problem	would	ever	be	solved,	he	replied	that	he	would	not	live	to	see	it,	but
perhaps	 younger	 members	 of	 the	 audience	 might	 witness	 the	 solution.
Hilbert’s	 estimate	 for	 the	 date	 of	 the	 solution	 was	 proving	 to	 be	 fairly
accurate.	 Wiles’s	 lecture	 was	 also	 well	 timed	 in	 relation	 to	 the	 Wolfskehl
Prize.	In	his	will	Paul	Wolfskehl	had	set	a	deadline	of	13	September	2007.
The	title	of	Wiles’s	lecture	series	was	‘Modular	Forms,	Elliptic	Curves	and

Galois	 Representations’.	 Once	 again,	 as	 with	 the	 graduate	 lectures	 he	 had
given	earlier	in	the	year	for	the	benefit	of	Nick	Katz,	the	title	of	the	lectures
was	so	vague	that	it	gave	no	hint	of	his	ultimate	aim.	Wiles’s	first	lecture	was
apparently	mundane,	 laying	the	foundations	for	his	attack	on	the	Taniyama–
Shimura	conjecture	in	the	second	and	third.	The	majority	of	his	audience	were
completely	unaware	of	the	gossip,	did	not	appreciate	the	point	of	the	lectures,
and	paid	little	attention	to	the	details.	Those	in	the	know	were	looking	for	the
slightest	clue	which	might	give	credence	to	the	rumours.
Immediately	 after	 the	 lecture	 ended	 the	 rumour	 mill	 started	 again	 with

renewed	 vigour,	 and	 electronic	mail	 flew	 around	 the	world.	 Professor	Karl
Rubin,	a	former	student	of	Wiles,	reported	back	to	his	colleagues	in	America:



By	the	following	day	more	people	had	heard	the	gossip,	and	so	the	audience
for	 the	 second	 lecture	 was	 significantly	 larger.	 Wiles	 teased	 them	 with	 an
intermediate	calculation	which	showed	that	he	was	clearly	trying	to	tackle	the
Taniyama–Shimura	conjecture,	but	the	audience	was	still	left	wondering	if	he
had	 done	 enough	 to	 prove	 it	 and,	 as	 a	 consequence,	 conquer	 Fermat’s	Last
Theorem.	A	new	batch	of	e-mails	bounced	off	the	satellites.

‘On	23	June	Andrew	began	his	 third	and	 final	 lecture,’	 recalls	 John	Coates.
‘What	was	 remarkable	was	 that	practically	everyone	who	contributed	 to	 the
ideas	behind	the	proof	was	there	 in	 the	room,	Mazur,	Ribet,	Kolyvagin,	and
many,	many	others.’
By	 this	 point	 the	 rumour	 was	 so	 persistent	 that	 everyone	 from	 the

Cambridge	mathematics	community	turned	up	for	the	final	lecture.	The	lucky
ones	were	crammed	 into	 the	auditorium,	while	 the	others	had	 to	wait	 in	 the
corridor,	 where	 they	 stood	 on	 tip-toe	 and	 peered	 through	 the	window.	Ken
Ribet	 had	 made	 sure	 that	 he	 would	 not	 miss	 out	 on	 the	 most	 important
mathematical	announcement	of	the	century:	‘I	came	relatively	early	and	I	sat
in	 the	 front	 row	along	with	Barry	Mazur.	 I	 had	my	camera	with	me	 just	 to
record	the	event.	There	was	a	very	charged	atmosphere	and	people	were	very
excited.	We	certainly	had	the	sense	that	we	were	participating	in	a	historical
moment.	People	had	grins	on	 their	 faces	before	and	during	 the	 lecture.	The
tension	 had	 built	 up	 over	 the	 course	 of	 several	 days.	 Then	 there	 was	 this
marvellous	moment	when	we	were	coming	close	to	a	proof	of	Fermat’s	Last
Theorem.’



Barry	Mazur	had	already	been	given	a	copy	of	the	proof	by	Wiles,	but	even
he	 was	 astonished	 by	 the	 performance.	 ‘I’ve	 never	 seen	 such	 a	 glorious
lecture,	full	of	such	wonderful	ideas,	with	such	dramatic	tension,	and	what	a
build-up.	There	was	only	one	possible	punch	line.’
After	seven	years	of	intense	effort	Wiles	was	about	to	announce	his	proof

to	 the	 world.	 Curiously	 Wiles	 cannot	 remember	 the	 final	 moments	 of	 the
lecture	in	great	detail,	but	does	recall	the	atmosphere:	‘Although	the	press	had
already	got	wind	of	the	lecture,	fortunately	they	were	not	at	 the	lecture.	But
there	 were	 plenty	 of	 people	 in	 the	 audience	 who	 were	 taking	 photographs
towards	 the	 end	 and	 the	 Director	 of	 the	 Institute	 certainly	 had	 come	 well
prepared	with	 a	 bottle	 of	 champagne.	There	was	 a	 typical	 dignified	 silence
while	I	read	out	the	proof	and	then	I	just	wrote	up	the	statement	of	Fermat’s
Last	Theorem.	 I	 said,	 “I	 think	 I’ll	 stop	 here”,	 and	 then	 there	was	 sustained
applause.’

The	Aftermath

Strangely,	Wiles	was	ambivalent	about	the	lecture:	‘It	was	obviously	a	great
occasion,	but	I	had	mixed	feelings.	This	had	been	part	of	me	for	seven	years:
it	had	been	my	whole	working	life.	I	got	so	wrapped	up	in	the	problem	that	I
really	felt	I	had	it	all	to	myself,	but	now	I	was	letting	go.	There	was	a	feeling
that	I	was	giving	up	a	part	of	me.’
Wiles’s	 colleague	 Ken	 Ribet	 had	 no	 such	 qualms:	 ‘It	 was	 a	 completely

remarkable	event.	I	mean,	you	go	to	a	conference	and	there	are	some	routine
lectures,	 there	 are	 some	 good	 lectures	 and	 there	 are	 some	 very	 special
lectures,	but	it’s	only	once	in	a	lifetime	that	you	get	a	lecture	where	someone
claims	to	solve	a	problem	that	has	endured	for	350	years.	People	were	looking
at	 each	 other	 and	 saying,	 “My	 God,	 you	 know	 we’ve	 just	 witnessed	 an
historical	 event.”	Then	people	 asked	a	 few	questions	 about	 technicalities	of
the	 proof	 and	 possible	 applications	 to	 other	 equations,	 and	 then	 there	 was
more	silence	and	all	of	a	 sudden	a	 second	 round	of	applause.	The	next	 talk
was	given	by	one	Ken	Ribet,	yours	truly.	I	gave	the	lecture,	people	took	notes,
people	applauded,	and	no	one	present,	including	me,	has	any	idea	what	I	said
in	that	lecture.’
While	mathematicians	were	spreading	the	good	news	via	e-mail,	the	rest	of

the	 world	 had	 to	 wait	 for	 the	 evening	 news,	 or	 the	 following	 day’s
newspapers.	 TV	 crews	 and	 science	 reporters	 descended	 upon	 the	 Newton
Institute,	 all	 demanding	 interviews	 with	 the	 ‘greatest	 mathematician	 of	 the
century’.	 The	 Guardian	 exclaimed,	 ‘The	 Number’s	 Up	 for	 Maths’	 Last



Riddle’,	and	the	front	page	of	Le	Monde	 read,	 ‘Le	 théorèm	de	Fermat	enfin
résolu’.	Journalists	everywhere	asked	mathematicians	for	their	expert	opinion
on	 Wiles’s	 work,	 and	 professors,	 still	 recovering	 from	 the	 shock,	 were
expected	to	briefly	explain	the	most	complicated	mathematical	proof	ever,	or
provide	a	soundbite	which	would	clarify	the	Taniyama–Shimura	conjecture.
The	 first	 time	 Professor	 Shimura	 heard	 about	 the	 proof	 of	 his	 own

conjecture	was	when	 he	 read	 the	 front	 page	 of	 the	New	 York	 Times	—	 ‘At
Last,	Shout	of	“Eureka!”	In	Age-Old	Math	Mystery’.	Thirty-five	years	after
his	friend	Yutaka	Taniyama	had	committed	suicide,	the	conjecture	which	they
had	 created	 together	 had	 now	 been	 vindicated.	 For	 many	 professional
mathematicians	the	proof	of	the	Taniyama–Shimura	conjecture	was	a	far	more
important	achievement	than	the	solution	of	Fermat’s	Last	Theorem,	because	it
had	 immense	 consequences	 for	 many	 other	 mathematical	 theorems.	 The
journalists	covering	the	story	tended	to	concentrate	on	Fermat	and	mentioned
Taniyama–Shimura	only	in	passing,	if	at	all.
Shimura,	a	modest	and	gentle	man,	was	not	unduly	bothered	by	the	lack	of

attention	given	to	his	role	in	the	proof	of	Fermat’s	Last	Theorem,	but	he	was
concerned	 that	 he	 and	 Taniyama	 had	 been	 relegated	 from	 being	 nouns	 to
adjectives.	‘It	is	very	curious	that	people	write	about	the	Taniyama–Shimura
conjecture,	but	nobody	writes	about	Taniyama	and	Shimura.’
This	was	the	first	time	that	mathematics	had	hit	the	headlines	since	Yoichi

Miyaoka	announced	his	so-called	proof	in	1988:	the	only	difference	this	time
was	that	there	was	twice	as	much	coverage	and	nobody	expressed	any	doubt
over	 the	 calculation.	 Overnight	Wiles	 became	 the	most	 famous,	 in	 fact	 the
only	 famous,	mathematician	 in	 the	world,	 and	People	magazine	 even	 listed
him	among	‘The	25	most	intriguing	people	of	the	year’,	along	with	Princess
Diana	and	Oprah	Winfrey.	The	ultimate	accolade	came	from	an	international
clothing	 chain	 who	 asked	 the	 mild-mannered	 genius	 to	 endorse	 their	 new
range	of	menswear.
While	the	media	circus	continued	and	while	mathematicians	made	the	most

of	being	 in	 the	 spotlight,	 the	 serious	work	of	 checking	 the	proof	was	under
way.	 As	 with	 all	 scientific	 disciplines	 each	 new	 piece	 of	 work	 has	 to	 be
thoroughly	 examined,	 before	 it	 could	 be	 accepted	 as	 accurate	 and	 correct.
Wiles’s	proof	had	to	be	submitted	to	the	ordeal	of	trial	by	referee.	Although
Wiles’s	lectures	at	the	Isaac	Newton	Institute	had	provided	the	world	with	an
outline	 of	 his	 calculation,	 this	 did	 not	 qualify	 as	 official	 peer	 review.
Academic	 protocol	 demands	 that	 any	 mathematician	 submits	 a	 complete
manuscript	to	a	respected	journal,	the	editor	of	which	then	sends	it	to	a	team
of	 referees	whose	 job	 it	 is	 to	 examine	 the	 proof	 line	 by	 line.	Wiles	 had	 to
spend	 the	 summer	 anxiously	 waiting	 for	 the	 referees’	 report,	 hoping	 that



eventually	he	would	get	their	blessing.



7
A	Slight	Problem

A	problem	worthy	of	attack
Proves	its	worth	by	fighting	back.

Piet	Hein

As	 soon	 as	 the	 Cambridge	 lecture	 was	 over,	 the	Wolfskehl	 committee	 was
informed	 of	 Wiles’s	 proof.	 They	 could	 not	 award	 the	 prize	 immediately
because	 the	 rules	 of	 the	 contest	 clearly	 demand	 verification	 by	 other
mathematicians	and	official	publication	of	the	proof:

The	Königliche	Gesellschaft	der	Wissenschaften	in	Göttingen	…	will	only	take	into	consideration
those	mathematical	memoirs	which	have	appeared	in	the	form	of	a	monograph	in	the	periodicals,
or	which	are	for	sale	in	the	bookshops	…	The	award	of	the	Prize	by	the	Society	will	take	place	not
earlier	 than	 two	years	after	 the	publication	of	 the	memoir	 to	be	crowned.	The	 interval	of	 time	 is
intended	to	allow	German	and	foreign	mathematicians	to	voice	their	opinion	about	the	validity	of
the	solution	published.

Wiles	 submitted	 his	 manuscript	 to	 the	 journal	 Inventiones	 Mathematicae,
whereupon	its	editor	Barry	Mazur	began	the	process	of	selecting	the	referees.
Wiles’s	 paper	 involved	 such	 a	 variety	 of	 mathematical	 techniques,	 both
ancient	and	modern,	that	Mazur	made	the	exceptional	decision	to	appoint	not
just	two	or	three	referees,	as	is	usual,	but	six.	Each	year	thirty	thousand	papers
are	published	in	journals	around	the	world,	but	the	sheer	size	and	importance
of	Wiles’s	manuscript	meant	that	it	would	undergo	a	unique	level	of	scrutiny.
To	simplify	matters	the	200-page	proof	was	divided	into	six	sections	and	each
of	the	referees	took	responsibility	for	one	of	these	chapters.
Chapter	3	was	the	responsibility	of	Nick	Katz,	who	had	already	examined

that	part	of	Wiles’s	proof	earlier	in	the	year:	‘I	happened	to	be	in	Paris	for	the
summer	 to	work	 at	 the	 Institut	 des	Hautes	Etudes	 Scientifiques,	 and	 I	 took
with	me	 the	 complete	 200-page	 proof	 –	my	 particular	 chapter	was	 seventy
pages	 long.	When	 I	 got	 there	 I	 decided	 I	 wanted	 to	 have	 serious	 technical
help,	and	so	I	insisted	that	Luc	Illusie,	who	was	also	in	Paris,	become	a	joint
referee	on	 this	chapter.	We	would	meet	a	 few	 times	a	week	 throughout	 that



summer,	basically	 lecturing	 to	each	other	 to	 try	and	understand	 this	chapter.
Literally	we	did	nothing	but	 look	through	this	manuscript	 line	by	line	 to	 try
and	make	sure	 that	 there	were	no	mistakes.	Sometimes	we	got	confused	by
things	and	so	every	day,	sometimes	twice	a	day,	I	would	e-mail	Andrew	with
a	question	–	I	don’t	understand	what	you	say	on	this	page	or	 it	seems	to	be
wrong	on	this	line.	Typically	I	would	get	a	response	that	day	or	the	next	day
which	clarified	the	matter	and	then	we’d	go	on	to	the	next	problem.’
The	proof	was	a	gigantic	argument,	 intricately	constructed	from	hundreds

of	mathematical	calculations	glued	together	by	 thousands	of	 logical	 links.	 If
just	one	of	the	calculations	was	flawed	or	if	one	of	the	links	became	unstuck
then	the	entire	proof	was	potentially	worthless.	Wiles,	who	was	now	back	in
Princeton,	 anxiously	waited	 for	 the	 referees	 to	 complete	 their	 task.	 ‘I	 don’t
like	to	celebrate	full	out	until	I	have	the	paper	completely	off	my	hands.	In	the
meantime	I	had	my	work	cut	out	dealing	with	the	questions	I	was	getting	via
e-mail	 from	 the	 referees.	 I	 was	 still	 pretty	 confident	 that	 none	 of	 these
questions	 would	 cause	 me	 much	 trouble.’	 He	 had	 already	 checked	 and
double-checked	 the	 proof	 before	 releasing	 it	 to	 the	 referees,	 so	 he	 was
expecting	 little	 more	 than	 the	 mathematical	 equivalent	 of	 grammatical	 or
typographic	errors,	trivial	mistakes	which	he	could	fix	immediately.
‘These	 questions	 continued	 relatively	 uneventfully	 through	 till	 August,’

recalls	Katz,	 ‘until	 I	 got	 to	what	 seemed	 like	 just	 one	more	 little	 problem.
Sometime	around	23	August	I	e-mail	Andrew,	but	it’s	a	little	bit	complicated
so	he	sends	me	back	a	fax.	But	the	fax	doesn’t	seem	to	answer	the	question	so
I	e-mail	him	again	and	I	get	another	fax	which	I’m	still	not	satisfied	with.’
Wiles	 had	 assumed	 that	 this	 error	 was	 as	 shallow	 as	 all	 the	 others,	 but

Katz’s	 persistence	 forced	 him	 to	 take	 it	 seriously:	 ‘I	 couldn’t	 immediately
resolve	this	one	very	innocent	looking	question.	For	a	little	while	it	seemed	to
be	of	the	same	order	as	the	other	problems,	but	then	sometime	in	September	I
began	to	realise	that	this	wasn’t	just	a	minor	difficulty	but	a	fundamental	flaw.
It	was	 an	 error	 in	 a	 crucial	 part	 of	 the	 argument	 involving	 the	Kolyvagin–
Flach	method,	 but	 it	was	 something	 so	 subtle	 that	 I’d	missed	 it	 completely
until	 that	 point.	 The	 error	 is	 so	 abstract	 that	 it	 can’t	 really	 be	 described	 in
simple	 terms.	 Even	 explaining	 it	 to	 a	 mathematician	 would	 require	 the
mathematician	 to	 spend	 two	 or	 three	 months	 studying	 that	 part	 of	 the
manuscript	in	great	detail.’
In	 essence	 the	 problem	 was	 that	 there	 was	 no	 guarantee	 that	 the

Kolyvagin–Flach	method	worked	as	Wiles	had	 intended.	It	was	supposed	to
extend	the	proof	from	the	first	element	of	all	elliptic	equations	and	modular
forms	to	cover	all	the	elements,	providing	the	toppling	mechanism	from	one
domino	 to	 the	 next.	 Originally	 the	 Kolyvagin–Flach	 method	 only	 worked



under	 particularly	 constrained	 circumstances,	 but	 Wiles	 believed	 he	 had
adapted	and	strengthened	it	sufficiently	to	work	for	all	his	needs.	According
to	Katz	 this	was	not	necessarily	 the	case,	and	 the	effects	were	dramatic	and
devastating.
The	error	did	not	necessarily	mean	that	Wiles’s	work	was	beyond	salvation,

but	it	did	mean	that	he	would	have	to	strengthen	his	proof.	The	absolutism	of
mathematics	 demanded	 that	 Wiles	 demonstrate	 beyond	 all	 doubt	 that	 his
method	worked	for	every	element	of	every	E-series	and	M-series.

The	Carpet	Fitter

When	Katz	 realised	 the	 significance	 of	 the	 error	 which	 he	 had	 spotted,	 he
began	 to	 ask	 himself	 how	 he	 had	 missed	 it	 in	 the	 spring	 when	Wiles	 had
lectured	to	him	with	the	sole	purpose	of	identifying	any	mistakes.	‘I	think	the
answer	is	that	there’s	a	real	tension	when	you’re	listening	to	a	lecture	between
understanding	 everything	 and	 letting	 the	 lecturer	 get	 on	 with	 it.	 If	 you
interrupt	every	second	–	I	don’t	understand	 this	or	I	don’t	understand	 that	–
then	the	guy	never	gets	to	explain	anything	and	you	don’t	get	anywhere.	On
the	 other	 hand	 if	 you	 never	 interrupt	 you	 just	 sort	 of	 get	 lost	 and	 you’re
nodding	your	head	politely,	but	you’re	not	really	checking	anything.	There’s
this	real	tension	between	asking	too	many	questions	and	asking	too	few,	and
obviously	by	 the	end	of	 those	 lectures,	which	 is	where	 this	problem	slipped
through,	I	had	erred	on	the	side	of	too	few	questions.’
Only	a	few	weeks	earlier,	newspapers	around	the	globe	had	dubbed	Wiles

the	 most	 brilliant	 mathematician	 in	 the	 world,	 and	 after	 350	 years	 of
frustration	 number	 theorists	 believed	 that	 they	 had	 at	 last	 got	 the	 better	 of
Pierre	 de	 Fermat.	 Now	Wiles	 was	 faced	 with	 the	 humiliation	 of	 having	 to
admit	that	he	had	made	a	mistake.	Before	confessing	to	the	error	he	decided
to	try	and	make	a	concerted	effort	to	fill	in	the	gap.	‘I	couldn’t	give	up.	I	was
obsessed	 by	 this	 problem	 and	 I	 still	 believed	 that	 the	 Kolyvagin–Flach
method	just	needed	a	little	tinkering.	I	just	needed	to	modify	it	in	some	small
way	and	 then	 it	would	work	 just	 fine.	 I	decided	 to	go	straight	back	 into	my
old	mode	 and	 completely	 shut	myself	 off	 from	 the	 outside	world.	 I	 had	 to
focus	again	but	this	time	under	much	more	difficult	circumstances.	For	a	long
time	 I	 would	 think	 that	 the	 fix	 was	 just	 round	 the	 corner,	 that	 I	 was	 just
missing	something	simple	and	it	would	all	just	fit	into	place	the	next	day.	Of
course	it	could	have	happened	that	way,	but	as	time	went	by	it	seemed	that	the
problem	just	became	more	intransigent.’
The	 hope	 was	 that	 he	 could	 fix	 the	 mistake	 before	 the	 mathematical



community	 was	 aware	 that	 a	 mistake	 even	 existed.	Wiles’s	 wife,	 who	 had
already	 witnessed	 the	 seven	 years	 of	 effort	 that	 had	 gone	 into	 the	 original
proof,	now	had	to	watch	her	husband’s	agonising	struggle	with	an	error	that
could	 destroy	 everything.	 Wiles	 remembers	 her	 optimism:	 ‘In	 September
Nada	said	to	me	that	the	only	thing	she	wanted	for	her	birthday	was	a	correct
proof.	Her	birthday	is	on	6	October.	I	had	only	two	weeks	to	deliver	the	proof,
and	I	failed.’
For	Nick	Katz,	 too,	 this	was	a	 tense	period:	 ‘By	October	 the	only	people

who	 knew	 about	 the	 error	 were	 myself,	 Illusie,	 the	 other	 referees	 of	 other
chapters	 and	Andrew	 –	 in	 principle	 that	was	 all.	My	 attitude	was	 that	 as	 a
referee	I	was	supposed	to	act	 in	confidentiality.	I	certainly	didn’t	feel	 that	 it
was	my	business	to	discuss	this	matter	with	anyone	except	Andrew,	so	I	just
didn’t	say	a	word	about	 it.	 I	 think	externally	he	appeared	normal	but	at	 this
point	he	was	keeping	a	secret	from	the	world,	and	I	think	he	must	have	been
pretty	 uncomfortable	 about	 it.	 Andrew’s	 attitude	was	 that	with	 just	 another
day	 he	 would	 solve	 it,	 but	 as	 the	 fall	 went	 on,	 and	 no	 manuscript	 was
available,	rumours	started	circulating	that	there	was	a	problem.’
In	particular,	Ken	Ribet,	another	of	the	referees,	began	to	feel	the	pressure

of	 keeping	 the	 secret:	 ‘For	 some	 completely	 accidental	 reason	 I	 became
known	as	the	“Fermat	Information	Service”.	There	was	an	initial	article	in	the
New	York	Times,	where	Andrew	asked	me	to	speak	to	the	reporter	in	his	place,
and	 the	 article	 said,	 ‘Ribet	 who	 is	 acting	 as	 a	 spokesperson	 for	 Andrew
Wiles	…’,	or	 something	 to	 that	 effect.	After	 that	 I	 became	a	magnet	 for	 all
kinds	of	interest	in	Fermat’s	Last	Theorem,	both	from	inside	and	outside	the
mathematics	community.	People	were	calling	from	the	press,	from	all	around
the	world	in	fact,	and	also	I	gave	a	very	large	number	of	lectures	over	a	period
of	 two	 or	 three	 months.	 In	 these	 lectures	 I	 stressed	 what	 a	 magnificent
achievement	this	was	and	I	outlined	the	proof	and	I	talked	about	the	parts	that
I	 knew	 best,	 but	 after	 a	 while	 people	 started	 getting	 impatient	 and	 began
asking	awkward	questions.
‘You	 see	 Wiles	 had	 made	 this	 very	 public	 announcement,	 but	 no	 one

outside	of	the	very	small	group	of	referees	had	seen	a	copy	of	the	manuscript.
So	 mathematicians	 were	 waiting	 for	 this	 manuscript	 that	 Andrew	 had
promised	 a	 few	weeks	 after	 the	 initial	 announcement	 in	 June.	 People	 said,
“Okay,	well	this	theorem	has	been	announced	–	we’d	like	to	see	what’s	going
on.	 What’s	 he	 doing?	 Why	 don’t	 we	 hear	 anything?”	 People	 were	 a	 little
upset	that	they	were	being	held	in	ignorance	and	they	simply	wanted	to	know
what	was	 going	 on.	 Then	 things	 got	 even	worse	 because	 slowly	 this	 cloud
gathered	 over	 the	 proof	 and	 people	 kept	 telling	 me	 about	 these	 rumours,
which	 claimed	 there	 was	 a	 gap	 in	 chapter	 3.	 They’d	 ask	 me	 what	 I	 knew



about	it,	and	I	just	didn’t	know	what	to	say.’
With	Wiles	and	the	referees	denying	any	knowledge	of	a	gap,	or	at	the	very

least	 refusing	 to	 comment,	 speculation	 began	 to	 run	 wild.	 In	 desperation
mathematicians	began	sending	e-mails	to	each	other	in	the	hope	of	getting	to
the	bottom	of	the	mystery.

In	 every	 tea-room	of	 every	mathematics	 department	 the	 gossip	 surrounding
Wiles’s	 proof	 escalated	 every	 day.	 In	 response	 to	 the	 rumours	 and	 the
speculative	e-mails	some	mathematicians	tried	to	return	a	sense	of	calm	to	the
community.

Despite	 the	 calls	 for	 calm,	 the	 e-mails	 continued	 unabated.	 As	 well	 as
discussing	 the	 putative	 error,	 mathematicians	 were	 now	 arguing	 over	 the
ethics	of	pre-empting	the	referees’	announcement.





While	the	furore	over	his	elusive	proof	was	increasing,	Wiles	did	his	best	to
ignore	 the	 controversy	 and	 speculation.	 ‘I	 really	 shut	 myself	 off	 because	 I
didn’t	 want	 to	 know	 what	 people	 were	 saying	 about	 me.	 I	 just	 went	 into
seclusion	but	periodically	my	colleague	Peter	Sarnak	would	say	to	me,	“You
know	that	 there’s	a	storm	out	 there.”	 I’d	 listen,	but,	 for	myself,	 I	 really	 just
wanted	to	cut	myself	off	completely,	just	to	focus	completely	on	the	problem.’
Peter	Sarnak	had	joined	the	Princeton	Mathematics	Department	at	the	same

time	as	Wiles,	and	over	the	years	they	had	become	close	friends.	During	this
intense	period	of	 turmoil	Sarnak	was	one	of	 the	 few	people	 in	whom	Wiles
would	confide.	‘Well,	I	never	knew	the	exact	details,	but	it	was	clear	that	he
was	 trying	 to	overcome	 this	one	 serious	 issue.	But	every	 time	he	would	 fix
this	one	part	of	the	calculation,	it	would	cause	some	other	difficulty	in	another
part	of	the	proof.	It	was	like	he	was	trying	to	put	a	carpet	in	a	room	where	the
carpet	might	be	bigger	than	the	room.	So	Andrew	could	fit	the	carpet	in	any
one	corner,	only	to	find	that	it	would	pop	up	in	another	corner.	Whether	you
could	or	could	not	fit	the	carpet	in	the	room	was	not	something	he	was	able	to
decide.	Mind	you,	even	with	the	error,	Andrew	had	made	a	giant	step.	Before
him	 there	 was	 no	 one	 who	 had	 any	 approach	 to	 the	 Taniyama–Shimura
conjecture,	 but	 now	 everybody	 got	 really	 excited	 because	 he	 showed	 us	 so
many	 new	 ideas.	 They	 were	 fundamental,	 new	 things	 that	 nobody	 had
considered	 before.	 So	 even	 if	 it	 couldn’t	 be	 fixed	 this	 was	 a	 very	 major
advance	–	but	of	course	Fermat	would	still	be	unsolved.’
Eventually	Wiles	 realised	 that	 he	 could	 not	 maintain	 his	 silence	 forever.

The	solution	to	the	mistake	was	not	just	round	the	corner,	and	it	was	time	to
put	an	end	 to	 the	speculation.	After	an	autumn	of	dismal	 failure	he	sent	 the
following	e-mail	to	the	mathematical	bulletin	board:



Few	 were	 convinced	 by	Wiles’s	 optimism.	 Almost	 six	 months	 had	 passed
without	the	error	being	corrected,	and	there	was	no	reason	to	think	anything
would	change	 in	 the	next	 six	months.	 In	any	case,	 if	he	 really	could	 ‘finish
this	 in	 the	 near	 future’,	 then	 why	 bother	 issuing	 the	 e-mail?	Why	 not	 just
maintain	 the	 silence	 for	 a	 few	 more	 weeks	 and	 then	 release	 the	 finished
manuscript?	The	February	 lecture	 course	which	 he	mentioned	 in	 his	 e-mail
failed	 to	 give	 any	 of	 the	 promised	 detail,	 and	 the	mathematical	 community
suspected	that	Wiles	was	just	trying	to	buy	himself	extra	time.
The	 newspapers	 leapt	 on	 the	 story	 once	 again	 and	 mathematicians	 were

reminded	 of	 Miyaoka’s	 failed	 proof	 in	 1988.	 History	 was	 repeating	 itself.
Number	theorists	were	now	waiting	for	the	next	e-mail	which	would	explain
why	 the	 proof	 was	 irretrievably	 flawed.	 A	 handful	 of	 mathematicians	 had
expressed	doubts	over	the	proof	back	in	the	summer,	and	now	their	pessimism
seemed	to	have	been	justified.	One	story	claims	that	Professor	Alan	Baker	at
the	 University	 of	 Cambridge	 offered	 to	 bet	 one	 hundred	 bottles	 of	 wine
against	a	single	bottle	 that	 the	proof	would	be	shown	 to	be	 invalid	within	a
year.	 Baker	 denies	 the	 anecdote,	 but	 proudly	 admits	 to	 having	 expressed	 a
‘healthy	scepticism’.



Less	than	six	months	after	his	lecture	at	the	Newton	Institute	Wiles’s	proof
was	 in	 tatters.	The	 pleasure,	 passion	 and	 hope	 that	 carried	 him	 through	 the
years	 of	 secret	 calculations	were	 replaced	with	 embarrassment	 and	 despair.
He	recalls	how	his	childhood	dream	had	become	a	nightmare:	‘The	first	seven
years	that	I	worked	on	this	problem	I	enjoyed	the	private	combat.	No	matter
how	hard	 it	 had	 been,	 no	matter	 how	 insurmountable	 things	 seemed,	 I	was
engaged	 in	 my	 favourite	 problem.	 It	 was	 my	 childhood	 passion,	 I	 just
couldn’t	put	it	down,	I	didn’t	want	to	leave	it	for	a	moment.	Then	I’d	spoken
about	it	publicly,	and	in	speaking	about	it	there	was	actually	a	certain	sense	of
loss.	 It	 was	 a	 very	 mixed	 emotion.	 It	 was	 wonderful	 to	 see	 other	 people
reacting	to	the	proof,	to	see	how	the	arguments	could	completely	change	the
whole	 direction	 of	mathematics,	 but	 at	 the	 same	 time	 I’d	 lost	 that	 personal
quest.	 It	was	now	open	 to	 the	world	and	I	no	 longer	had	 this	private	dream
which	I	was	fulfilling.	And	then,	after	there	was	a	problem	with	it,	there	were
dozens,	 hundreds,	 thousands	 of	 people	 who	 wanted	 to	 distract	 me.	 Doing
maths	in	that	kind	of	rather	overexposed	way	is	certainly	not	my	style	and	I
didn’t	at	all	enjoy	this	very	public	way	of	doing	it.’
Number	theorists	around	the	world	empathised	with	Wiles’s	position.	Ken

Ribet	had	himself	been	through	the	same	nightmare	eight	years	earlier	when
he	 tried	 to	 prove	 the	 link	 between	 the	 Taniyama–Shimura	 conjecture	 and
Fermat’s	 Last	 Theorem.	 ‘I	 was	 giving	 a	 lecture	 about	 the	 proof	 at	 the
Mathematical	Sciences	Research	Institute	in	Berkeley	and	someone	from	the
audience	said,	“Well,	wait	a	minute,	how	do	you	know	that	such	and	such	is
true?”	 I	 responded	 immediately	 giving	my	 reason	 and	 they	 said,	 “Well	 that
doesn’t	apply	in	this	situation.”	I	had	an	immediate	terror.	I	kind	of	broke	out
into	a	sweat	and	I	was	very	upset	about	it.	Then	I	realised	that	there	was	only
one	possibility	 for	 justifying	 this,	which	was	 to	go	back	 to	 the	 fundamental
work	on	the	subject	and	see	exactly	how	it	was	done	in	a	similar	situation.	I
looked	in	the	relevant	paper	and	I	saw	that	the	method	did	indeed	apply	in	my
case,	and	within	a	day	or	two	I	had	the	thing	all	fixed	up.	In	my	next	lecture	I
was	able	to	give	the	justification.	But	you	always	live	with	this	fear	that	if	you
announce	something	important,	a	fundamental	mistake	can	be	discovered.
‘When	you	 find	an	error	 in	 a	manuscript	 it	 can	go	 two	ways.	Sometimes

there’s	an	 immediate	confidence	and	 the	proof	can	be	 resurrected	with	 little
difficulty.	And	sometimes	there’s	the	opposite.	It’s	very	disquieting,	there’s	a
sinking	 feeling	when	you	 realise	 that	you’ve	made	a	 fundamental	 error	 and
there’s	no	way	to	repair	it.	It’s	possible	that	when	a	hole	develops	the	theorem
really	 just	 falls	 apart	 completely,	 because	 the	 more	 you	 try	 to	 patch	 it	 the
more	trouble	you	get	into.	But	in	Wiles’s	case	each	chapter	of	the	proof	was	a
significant	article	in	its	own	right.	The	manuscript	was	seven	years’	work,	it



was	 basically	 several	 important	 papers	 pieced	 together	 and	 each	 one	 of	 the
papers	has	a	great	deal	of	interest.	The	error	occurred	in	one	of	the	papers,	in
chapter	3,	but	even	 if	you	 take	out	chapter	3	what	 remained	was	absolutely
wonderful.’
But	 without	 chapter	 3	 there	 was	 no	 proof	 of	 the	 Taniyama–Shimura

conjecture	 and	 therefore	 no	 proof	 of	 Fermat’s	 Last	 Theorem.	 There	 was	 a
sense	of	frustration	in	the	mathematical	community	that	the	proof	behind	two
great	 problems	was	 in	 jeopardy.	Moreover,	 after	 six	months	 of	waiting	 still
nobody,	beyond	Wiles	and	the	referees,	had	access	 to	 the	manuscript.	There
was	 a	 growing	 clamour	 for	 more	 openness,	 so	 everyone	 could	 see	 for
themselves	the	details	of	the	error.	The	hope	was	that	somebody	somewhere
might	see	something	 that	Wiles	had	missed,	and	conjure	up	a	calculation	 to
fix	the	gap	in	the	proof.	Some	mathematicians	claimed	that	the	proof	was	too
valuable	to	be	left	in	the	hands	of	just	one	man.	Number	theorists	had	become
the	 butt	 of	 jibes	 from	 other	 mathematicians,	 who	 sarcastically	 questioned
whether	or	not	they	understood	the	concept	of	proof.	What	should	have	been
the	proudest	moment	in	the	history	of	mathematics	was	turning	into	a	joke.
Despite	 the	pressure	Wiles	 refused	 to	 release	 the	manuscript.	After	 seven

years	of	devoted	effort	he	was	not	ready	to	sit	back	and	watch	someone	else
complete	the	proof	and	steal	the	glory.	The	person	who	proves	Fermat’s	Last
Theorem	 is	 not	 the	 person	 that	 puts	 in	 the	most	work,	 it’s	 the	 person	who
delivers	 the	 final	 and	 complete	proof.	Wiles	knew	 that	 once	 the	manuscript
was	 published	 in	 its	 flawed	 state	 he	 would	 immediately	 be	 swamped	 by
questions	and	demands	for	clarification	from	would-be	gap-fixers,	and	these
distractions	would	destroy	his	own	hopes	of	mending	the	proof	while	giving
others	vital	clues.
Wiles	attempted	to	return	to	the	same	state	of	isolation	which	had	allowed

him	to	create	the	original	proof,	and	reverted	to	his	habit	of	studying	intensely
in	his	attic.	Occasionally	he	would	wander	down	by	the	Princeton	lake,	as	he
had	 done	 in	 the	 past.	 The	 joggers,	 cyclists	 and	 rowers	who	 had	 previously
passed	him	by	with	a	brief	wave	now	stopped	and	asked	him	whether	 there
was	any	progress	with	the	gap.	Wiles	had	appeared	on	front	pages	around	the
world,	 he	 had	 been	 featured	 in	 People	 magazine	 and	 he	 had	 even	 been
interviewed	 on	CNN.	The	 previous	 summer	Wiles	 had	 become	 the	world’s
first	mathematical	celebrity,	and	already	his	image	was	tarnished.
Meanwhile	 back	 in	 the	 mathematics	 department	 the	 gossip	 continued.

Princeton	 mathematician	 Professor	 John	 H.	 Conway	 remembers	 the
atmosphere	 in	 the	 department’s	 tea-room:	 ‘We’d	gather	 for	 tea	 at	 3	 o’clock
and	 make	 a	 rush	 for	 the	 cookies.	 Sometimes	 we’d	 discuss	 mathematical
problems,	 sometimes	 we’d	 discuss	 the	 O.J.	 Simpson	 trial,	 and	 sometimes



we’d	discuss	Andrew’s	progress.	Because	nobody	actually	liked	to	come	out
and	ask	him	how	he’s	getting	on	with	the	proof,	we	were	behaving	a	little	bit
like	Kremlinologists.	So	somebody	would	say:	“I	saw	Andrew	this	morning”
–	“Did	he	smile?”	–	“Well,	yes,	but	he	didn’t	look	too	happy.”	We	could	only
gauge	his	feelings	by	his	face.’

The	Nightmare	E-mail

As	 winter	 deepened,	 hopes	 of	 a	 breakthrough	 faded,	 and	 more
mathematicians	argued	that	it	was	Wiles’s	duty	to	release	the	manuscript.	The
rumours	continued	and	one	newspaper	article	claimed	that	Wiles	had	given	up
and	 that	 the	 proof	 had	 irrevocably	 collapsed.	 Although	 this	 was	 an
exaggeration,	 it	 was	 certainly	 true	 that	 Wiles	 had	 exhausted	 dozens	 of
approaches	 which	 might	 have	 circumvented	 the	 error	 and	 he	 could	 see	 no
other	potential	routes	to	a	solution.
Wiles	admitted	to	Peter	Sarnak	that	the	situation	was	getting	desperate	and

that	he	was	on	the	point	of	accepting	defeat.	Sarnak	suggested	that	part	of	the
difficulty	was	 that	Wiles	 had	 nobody	 he	 could	 trust	 on	 a	 day-to-day	 basis;
there	 was	 nobody	 he	 could	 bounce	 ideas	 off	 or	 who	 could	 inspire	 him	 to
explore	more	lateral	approaches.	He	suggested	that	Wiles	took	somebody	into
his	confidence	and	try	once	more	to	fill	the	gap.	Wiles	needed	somebody	who
was	an	expert	in	manipulating	the	Kolyvagm—Flach	method	and	who	could
also	keep	the	details	of	the	problem	secret.	After	giving	the	matter	prolonged
thought,	 he	 decided	 to	 invite	 Richard	 Taylor,	 a	 Cambridge	 lecturer,	 to
Princeton	to	work	alongside	him.
Taylor	was	 one	 of	 the	 referees	 responsible	 for	 verifying	 the	 proof	 and	 a

former	student	of	Wiles,	and	as	such	he	could	be	doubly	trusted.	The	previous
year	he	had	been	 in	 the	audience	at	 the	Isaac	Newton	Institute	watching	his
former	supervisor	present	the	proof	of	the	century.	Now	it	was	his	job	to	help
rescue	the	flawed	proof.
By	 January	 Wiles,	 with	 the	 help	 of	 Taylor,	 was	 once	 again	 tirelessly

exploring	 the	 Kolyvagin–Flach	 method,	 trying	 to	 find	 a	 way	 out	 of	 the
problem.	Occasionally	after	days	of	effort	they	would	enter	new	territory,	but
inevitably	 they	 would	 find	 themselves	 back	 where	 they	 started.	 Having
ventured	further	 than	ever	before	and	failing	over	and	over	again,	 they	both
realised	 that	 they	were	 in	 the	heart	of	an	unimaginably	vast	 labyrinth.	Their
deepest	fear	was	that	the	labyrinth	was	infinite	and	without	exit,	and	that	they
would	be	doomed	to	wander	aimlessly	and	endlessly.
Then	in	the	spring	of	1994,	just	when	it	looked	as	though	things	could	not



get	any	worse,	the	following	e-mail	hit	computer	screens	around	the	world:





Noam	 Elkies	 was	 the	 Harvard	 professor	 who	 back	 in	 1988	 had	 found	 a
counter-example	to	Euler’s	conjecture,	thereby	proving	that	it	was	false:

Now	 he	 had	 apparently	 discovered	 a	 counter-example	 to	 Fermat’s	 Last
Theorem,	proving	that	it	too	was	false.	This	was	a	tragic	blow	for	Wiles	–	the
reason	 he	 could	 not	 fix	 the	 proof	was	 that	 the	 so-called	 error	 was	 a	 direct
result	of	the	falsity	of	the	Last	Theorem.	It	was	an	even	greater	blow	for	the
mathematical	 community	 at	 large,	 because	 if	 Fermat’s	 Last	 Theorem	 was
false,	then	Frey	had	already	shown	that	this	would	lead	to	an	elliptic	equation
which	 was	 not	 modular,	 a	 direct	 contradiction	 to	 the	 Taniyama-Shimura
conjecture.	Elkies	 had	 not	 only	 found	 a	 counter-example	 to	Fermat,	 he	 had
indirectly	found	a	counter-example	to	Taniyama–Shimura.
The	 death	 of	 the	 Taniyama–Shimura	 conjecture	 would	 have	 devastating

repercussions	 throughout	 number	 theory,	 because	 for	 two	 decades
mathematicians	had	 tacitly	 assumed	 its	 truth.	 In	Chapter	5	 it	was	 explained
that	 mathematicians	 had	 written	 dozens	 of	 proofs	 which	 began	 with
‘Assuming	 the	 Taniyama–Shimura	 conjecture’,	 but	 now	 Elkies	 had	 shown
that	 this	 assumption	 was	 wrong	 and	 all	 those	 proofs	 had	 simultaneously
collapsed.	Mathematicians	 immediately	 began	 to	 demand	more	 information
and	 bombarded	 Elkies	 with	 questions,	 but	 there	 was	 no	 response	 and	 no
explanation	as	to	why	he	was	remaining	tight-lipped.	Nobody	could	even	find
the	exact	details	of	the	counter-example.
After	one	or	two	days	of	turmoil	some	mathematicians	took	a	second	look

at	the	e-mail	and	began	to	realise	that,	although	it	was	typically	dated	2	April
or	3	April,	 this	was	a	 result	of	having	received	 it	 second	or	 third	hand.	The
original	 message	 was	 dated	 1	 April.	 The	 e-mail	 was	 a	 mischievous	 hoax
perpetrated	by	the	Canadian	number	theorist	Henri	Darmon.	The	rogue	e-mail
served	as	 a	 suitable	 lesson	 for	 the	Fermat	 rumour-mongers,	 and	 for	 a	while
the	Last	Theorem,	Wiles,	Taylor	and	the	damaged	proof	were	left	in	peace.
That	 summer	 Wiles	 and	 Taylor	 made	 no	 progress.	 After	 eight	 years	 of

unbroken	 effort	 and	 a	 lifetime’s	 obsession	 Wiles	 was	 prepared	 to	 admit
defeat.	 He	 told	 Taylor	 that	 he	 could	 see	 no	 point	 in	 continuing	 with	 their
attempts	 to	fix	 the	proof.	Taylor	had	already	planned	to	spend	September	 in
Princeton	before	returning	to	Cambridge,	and	so	despite	Wiles’s	despondency,
he	suggested	they	persevere	for	one	more	month.	If	there	was	no	sign	of	a	fix
by	the	end	of	September,	then	they	would	give	up,	publicly	acknowledge	their
failure	and	publish	the	flawed	proof	to	allow	others	an	opportunity	to	examine



it.

The	Birthday	Present

Although	 Wiles’s	 battle	 with	 the	 world’s	 hardest	 mathematical	 problem
seemed	doomed	to	end	in	failure,	he	could	look	back	at	the	last	seven	years
and	be	reassured	by	the	knowledge	that	the	bulk	of	his	work	was	still	valid.
To	 begin	 with	 Wiles’s	 use	 of	 Galois	 groups	 had	 given	 everybody	 a	 new
insight	into	the	problem.	He	had	shown	that	the	first	element	of	every	elliptic
equation	could	be	paired	with	the	first	element	of	a	modular	form.	Then	the
challenge	 was	 to	 show	 that	 if	 one	 element	 of	 the	 elliptic	 equation	 was
modular,	 then	 so	must	 the	 next	 piece	 be	modular,	 and	 so	must	 they	 all	 be
modular.
During	the	middle	years	Wiles	wrestled	with	the	concept	of	extending	the

proof.	He	was	trying	to	complete	an	inductive	approach	and	had	wrestled	with
Iwasawa	 theory	 in	 the	hope	 that	 this	would	demonstrate	 that	 if	one	domino
fell	then	they	all	would.	Initially	Iwasawa	theory	seemed	powerful	enough	to
cause	the	required	domino	effect	but	in	the	end	it	could	not	quite	live	up	to	his
expectation.	He	had	devoted	two	years	of	effort	to	a	mathematical	dead	end.
In	the	summer	of	1991,	after	a	year	in	the	doldrums,	Wiles	encountered	the

method	of	Kolyvagin	and	Flach	and	he	abandoned	Iwasawa	theory	in	favour
of	 this	 new	 technique.	 The	 following	 year	 the	 proof	 was	 announced	 in
Cambridge	and	he	was	proclaimed	a	hero.	Within	two	months	the	Kolyvagin–
Flach	method	was	shown	to	be	flawed,	and	ever	since	the	situation	had	only
worsened.	Every	attempt	to	fix	Kolyvagin–Flach	had	failed.
All	 of	Wiles’s	work	 apart	 from	 the	 final	 stage	 involving	 the	Kolyvagin–

Flach	method	was	 still	 worthwhile.	 The	 Taniyama–Shimura	 conjecture	 and
Fermat’s	 Last	 Theorem	 might	 not	 have	 been	 solved;	 nevertheless	 he	 had
provided	mathematicians	with	a	whole	series	of	new	techniques	and	strategies
which	 they	 could	 exploit	 to	 prove	 other	 theorems.	 There	 was	 no	 shame	 in
Wiles’s	 failure	and	he	was	beginning	 to	come	 to	 terms	with	 the	prospect	of
being	beaten.
As	a	consolation	he	at	least	wanted	to	understand	why	he	had	failed.	While

Taylor	 re-explored	 and	 re-examined	 alternative	 methods,	 Wiles	 decided	 to
spend	 September	 looking	 one	 last	 time	 at	 the	 structure	 of	 the	 Kolyvagin–
Flach	method	to	try	and	pinpoint	exactly	why	it	was	not	working.	He	vividly
remembers	 those	 final	 fateful	 days:	 ‘I	 was	 sitting	 at	my	 desk	 one	Monday
morning,	 19	 September,	 examining	 the	 Kolyvagin–Flach	method.	 It	 wasn’t
that	I	believed	I	could	make	it	work,	but	I	thought	that	at	least	I	could	explain



why	 it	 didn’t	 work.	 I	 thought	 I	 was	 clutching	 at	 straws,	 but	 I	 wanted	 to
reassure	 myself.	 Suddenly,	 totally	 unexpectedly,	 I	 had	 this	 incredible
revelation.	 I	 realised	 that,	 although	 the	 Kolyvagin–Flach	 method	 wasn’t
working	completely,	it	was	all	I	needed	to	make	my	original	Iwasawa	theory
work.	I	realised	that	I	had	enough	from	the	Kolyvagin–Flach	method	to	make
my	original	approach	to	the	problem	from	three	years	earlier	work.	So	out	of
the	ashes	of	Kolyvagin–Flach	seemed	to	rise	the	true	answer	to	the	problem.’
Iwasawa	 theory	 on	 its	 own	 had	 been	 inadequate.	 The	 Kolyvagin–Flach

method	 on	 its	 own	was	 also	 inadequate.	 Together	 they	 complemented	 each
other	perfectly.	It	was	a	moment	of	inspiration	that	Wiles	will	never	forget.	As
he	recounted	these	moments,	the	memory	was	so	powerful	that	he	was	moved
to	tears:	‘It	was	so	indescribably	beautiful;	it	was	so	simple	and	so	elegant.	I
couldn’t	understand	how	 I’d	missed	 it	 and	 I	 just	 stared	at	 it	 in	disbelief	 for
twenty	minutes.	Then	during	the	day	I	walked	around	the	department,	and	I’d
keep	coming	back	to	my	desk	looking	to	see	if	 it	was	still	 there.	It	was	still
there.	I	couldn’t	contain	myself,	I	was	so	excited.	It	was	the	most	 important
moment	of	my	working	life.	Nothing	I	ever	do	again	will	mean	as	much.’
This	was	not	only	the	fulfilment	of	a	childhood	dream	and	the	culmination

of	 eight	 years	 of	 concerted	 effort,	 but	 having	 been	 pushed	 to	 the	 brink	 of
submission	Wiles	had	fought	back	to	prove	his	genius	to	the	world.	The	last
fourteen	months	had	been	the	most	painful,	humiliating	and	depressing	period
of	his	mathematical	career.	Now	one	brilliant	 insight	had	brought	an	end	 to
his	suffering.
‘So	 the	first	night	 I	went	back	home	and	slept	on	 it.	 I	checked	 through	 it

again	 the	next	morning	and	by	11	o’clock	 I	was	satisfied,	and	 I	went	down
and	 told	 my	 wife,	 “I’ve	 got	 it!	 I	 think	 I’ve	 found	 it.”	 And	 it	 was	 so
unexpected	that	she	thought	I	was	talking	about	a	children’s	toy	or	something,
and	she	said,	“Got	what?”	I	said,	“I’ve	fixed	my	proof.	I’ve	got	it.’”
The	 following	month	Wiles	was	 able	 to	make	up	 for	 the	 promise	 he	 had

failed	to	keep	the	previous	year.	‘It	was	coming	up	to	Nada’s	birthday	again
and	I	remembered	that	last	time	I	could	not	give	her	the	present	she	wanted.
This	time,	half	a	minute	late	for	our	dinner	on	the	night	of	her	birthday,	I	was
able	to	give	her	the	complete	manuscript.	I	think	she	liked	that	present	better
than	any	other	I	had	ever	given	her.’





Epilogue
Grand	Unified	Mathematics

A	reckless	young	fellow	from	Burma,
Found	proofs	of	the	theorem	of	Fermat
He	lived	then	in	terror,
Of	finding	an	error,
Wiles’s	proof,	he	suspected,	was	firmer!

Fernando	Gouvea

This	time	there	was	no	doubt	about	the	proof.	The	two	papers,	consisting	of
130	 pages	 in	 total,	 were	 the	 most	 thoroughly	 scrutinised	 mathematical
manuscripts	 in	 history	 and	 were	 eventually	 published	 in	 Annals	 of
Mathematics	(May	1995).
Once	again	Wiles	found	himself	on	the	front	page	of	the	New	York	Times,

but	 this	 time	 the	headline	 ‘Mathematician	Calls	Classic	Riddle	Solved’	was
overshadowed	by	another	science	story	–	‘Finding	on	Universe’s	Age	Poses
New	Cosmic	Puzzle.’	While	 journalists	were	 slightly	 less	enthusiastic	about
Fermat’s	Last	Theorem	this	time	around,	the	matematicians	had	not	lost	sight
of	the	true	significance	of	the	proof.	‘In	mathematical	terms	the	final	proof	is
the	 equivalent	 of	 splitting	 the	 atom	 or	 finding	 the	 structure	 of	 DNA,’
announced	John	Coates.	‘A	proof	of	Fermat	is	a	great	intellectual	triumph	and
one	shouldn’t	lose	sight	of	the	fact	that	it	has	revolutionised	number	theory	in
one	fell	swoop.	For	me	the	charm	and	beauty	of	Andrew’s	work	has	been	that
it	has	been	a	tremendous	step	for	number	theory.’

During	 Wiles’s	 eight-year	 ordeal	 he	 had	 brought	 together	 virtually	 all	 the
breakthroughs	 in	 twentieth-century	number	 theory	and	 incorporated	 them	 in
one	almighty	proof.	He	had	created	completely	new	mathematical	techniques
and	 combined	 them	 with	 traditional	 ones	 in	 ways	 that	 had	 never	 been
considered	possible.	 In	doing	so	he	had	opened	up	new	 lines	of	attack	on	a
whole	host	of	other	problems.	According	to	Ken	Ribet	the	proof	is	a	perfect
synthesis	 of	modern	mathematics	 and	 an	 inspiration	 for	 the	 future:	 ‘I	 think
that	if	you	were	lost	on	a	desert	island	and	you	had	only	this	manuscript	then
you	would	have	a	 lot	of	 food	 for	 thought.	You	would	 see	all	of	 the	 current



ideas	of	number	 theory.	You	 turn	 to	a	page	and	 there’s	a	brief	apperance	of
some	fundamental	theorem	by	Deligne	and	then	you	turn	to	another	page	and
in	some	incidental	way	there’s	a	theorem	by	Hellegouarch	–	all	of	these	things
are	 just	called	 into	play	and	used	for	a	moment	before	going	on	 to	 the	next
idea.’
While	 science	 journalists	 eulogised	 over	 Wiles’s	 proof	 of	 Fermat’s	 Last

Theorem,	 few	 of	 them	 commented	 on	 the	 proof	 of	 the	 Taniyama–Shimura
conjecture	that	was	inextricably	linked	to	it.	Few	of	them	bothered	to	mention
the	 contribution	 of	 Yutaka	 Taniyama	 and	 Goro	 Shimura,	 the	 two	 Japanese
mathematicians	who	back	in	the	1950s	had	sown	the	seeds	for	Wiles’s	work.
Although	 Taniyama	 had	 committed	 suicide	 over	 thirty	 years	 earlier,	 his
colleague	Shimura	was	there	to	witness	their	conjecture	proved.	When	asked
for	his	 reaction	 to	 the	proof,	Shimura	gently	 smiled	and	 in	a	 restrained	and
dignified	manner	simply	said,	‘I	told	you	so.’
Like	many	of	his	colleagues,	Ken	Ribet	 feels	 that	proving	 the	Taniyama–

Shimura	 conjecture	 has	 transformed	 mathematics:	 ‘There’s	 an	 important
psychological	repercussion	which	is	that	people	now	are	able	to	forge	ahead
on	other	problems	that	they	were	too	timid	to	work	on	before.	The	landscape
is	 different,	 in	 that	 you	 know	 that	 all	 elliptic	 equations	 are	 modular	 and
therefore	 when	 you	 prove	 a	 theorem	 for	 elliptic	 equations	 you’re	 also
attacking	modular	forms	and	vice	versa.	You	have	a	different	perspective	of
what’s	 going	 on	 and	 you	 feel	 less	 intimidated	 by	 the	 idea	 of	working	with
modular	forms	because	basically	you’re	now	working	with	elliptic	equations.
And,	of	course,	when	you	write	an	article	about	elliptic	equations,	instead	of
saying	 that	we	 don’t	 know	 anything	 so	we’re	 going	 to	 have	 to	 assume	 the
Taniyama–Shimura	conjecture	and	see	what	we	can	do	with	 it,	now	we	can
just	say	that	we	know	the	Taniyama–Shimura	conjecture	is	true,	so	therefore
such	and	such	must	be	true.	It’s	a	much	more	pleasant	experience.’
Via	 the	 Taniyama–Shimura	 conjecture	Wiles	 had	 unified	 the	 elliptic	 and

modular	 worlds,	 and	 in	 so	 doing	 provided	 mathematics	 with	 a	 shortcut	 to
many	other	proofs	–	problems	in	one	domain	could	be	solved	by	analogy	with
problems	in	the	parallel	domain.	Classic	unsolved	elliptic	problems	dating	all
the	way	back	 to	 the	 ancient	Greeks	 could	now	be	 reexamined	using	 all	 the
available	modular	tools	and	techniques.
Even	 more	 important,	 Wiles	 had	 made	 the	 first	 step	 toward	 Robert

Langlands’s	grander	scheme	of	unification	–	the	Langlands	program.	There	is
now	a	renewed	effort	to	prove	other	unifying	conjectures	between	other	areas
of	mathematics.	In	March	1996	Wiles	shared	the	$100,000	Wolf	Prize	(not	to
be	confused	with	the	Wolfskehl	Prize)	with	Langlands.	The	Wolf	Committee
was	recognising	that	while	Wiles’s	proof	was	an	astounding	accomplishment



in	its	own	right,	it	had	also	breathed	life	into	Langlands’s	ambitious	scheme.
Here	was	a	breakthrough	that	could	lead	mathematics	into	the	next	golden	age
of	problem-solving.
Following	 a	 year	 of	 embarrassment	 and	 uncertainty	 the	 mathematical

community	 could	 at	 last	 rejoice.	 Every	 symposium,	 colloquium,	 and
conference	 had	 a	 session	 devoted	 to	 Wiles’s	 proof,	 and	 in	 Boston
mathematicians	 launched	 a	 limerick	 competition	 to	 commemorate	 the
momentous	event.	It	attracted	this	entry:

‘My	butter,	garçon,	is	writ	large	in!’
A	diner	was	heard	to	be	chargin’,
‘I	had	to	write	there,’
Exclaimed	waiter	Pierre,
‘I	couldn’t	find	room	in	the	margarine.’

E.	Howe,	H.	Lenstra,	D.	Moulton

The	Prize

Wiles’s	proof	of	Fermat’s	Last	Theorem	relies	on	verifying	a	conjecture	born
in	 the	 1950s.	 The	 argument	 exploits	 a	 series	 of	 mathematical	 techniques
developed	in	the	last	decade,	some	of	which	were	invented	by	Wiles	himself.
The	 proof	 is	 a	 masterpiece	 of	 modern	 mathematics,	 which	 leads	 to	 the
inevitable	conclusion	that	Wiles’s	proof	of	the	Last	Theorem	is	not	the	same
as	Fermat’s.	Fermat	wrote	that	his	proof	would	not	fit	into	the	margin	of	his
copy	 of	 Diophantus’s	 Arithmetica,	 and	 Wiles’s	 100	 pages	 of	 dense
mathematics	certainly	fulfills	this	criterion,	but	surely	the	Frenchman	did	not
invent	modular	forms,	the	Taniyama–Shimura	conjecture,	Galois	groups,	and
the	Kolyvagin–Flach	method	centuries	before	anyone	else.
If	 Fermat	 did	 not	 have	 Wiles’s	 proof,	 then	 what	 did	 he	 have?

Mathematicians	are	divided	into	two	camps.	The	hardheaded	skeptics	believe
that	Fermat’s	Last	Theorem	was	the	result	of	a	rare	moment	of	weakness	by
the	 seventeenth-century	 genius.	 They	 claim	 that,	 although	 Fermat	 wrote	 ‘I
have	discovered	a	truly	marvellous	proof,’	he	had	in	fact	found	only	a	flawed
proof.	The	exact	nature	of	this	flawed	proof	is	open	to	debate,	but	it	is	quite
possible	that	it	may	have	been	along	the	same	lines	as	the	work	of	Cauchy	or
Lamé.
Other	 mathematicians,	 the	 romantic	 optimists,	 believe	 that	 Fermat	 may

have	 had	 a	 genuine	 proof.	Whatever	 this	 proof	 might	 have	 been,	 it	 would
have	been	based	on	seventeenth-century	techniques,	and	would	have	involved



an	 argument	 so	 cunning	 that	 it	 has	 eluded	 everybody	 from	Euler	 to	Wiles.
Despite	the	publication	of	Wiles’s	solution	to	the	problem,	there	are	plenty	of
mathematicians	 who	 believe	 that	 they	 can	 still	 achieve	 fame	 and	 glory	 by
discovering	Fermat’s	original	proof.
Although	 Wiles	 had	 to	 resort	 to	 twentieth-century	 methods	 to	 solve	 a

seventeenth-century	 riddle,	 he	 has	 nonetheless	 met	 Fermat’s	 challenge
according	to	the	rules	of	the	Wolfskehl	committee.	On	June	27,	1997,	Andrew
Wiles	collected	 the	Wolfskehl	Prize,	worth	$50,000.	Fermat’s	Last	Theorem
had	been	officially	solved.
Wiles	realises	that	in	order	to	give	mathematics	one	of	its	greatest	proofs,

he	has	had	to	deprive	it	of	its	greatest	riddle:	‘People	have	told	me	that	I’ve
taken	 away	 their	 problem,	 and	 asked	 if	 I	 could	 give	 them	 something	 else.
There	is	a	sense	of	melancholy.	We’ve	lost	something	that’s	been	with	us	for
so	long,	and	something	that	drew	a	lot	of	us	into	mathematics.	Perhaps	that’s
always	the	way	with	math	problems.	We	just	have	to	find	new	ones	to	capture
our	attention.’
But	what	 next	will	 capture	Wiles’s	 attention?	Not	 surprisingly	 for	 a	man

who	worked	in	complete	secrecy	for	seven	years,	he	is	refusing	to	comment
on	his	current	research,	but	whatever	he	is	working	on,	there	is	no	doubt	that
it	will	never	fully	replace	the	infatuation	he	had	with	Fermat’s	Last	Theorem.
‘There’s	 no	 other	 problem	 that	 will	 mean	 the	 same	 to	 me.	 This	 was	 my
childhood	passion.	There’s	nothing	to	replace	that.	I’ve	solved	it.	I’ll	try	other
problems,	I’m	sure.	Some	of	them	will	be	very	hard	and	I’ll	have	a	sense	of
achievement	 again,	 but	 there’s	 no	 other	 problem	 in	mathematics	 that	 could
hold	me	the	way	Fermat	did.
‘I	had	this	very	rare	privilege	of	being	able	to	pursue	in	my	adult	life	what

had	 been	my	 childhood	 dream.	 I	 know	 it’s	 a	 rare	 privilege,	 but	 if	 you	 can
tackle	 something	 in	 adult	 life	 that	 means	 that	much	 to	 you,	 then	 it’s	more
rewarding	 than	 anything	 imaginable.	 Having	 solved	 this	 problem	 there’s
certainly	a	sense	of	loss,	but	at	the	same	time	there	is	this	tremendous	sense	of
freedom.	I	was	so	obsessed	by	this	problem	that	for	eight	years	I	was	thinking
about	it	all	the	time	–	when	I	woke	up	in	the	morning	to	when	I	went	to	sleep
at	night.	That’s	a	long	time	to	think	about	one	thing.	That	particular	odyssey
is	now	over.	My	mind	is	at	rest.’



Appendices

Appendix	1.	The	Proof	of	Pythagoras’	Theorem

The	aim	of	the	proof	is	to	show	that	Pythagoras’	theorem	is	true	for	all	right-
angled	triangles.	The	triangle	shown	above	could	be	any	right-angled	triangle
because	its	lengths	are	unspecified,	and	represented	by	the	letters	x,	y	and	z.
Also	 above,	 four	 identical	 right-angled	 triangles	 are	 combined	 with	 one

tilted	square	to	build	a	large	square.	It	is	the	area	of	this	large	square	which	is
the	key	to	the	proof.
The	area	of	the	large	square	can	be	calculated	in	two	ways.

Method	1:	Measure	the	area	of	the	large	square	as	a	whole.	The	length	of	each
side	is	x	+	y.	Therefore,	the	area	of	the	large	square	=	(x	+	y)2.

Method	2:	Measure	the	area	of	each	element	of	the	large	square.	The	area	of
each	triangle	is	1⁄2xy,	i.e.1⁄2	×	base	×	height.	The	area	of	the	tilted	square	is	z2.
Therefore,

area	of	large	square	=	4	×	(area	of	each	triangle)	+	area	of	tilted	square

Methods	 1	 and	 2	 give	 two	 different	 expressions.	 However,	 these	 two
expressions	 must	 be	 equivalent	 because	 they	 represent	 the	 same	 area.
Therefore,



The	brackets	can	be	expanded	and	simplified.	Therefore,

The	2xy	can	be	cancelled	from	both	sides.	So	we	have

which	is	Pythagoras’	theorem!
The	argument	is	based	on	the	fact	that	the	area	of	the	large	square	must	be

the	 same	 no	matter	 what	 method	 is	 used	 to	 calculate	 it.	We	 then	 logically
derive	 two	 expressions	 for	 the	 same	 area,	 make	 them	 equivalent,	 and
eventually	the	inevitable	conclusion	is	that	x2	+	y2	=	z2,	i.e.	the	square	on	the
hypotenuse,	z2,	is	equal	to	the	sum	of	the	squares	on	the	other	two	sides,	x2	+
y2.
This	 argument	 holds	 true	 for	 all	 right-angled	 triangles.	 The	 sides	 of	 the

triangle	 in	 our	 argument	 are	 represented	 by	 x,	 y	 and	 z,	 and	 can	 therefore
represent	the	sides	of	any	right-angled	triangle.

Appendix	2.	Euclid’s	Proof	that	√2	is	Irrational

Euclid’s	aim	was	to	prove	that	√2	could	not	be	written	as	a	fraction.	Because
he	 was	 using	 proof	 by	 contradiction,	 the	 first	 step	 was	 to	 assume	 that	 the
opposite	was	 true,	 that	 is	 to	say,	 that	√2	could	be	written	as	some	unknown
fraction.	This	hypothetical	 fraction	 is	 represented	by	p⁄q,	where	p	 and	q	 are
two	whole	numbers.
Before	 embarking	 on	 the	 proof	 itself,	 all	 that	 is	 required	 is	 a	 basic

understanding	of	some	properties	of	fractions	and	even	numbers.

(1)	If	you	take	any	number	and	multiply	it	by	2,	then	the	new	number	must	be
even.	This	is	virtually	the	definition	of	an	even	number.
(2)	 If	you	know	that	 the	square	of	a	number	 is	even,	 then	 the	number	 itself
must	also	be	even.
(3)	Finally,	fractions	can	be	simplified:	16⁄24	is	the	same	as	8⁄12;	just	divide	the
top	and	bottom	of	16⁄24	by	the	common	factor	2.	Furthermore,	8⁄12	is	the	same
as	4⁄6,	and	in	turn	4⁄6	is	the	same	as	2⁄3.	However,	2⁄3,	cannot	be	simplified	any
further	because	2	and	3	have	no	common	factors.	It	is	impossible	to	keep	on



simplifying	a	fraction	forever.

Now,	remember	that	Euclid	believes	that	√2	cannot	be	written	as	a	fraction.
However,	because	he	adopts	the	method	of	proof	by	contradiction,	he	works
on	 the	 assumption	 that	 the	 fraction	p⁄q	 does	 exist	 and	 then	 he	 explores	 the
consequences	of	its	existence:

If	we	square	both	sides,	then

This	equation	can	easily	be	rearranged	to	give

Now	from	point	(1)	we	know	that	p2	must	be	even.	Furthermore,	from	point
(2)	we	know	p	itself	must	also	be	even.	But	if	p	is	even,	then	it	can	be	written
as	2m,	 where	m	 is	 some	 other	whole	 number.	 This	 follows	 from	 point	 (1).
Plug	this	back	into	the	equation	and	we	get

Divide	both	sides	by	2,	and	we	get

But	by	 the	same	arguments	we	used	before,	we	know	that	q2	must	be	even,
and	so	q	itself	must	also	be	even.	If	this	is	the	case,	then	q	can	be	written	as
2n,	where	n	is	some	other	whole	number.	If	we	go	back	to	the	beginning,	then

The	2m⁄2n	can	be	simplified	by	dividing	top	and	bottom	by	2,	and	we	get

We	now	have	a	fraction	m⁄n,	which	is	simpler	than	p⁄q.
However,	 we	 now	 find	 ourselves	 in	 a	 position	 whereby	 we	 can	 repeat

exactly	the	same	process	on	m⁄n,	and	at	the	end	of	it	we	will	generate	an	even



simpler	fraction,	say	g⁄h.	This	fraction	can	then	be	put	through	the	mill	again,
and	the	new	fraction,	say	e⁄f,	will	be	simpler	still.	We	can	put	this	through	the
mill	again,	and	repeat	the	process	over	and	over	again,	with	no	end.	But	we
know	from	point	 (3)	 that	 fractions	cannot	be	 simplified	 forever.	There	must
always	be	a	simplest	fraction,	but	our	original	hypothetical	fraction	p⁄q	does
not	 seem	 to	 obey	 this	 rule.	 Therefore,	 we	 can	 justifiably	 say	 that	 we	 have
reached	a	contradiction.	If	√2	could	be	written	as	a	fraction	the	consequence
would	 be	 absurd,	 and	 so	 it	 is	 true	 to	 say	 that	 √2	 cannot	 be	 written	 as	 a
fraction.	Therefore	√2	is	an	irrational	number.

Appendix	3.	The	Riddle	of	Diophantus’	Age

Let	 us	 call	 the	 length	 of	 Diophantus’	 life	 L.	 From	 the	 riddle	 we	 have	 a
complete	account	of	Diophantus’	life	which	is	as	follows:

1⁄6	of	his	life,	L⁄6,	was	spent	as	a	boy,
L⁄12	was	spent	as	a	youth,
L⁄7	was	then	spent	prior	to	marriage,
5	years	later	a	son	was	born,
L⁄2	was	the	life	span	of	the	son,
4	years	were	spent	in	grief	before	he	died.

The	length	of	Diophantus’	life	is	the	sum	of	the	above:

We	can	then	simplify	the	equation	as	follows:

Diophantus	died	at	the	age	of	84	years.

Appendix	4.	Bachet’s	Weighing	Problem



In	order	to	weigh	any	whole	number	of	kilograms	from	1	to	40	most	people
will	suggest	that	six	weights	are	required:	1,	2,	4,	8,	16,	32	kg.	In	this	way,	all
the	weights	can	easily	be	achieved	by	placing	the	following	combinations	in
one	pan:

However,	by	placing	weights	in	both	pans,	such	that	weights	are	also	allowed
to	sit	alongside	the	object	being	weighed,	Bachet	could	complete	the	task	with
only	 four	weights:	 1,	 3,	 9,	 27	 kg.	A	weight	 placed	 in	 the	 same	 pan	 as	 the
object	being	weighed	effectively	assumes	a	negative	value.	Thus,	the	weights
can	be	achieved	as	follows:	

Appendix	5.	Euclid’s	Proof	That	There	Are	an	Infinite	Number
of	Pythagorean	Triples

A	Pythagorean	 triple	 is	a	set	of	 three	whole	numbers,	such	 that	one	number
squared	 added	 to	 another	 number	 squared	 equals	 the	 third	 number	 squared.
Euclid	 could	 prove	 that	 there	 are	 an	 infinite	 number	 of	 such	 Pythagorean
triples.
Euclid’s	 proof	 begins	 with	 the	 observation	 that	 the	 difference	 between

successive	square	numbers	is	always	an	odd	number:



Every	single	one	of	the	infinity	of	odd	numbers	can	be	added	to	a	particular
square	 number	 to	 make	 another	 square	 number.	 A	 fraction	 of	 these	 odd
numbers	are	themselves	square,	but	a	fraction	of	infinity	is	also	infinite.
Therefore	 there	 are	 also	 an	 infinity	 of	 odd	 square	numbers	which	 can	be

added	 to	 one	 square	 to	 make	 another	 square	 number.	 In	 other	 words	 there
must	be	an	infinite	number	of	Pythagorean	triples.

Appendix	6.	Proof	of	the	Dot	Conjecture

The	dot	conjecture	states	that	it	is	impossible	to	draw	a	dot	diagram	such	that
every	line	has	at	least	three	dots	on	it.
Although	this	proof	requires	a	minimal	amount	of	mathematics,	it	does	rely

on	 some	 geometrical	 gymnastics,	 and	 so	 I	 would	 recommend	 careful
contemplation	of	each	step.
First	consider	an	arbitrary	pattern	of	dots	and	the	lines	which	connect	every

dot	to	every	other	one.	Then,	for	each	dot,	work	out	its	distance	to	the	closest
line,	excluding	any	 lines	which	go	 through	 it.	Thereby	 identify	which	of	all
the	dots	is	closest	to	a	line.
Below	 is	 a	 close-up	 of	 such	 a	 dot	D	 which	 is	 closest	 to	 a	 line	 L.	 The

distance	 between	 the	 dot	 and	 the	 line	 is	 shown	 as	 a	 dashed	 line	 and	 this
distance	is	smaller	than	any	other	distance	between	any	other	line	and	a	dot.

It	is	now	possible	to	show	that	line	L	will	always	have	only	two	dots	on	it
and	that	therefore	the	conjecture	is	true,	i.e.	it	is	impossible	to	draw	a	diagram
such	that	every	line	has	three	dots	on	it.
To	show	that	line	L	must	have	two	dots,	we	consider	what	would	happen	if



it	had	a	third	dot.	If	the	third	dot,	DA,	existed	outside	the	two	dots	originally
shown,	 then	 the	 distance	 shown	 as	 a	 dotted	 line	would	 be	 shorter	 than	 the
dashed	line	which	was	supposed	to	be	the	shortest	distance	between	a	dot	and
a	line.	Therefore	dot	DA	cannot	exist.

Similarly,	 if	 the	 third	 dot,	 DB,	 exists	 between	 the	 two	 dots	 originally
shown,	then	once	again	the	distance	shown	as	a	dotted	line	would	be	shorter
than	the	dashed	line	which	was	supposed	to	be	the	shortest	distance	between	a
dot	and	a	line.	Therefore	dot	DB	cannot	exist	either.

In	 summary,	 any	 configuration	 of	 dots	 must	 have	 a	 minimum	 distance
between	some	dot	and	some	line,	and	the	line	in	question	must	have	only	two
dots.	Therefore	for	every	configuration	there	will	always	be	at	least	this	one
line	with	only	two	dots	–	the	conjecture	is	true.

Appendix	7.	Straying	into	Absurdity

The	following	is	a	classic	demonstration	of	how	easy	it	is	to	start	off	with	a
very	simple	statement	and	 then	within	a	 few	apparently	straightforward	and
logical	steps	show	that	2	=	1.
First,	let	us	begin	with	the	innocuous	statement



Then	multiply	both	sides	by	a,	giving

Then	add	a2	–	2ab	to	both	sides:

This	can	be	simplified	to

Finally,	divide	both	sides	by	a2	–	ab,	and	we	get

The	 original	 statement	 appears	 to	 be,	 and	 is,	 completely	 harmless,	 but
somewhere	in	the	step-by-step	manipulation	of	the	equation	there	was	a	subtle
but	disastrous	error	which	leads	to	the	contradiction	in	the	final	statement.
In	 fact,	 the	 fatal	mistake	 appears	 in	 the	 last	 step	 in	which	 both	 sides	 are

divided	 by	 a2	 –	 ab.	We	 know	 from	 the	 original	 statement	 that	 a	 =	 b,	 and
therefore	dividing	by	a2	–	ab	is	equivalent	to	dividing	by	zero.
Dividing	 anything	 by	 zero	 is	 a	 risky	 step	 because	 zero	 will	 go	 into	 any

finite	quantity	an	infinite	number	of	times.	By	creating	infinity	on	both	sides
we	 have	 effectively	 torn	 apart	 both	 halves	 of	 the	 equation	 and	 allowed	 a
contradiction	to	creep	into	the	argument.
This	subtle	error	is	typical	of	the	sort	of	blunder	which	caught	out	many	of

the	entrants	for	the	Wolfskehl	Prize.

Appendix	8.	The	Axioms	of	Arithmetic

The	 following	 axioms	 are	 all	 that	 are	 required	 as	 the	 foundation	 for	 the
elaborate	structure	of	arithmetic:

1.	For	any	numbers	m,	n

2.	For	any	numbers	m,	n,	k,



3.	For	any	numbers	m,	n,	k

4.	There	is	a	number	0	which	has	the	property	that,	for	any	number	n,

5.	There	is	a	number	1	which	has	the	property	that,	for	any	number	n,

6.	For	every	number	n,	there	is	another	number	k	such	that

7.	For	any	numbers	m,	n,	k,

From	 these	 axioms	 other	 rules	 can	 be	 proved.	 For	 example,	 by	 rigorously
applying	the	axioms	and	assuming	nothing	else,	we	can	rigorously	prove	the
apparently	obvious	rule	that

To	begin	with	we	state	that

Then	by	Axiom	6,	let	l	be	a	number	such	that,	k	+	l	=	0,	so

Then,	by	Axiom	2,

Bearing	in	mind	that	k	+	l	=	0,	we	know	that



By	applying	Axiom	4,	we	can	at	last	declare	what	we	set	out	to	prove:

Appendix	9.	Game	Theory	and	the	Truel

Let	us	examine	Mr	Black’s	options.	First,	Mr	Black	could	aim	at	Mr	Grey.	If
he	is	successful	then	the	next	shot	will	be	taken	by	Mr	White.	Mr	White	has
only	one	opponent	left,	Mr	Black,	and	as	Mr	White	is	a	perfect	shot	then	Mr
Black	is	a	dead	man.
A	better	option	is	for	Mr	Black	to	aim	at	Mr	White.	If	he	is	successful	then

the	next	shot	will	be	taken	by	Mr	Grey.	Mr	Grey	hits	his	target	only	two	times
out	of	three	and	so	there	is	a	chance	that	Mr	Black	will	survive	to	fire	back	at
Mr	Grey	and	possibly	win	the	truel.
It	 appears	 that	 the	 second	 option	 is	 the	 strategy	which	Mr	 Black	 should

adopt.	However,	there	is	a	third	and	even	better	option.	Mr	Black	could	aim
into	the	air.	Mr	Grey	has	the	next	shot	and	he	will	aim	at	Mr	White,	because
he	is	the	more	dangerous	opponent.	If	Mr	White	survives	then	he	will	aim	at
Mr	Grey	because	he	is	the	more	dangerous	opponent.	By	aiming	into	the	air,
Mr	Black	is	allowing	Mr	Grey	to	eliminate	Mr	White	or	vice	versa.
This	is	Mr	Black’s	best	strategy.	Eventually	Mr	Grey	or	Mr	White	will	die

and	then	Mr	Black	will	aim	at	whoever	survives.	Mr	Black	has	manipulated
the	situation	so	that,	instead	of	having	the	first	shot	in	a	truel,	he	has	first	shot
in	a	duel.

Appendix	10.	An	Example	of	Proof	by	Induction

Mathematicians	 find	 it	 useful	 to	 have	neat	 formulae	which	give	 the	 sum	of
various	lists	of	numbers.	In	this	case	the	challenge	is	to	find	a	formula	which
gives	the	sum	of	the	first	n	counting	numbers.
For	example,	the	sum	of	just	the	first	number	is	1,	the	sum	of	the	first	two

numbers	is	3	(i.e.	1	+	2),	the	sum	of	the	first	three	numbers	is	6	(i.e.	1	+	2	+
3),	the	sum	of	the	first	four	numbers	is	10	(i.e.	1	+	2	+	3	+	4),	and	so	on.
A	candidate	formula	which	seems	to	describe	this	pattern	is:

In	 other	words	 if	we	want	 to	 find	 the	 sum	 of	 the	 first	n	 numbers,	 then	we
simply	enter	that	number	into	the	formula	above	and	work	out	the	answer.



Proof	by	induction	can	prove	that	this	formula	works	for	every	number	up
to	infinity.
The	 first	 step	 is	 to	 show	 that	 the	 formula	works	 for	 the	 first	 case,	n	 =	 1.

This	is	fairly	straightforward,	because	we	know	that	the	sum	of	just	the	first
number	 is	 1,	 and	 if	 we	 enter	 n	 =	 1	 into	 the	 candidate	 formula	 we	 get	 the
correct	result:

The	first	domino	has	been	toppled.
The	next	step	in	proof	by	induction	is	to	show	that	if	the	formula	is	true	for

any	value	n,	then	it	must	also	be	true	for	n	+	1.	If

then,

After	rearranging	and	regrouping	the	terms	on	the	right,	we	get

What	is	important	to	note	here	is	that	the	form	of	this	new	equation	is	exactly
the	same	as	the	original	equation	except	that	every	appearance	of	n	has	been
replaced	by	(n	+	1).
In	other	words,	if	the	formula	is	true	for	n,	then	it	must	also	be	true	for	n	+

1.	If	one	domino	falls,	 it	will	always	knock	over	the	next	one.	The	proof	by
induction	is	complete.
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